Case C: Mass Ratio 3:1, NS Spin 0.23, magnetized

Density Evolution

These figures show rest-mass density $\rho_{0}$ normalized to its initial NS maximum value $\rho_0=8.92\times 10^{14}\,(1.4M_\odot/M_{\rm NS})^2\rm{g/cm}^{3}$ (log scale) at selected times for this case . Bottom panels highlight the emergence of the magnetically-driven jet. White lines denote the magnetic field, arrows denote the fluid velocity, while the BH apparent horizon is shown as a black sphere. Here $M=2.5\times 10^{-2}(M_{\rm NS}/1.4M_\odot){\rm ms}=7.58(M_{\rm NS}/1.4M_\odot)\,\rm km$.

In this case we find that an incipient jet is launched after $\sim 5500M\simeq 138(M_{\rm NS}/1.4M_\odot)\, \rm ms$ following merger, which is longer than the time in the low prograde spin case (Case B).

Fig. 1-1: Rest mass density at time $t/M$ = 0
Fig. 1-1: Rest mass density at time t/M = 634
Fig. 1-1: Rest mass density at time t/M = 611
Fig. 1-2: Rest mass density at time t/M = 849
Fig. 1-1: Rest mass density at time t/M = 1557
Fig. 1-3: Rest mass density at time t/M = 929
Fig. 1-1: Rest mass density at time t/M = 3449
Fig. 1-4: Rest mass density at time t/M = 1139
Fig. 1-1: Rest mass density at time t/M = 4651
Fig. 1-5: Rest mass density at time t/M = 7911
Fig. 1-1: Rest mass density at time t/M = 4651
Fig. 1-5: Rest mass density at time t/M = 7911
Play Online