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Much like its classical counterpart, which aims at reconstructing three-
dimensional images via a series of two-dimensional projections along vari-
ous ‘cuts’, quantum tomography characterizes the complete quantum state
of a particle or particles through a series of measurements in different bases.
While the characterization of a classical object can involve a series of measure-
ments on the same subject, measuring a single quantum particle perturbs its
state, often making its further investigation uninformative. For this reason,
quantum tomography must be carried out in stages on a number of identical
copies of the same state, and can never be successfully applied to a single
unknown particle. The etymology of tomography is therefore descriptive (the
Greek tomos means section) – a series of measurements on identical particle
ensembles each allow a glimpse into a distinct aspect of a quantum state’s
reality. Each new type of measurement illuminates a new dimension of an
unknown state; subjecting more identical copies of that state to a single type
of measurement brings that particular observable into sharper relief.

This chapter will present a review of the representation of quantum states,
a procedure for and an explanation of the reconstruction of an unknown state
from a series of ideal measurements on an ensemble of identical particles, and
the adaptation of that method to real systems, i.e., non-ideal measurements.
Each section will be presented first in general, without respect to a particular
physical qubit implementation, followed by the application of that theory to
the specific case of qubits encoded into the polarization states of photons. We
chose this system for convenience and availability of clean results. However,
the techniques presented here can be applied to determine the quantum state
of any system of one or more qubits (2-level systems). This includes photons
[1-10], spin- 1

2 particles (as, e.g., are used in NMR quantum computing [11, 12,
13, 14]), and (effectively) 2-level atoms [15, 16]. In order to facilitate the use
of these techniques by groups and individuals working in any field, a website
is available which provides both further details about these techniques and
working, documented code for implementing them.3

3 http://www.physics.uiuc.edu/research/QuantumPhotonics/Tomography/
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1 State Representation

Before states can be analyzed, it is necessary to understand their representa-
tion. In particular, the reconstruction of an unknown state is often simplified
by a specific state parametrization.

1.1 Representation of Single Qubit States

Rather than begin with a general treatment of tomography for an arbitrary
number of qubits, throughout this chapter the single-qubit case will be in-
vestigated initially. This provides the opportunity to strengthen an intuitive
grasp of the fundamentals of state representation and tomography before
moving on to the more complex (and more useful) general case. In pursuance
of this goal, we will use several graphical representations only available at
the single-qubit level.

Pure States, Mixed States, and Diagonal Representations

In general, any single-qubit in a pure state can be represented by

|ψ〉 = α|0〉 + β|1〉, (1)

where α and β are complex and |α|2 + |β|2 = 1 [19]. If the normalization is
written implicitly and the global phase is ignored, this can be rewritten as

|ψ〉 = cos

(

θ

2

)

|0〉 + sin

(

θ

2

)

eiφ|1〉. (2)

These representations are sufficient to enable the description of the action of
any operator (e.g., projectors or unitary rotations) on a pure state, and there-
fore to carry out tomography on that state. However, as previously discussed,
any such tomography would require an ensemble of such states. What if the
measured ensemble – being as yet unknown – contained an ensemble of differ-

ent pure states? Or what if the members of the ensemble were themselves not
in pure states (perhaps because they are entangled with unobserved degrees
of freedom)? In this case the overall state is mixed.

In general, these mixed states may be described by a probabilistically
weighted incoherent sum of pure states. In other words, it is as if any particle
in the ensemble has a specific probability of being in a given pure state, and
this state is distinguishably labelled in some way. If it were not distinguish-
able, its constituent pure states would add coherently (with a definite relative
phase), yielding a single pure state. A mixed state can be represented by a
density matrix ρ̂, where

ρ̂ =
∑

i

Pi|ψi〉〈ψi| =

(

〈0| 〈1|
|0〉 A Ceiφ

|1〉 Ce−iφ B

)

. (3)
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Pi is the probabalistic weighting (
∑

i Pi = 1), A,B and C are all real and

non-negative, A+B = 1, and C ≤
√
AB [19].

While any ensemble of pure states can be represented in this way, it is
also true that any ensemble of single-qubit states can be represented by an
ensemble of only two orthogonal pure states. (Two pure states |ψi〉 and |ψj〉
are orthogonal if |〈ψi|ψj〉| = 0). For example, if the matrix from equation 3
were diagonal, then it would clearly be a probabalistic combination of two
orthogonal states, as

(

〈0| 〈1|
|0〉 A 0
|1〉 0 B

)

= A|0〉〈0| +B|1〉〈1|. (4)

However, any physical density matrix can be diagonalized, such that

ρ̂ =

(

〈ψ| 〈ψ⊥|
|ψ〉 E1 0
|ψ⊥〉 0 E2

)

= E1|ψ〉〈ψ| + E2|ψ⊥〉〈ψ⊥|, (5)

where {E1, E2} are the eigenvalues of ρ̂, and {|ψ〉, |ψ⊥〉} are the eigenvectors
(recall that these eigenvectors can always be made mutually orthogonal, de-
noted here by the ⊥ symbol). Thus the representation of any quantum state,
no matter how it is constructed, is identical to that of an ensemble of two
orthogonal pure states. 4

Examples in the Photon Case

Throughout this chapter, examples will be provided using qubits encoded into
the electric field polarization of photons. For a single photon, this system has
two levels, e.g., horizontal (|H〉 ≡ |0〉) and vertical (|V 〉 ≡ |1〉), with all
possible pure polarization states constructed from coherent superpositions
of these two states. For example, diagonal, antidiagonal, right-circular and
left-circular light are respectively represented by

4 It is an interesting question whether all physical states described by a mixed
state (e.g., equation 5) are indeed completely equivalent. For example, Leonhardt
discussed the notion that two types of unpolarized light could be considered,
depending on whether the incoherence between polarization components arose
purely due to an averaging over rapidly varying phases, or from an entanglement
with another quantum system altogether [17]. This line of thought can even
be pushed further, by asking whether all mixed states necessarily arise only
from tracing over some unobserved degrees of freedom with which the quantum
system has become entangled, or if indeed such entanglement may ‘collapse’
when the systems involved approach macroscopic size [18]. If the latter were
true, then there would exist mixed states that could not be seen as pure in some
larger Hilbert space. In any event, to our knowledge, at least insofar as state
tomography is concerned, these subtleties of interpretation do not in any way
affect experimental results.
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|D〉 ≡ (|H〉 + |V 〉)/
√

2,

|A〉 ≡ (|H〉 − |V 〉)/
√

2,

|R〉 ≡ (|H〉 + i|V 〉)/
√

2,

and |L〉 ≡ (|H〉 − i|V 〉)/
√

2. (6)

Now consider measuring a source of photons which emits a one-photon
wave packet each second, but alternates between horizontal, vertical, and
diagonal polarizations. Their emission time labels these states (in principle)
as distinguishable, and so if we ignore that timing information when they are
measured, we must represent their state as a density matrix ρ̂:

ρ̂ =
1

3
(|H〉〈H| + |V 〉〈V | + |D〉〈D|)

=
1

3









(

〈H| 〈V |
|H〉 1 0
|V 〉 0 0

)

+

(

〈H| 〈V |
|H〉 0 0
|V 〉 0 1

)

+

(

〈H| 〈V |
|H〉 1

2
1
2

|V 〉 1
2

1
2

)









=
1

6









(

〈H| 〈V |
|H〉 3 1
|V 〉 1 3

)









. (7)

When diagonalized,

ρ̂ =
1

3









(

〈D| 〈A|
|D〉 2 0
|A〉 0 1

)









=
2

3
|D〉〈D| + 1

3
|A〉〈A|, (8)

which, as predicted in equation 5, is a sum of only two orthogonal states.
Henceforth, the ‘bra’ and ‘ket’ labels will be suppressed from written

density matrices where the basis is {|0〉, |1〉} or {|H〉, |V 〉}.

The Stokes Parameters and the Poincaré Sphere

Any single-qubit density matrix ρ̂ can be uniquely represented by three pa-
rameters {S1, S2, S3}:

ρ̂ =
1

2

3
∑

i=0

Siσ̂i. (9)

The σ̂i matrices are

σ̂0 ≡
(

1 0
0 1

)

, σ̂1 ≡
(

0 1
1 0

)

, σ̂2 ≡
(

0 −i
i 0

)

, σ̂3 ≡
(

1 0
0 −1

)

, (10)
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and the Si values are given by

Si ≡ Tr {σ̂iρ̂} [19]. (11)

For all pure states,
∑3
i=1 S

2
i = 1; for mixed states,

∑3
i=1 S

2
i < 1; for the

completely mixed state,
∑3
i=1 S

2
i = 0. Due to normalization, S0 will always

equal one.
Physically, each of these parameters directly corresponds to the outcome

of a specific pair of projective measurements:

S0 = P|0〉 + P|1〉
S1 = P 1√

2
(|0〉+|1〉) − P 1√

2
(|0〉−|1〉)

S2 = P 1√
2
(|0〉+i|1〉) − P 1√

2
(|0〉−i|1〉)

S3 = P|0〉 − P|1〉, (12)

where P|ψ〉 is the probability to measure the state |ψ〉. As we shall see below,
these relationships between probabilities and S parameters are extremely
useful in understanding more general operators. Because P|ψ〉 + P|ψ⊥〉 = 1,
these can be simplified in the single-qubit case, and

P|ψ〉 − P|ψ⊥〉 = 2P|ψ〉 − 1, (13)

where |ψ⊥〉 denotes the state orthogonal to |ψ〉.
The probability of projecting a given state ρ̂ into the state |ψ〉 (the prob-

ability of measuring |ψ〉) is given by [20]:

P|ψ〉 = 〈ψ|ρ̂|ψ〉
= Tr {|ψ〉〈ψ|ρ̂} . (14)

In 12 above, the Si are defined with respect to three states, |φ〉i:

|φ〉1 =
1√
2

(|0〉 + |1〉)

|φ〉2 =
1√
2

(|0〉 + i|1〉)

|φ〉3 = |0〉, (15)

and their orthogonal compliments, |φ⊥〉; parameters similar to these and
serving the same function can be defined with respect to any three arbitrary
states, |ψi〉. (Arbitrary with one condition: the matrices |ψi〉〈ψi| along with
the identity must be linearly independent.) Operators analogous to the σ̂
operators can be defined relative to these states:

τ̂i ≡ |ψi〉〈ψi| − |ψ⊥
i 〉〈ψ⊥

i |. (16)

We can further define an ‘S-like’ parameter T , given by:
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Ti = Tr {τ̂iρ̂} . (17)

Continuing the previous convention and to complete the set, we define τ̂0 ≡
σ̂0, which then requires that T0 = 1. Note that the Si parameters are simply
a special case of the Ti, for the case when τ̂i = σ̂i.

Unlike the specific case of the S parameters which describe orthogonal

measurement bases, for non-orthogonal measurements

ρ̂ 6= 1

2

3
∑

i=0

Tiτ̂i. (18)

In order to reconstruct the density matrix, the T parameters must first be
transformed into the S parameters (see equation 21).

The Photon Case

For photon polarization, the Si are the famous Stokes parameters (though
normalized), and correspond to measurements of D/A, R/L, and H/V [21].
In terms of the τ̂ matrices just introduced, we would define a set of basis
states |ψ1〉 ≡ |D〉, |ψ2〉 ≡ |R〉, and |ψ3〉 ≡ |H〉. For these analysis bases,
τ̂1 = σ̂1, τ̂2 = σ̂2, and τ̂3 = σ̂3 (and therefore Ti = Si for this specific choice
of analysis bases).

As the simplest example, consider the input state |H〉. Applying equation
(11), we find that

S0 = Tr {σ0ρH} = 1

S1 = Tr {σ1ρH} = 0

S2 = Tr {σ2ρH} = 0

S3 = Tr {σ3ρH} = 1, (19)

which from equation 9 implies that

ρH = (σ0 + σ3) =

(

1 0
0 0

)

. (20)

When the Stokes parameters are used as coordinates in 3-space, the space
of all legal states falls within a sphere of radius one (the Poincaré sphere for
polarization, the Bloch sphere for electron spin or other two-level systems).
The pure states are found on the surface, states of linear polarization on
the equator, circular states at the poles, mixed states within, and the totally
mixed state – corresponding to completely unpolarized photons – at the cen-
ter of the sphere. This provides a very convenient way to visualize one-qubit
states (see figure 1). The θ and φ values from equation 2 allow any pure state
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to be easily mapped onto the sphere surface. These values are the polar coor-
dinates of the pure state they represent on the Poincaré sphere. 5 In addition
to mapping states, the sphere can be used to represent any unitary operation
as a rotation about an arbitrary axis. For example, waveplates implement
rotations about an axis that passes through the equator.

H V

R

D

L

A

Ψ
S

2
=

1

√2

S
3
=

1

√2

S = 0
1

(b)

H V

R

D

L

A

Ψ
T

2
=1

½T =
1

T
3
=

1

√2

(a)

Fig. 1. The Bloch Poincaré sphere. Any single-qubit quantum state ρ̂ can be repre-
sented by three parameters Ti = Tr {τ̂iρ̂}, as long as the operators τ̂i in addition to
the identity are linearly independent. Physically, the Ti parameters directly corre-
spond to the outcome of a specific projective measurement: Ti = 2Pi−1, where Pi is
the probability of success for the measurement. The Ti may be used as coordinates
in 3-space. Then all 1-qubit quantum states fall on or within a sphere of radius
one. The surface of the sphere corresponds to pure states, the interior to mixed
states, and the origin to the totally mixed state. Shown is a particular pure state
|ψ〉, which is completely specified by its projection onto a set of non-parallel basis
vectors. (a) When τ̂i = σ̂i (the Pauli matrices), the basis vectors are orthogonal,
and in this particular case the Ti are equal to the Si, the well known Stokes pa-
rameters, corresponding to measurements of diagonal (S1), right-circular (S2), and
horizontal (S3) polarizations. (b) A non-orthogonal coordinate system in Poincaré
space. It is possible to represent a state using its projection onto non-orthogonal
axes in Poincaré space. This is of particular use when attempting to reconstruct a
quantum state from non-orthogonal measurements. Shown here are the axes corre-
sponding to measurements of 22.5◦ linear (T1), elliptical light rotated 22.5◦ from H
towards R (T2), and horizontal (T3).

Any state |ψ〉 and its orthogonal partner, |ψ⊥〉, are found on opposite
points of the Poincaré sphere. The line connecting these two points forms an

5 These polar coordinates are by convention rotated by 90◦, so that θ = 0 is on the
equator corresponding to the state |H〉 and θ = 90◦, φ = 90◦ is at the North Pole
corresponding to the state |R〉. This 90◦ rotation is particular to the Poincaré
representation of photon polarization [22]; representations of two-level systems
on the Bloch sphere do not introduce it.
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axis of the sphere, useful for visualizing the outcome of a measurement in the
|ψ〉/|ψ⊥〉 basis. The projection of any state ρ̂ (through a line perpendicular
to the |ψ〉/|ψ⊥〉 axis), will lie a distance along this axis corresponding to the
relevant Stokes-like parameter (T = 〈ψ|ρ̂|ψ〉 − 〈ψ⊥|ρ̂|ψ⊥〉).

Thus, just as any point in three-dimensional space can be specified by
its projection onto three linearly independent axes, any quantum state can
be specified by the three parameters Ti = Tr {τ̂iρ̂}, where τ̂i=1,2,3 are lin-
early independent matrices equal to |ψi〉〈ψi| − |ψ⊥

i 〉〈ψ⊥
i |. The τ̂i correspond

to general Stokes-like parameters for any three linearly independent axes on
the Poincaré sphere. However, they can differ from the canonical Stokes axes
and need not even be orthogonal. See figure 1b for an example of state rep-
resentation using non-orthogonal axes.

In order to use these non-orthogonal Stokes-like parameters, it is neces-
sary to be able to transform a state from a Stokes representation to a new
nonorthogonal representation and vice-versa. In general, for any two repre-
sentations Si = Tr {σ̂iρ̂} and Ti = Tr {τ̂iρ̂} it is possible to transform between
them by using









T0

T1

T2

T3









=
1

2









Tr {τ̂0σ̂0} Tr {τ̂0σ̂1} Tr {τ̂0σ̂2} Tr {τ̂0σ̂3}
Tr {τ̂1σ̂0} Tr {τ̂1σ̂1} Tr {τ̂1σ̂2} Tr {τ̂1σ̂3}
Tr {τ̂2σ̂0} Tr {τ̂2σ̂1} Tr {τ̂2σ̂2} Tr {τ̂2σ̂3}
Tr {τ̂3σ̂0} Tr {τ̂3σ̂1} Tr {τ̂3σ̂2} Tr {τ̂3σ̂3}

















S0

S1

S2

S3









. (21)

This relation allows S parameters to be transformed into any set of T pa-
rameters. In order to transform from T to S, we can invert the 4 by 4 matrix
in equation 21 and multiply both sides by this new matrix. This inversion is
possible because we have chosen the τ̂i operators to be linearly independent,
as otherwise the Ti parameters would not specify a single point in Hilbert
space.

1.2 Representation of Multiple Qubits

With the extension of these ideas to cover multiple qubits, it becomes possible
to investigate non-classical features, including the quintessentially quantum
mechanical phenomenon of entanglement.

Pure States, Mixed States, and Diagonal Representations

As the name implies, multiple-qubit states are constructed out of individual
qubits. As such, the Hilbert space of a many qubit system is spanned by state
vectors which are the tensor product of single-qubit state vectors. A general
n-qubit system can be written as

|ψ〉 =
∑

i1,i2,...in=0,1

αi1,i2,...in |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉. (22)
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Here the αi are complex,
∑

i |αi|2 = 1, and ⊗ denotes a tensor product, used
to join component Hilbert spaces. For example, a general two-qubit pure state
can be written

|ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉, (23)

where |00〉 is shorthand for |0〉1 ⊗ |0〉2.
As before, we represent a general mixed state through an incoherent sum

of pure states:

ρ̂ =
∑

i

Pi|ψi〉〈ψi|. (24)

And, as before, each n-qubit state can be represented by a 2n by 2n density
matrix which, when diagonalized, allows any state to be written as

ρ̂ =

2n

∑

i=1

Pi|φi〉〈φi|. (25)

(24) differs from (25) in that the φi are necessarily orthogonal (〈ψi|ψj〉 = δij),
and there are at most 2n of them (in (24) there could be an arbitrary number
of |ψi〉).

The Photon Case

Any two-qubit polarization state can be written as

ρ̂ =









〈HH| 〈HV | 〈V H| 〈V V |
|HH〉 A1 B1e

iφ1 B2e
iφ2 B3e

iφ3

|HV 〉 B1e
−iφ1 A2 B4e

iφ4 B5e
iφ5

|V H〉 B2e
−iφ2 B4e

−iφ4 A3 B6e
iφ6

|V V 〉 B3e
−iφ3 B5e

−iφ5 B6e
−iφ6 A4









, (26)

where ρ̂ is positive and Hermitian with unit trace. Henceforth, the ‘bra’ and
‘ket’ labels will be omitted from density matrices presented in this standard
basis.

Perhaps the most famous examples of pure two-qubit states are the Bell
states [23]:

|φ±〉 =
1√
2

(|HH〉 ± |V V 〉)

|ψ±〉 =
1√
2

(|HV 〉 ± |V H〉) . (27)

Mixed states of note include the Werner states [24],

ρ̂W = P |γ〉〈γ| + (1 − P )
1

4
I, (28)
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where |γ〉 is a maximally entangled state and 1
4I is the totally mixed state, and

the maximally entangled mixed states (MEMS), which possess the maximal
amount of entanglement for a given amount of mixture [25].

The entanglement and the mixture are two of the many quantities derived
from the density matrix used to characterize a quantum state, several of which
will be included here for reference:

Fidelity Fidelity is a measure of state overlap. F (ρ1, ρ2) =
(

Tr
{√√

ρ1ρ2
√
ρ1

})2
,

which - for ρ1 or ρ2 pure - simplifies to Tr {ρ1ρ2} [19].

Tangle The concurrence and tangle are measures of the quantum-coherence
properties of a quantum state [34]. For two qubits6, concurrence is defined
as follows: consider the non-Hermitian matrix R̂ = ρ̂Σ̂ρ̂TΣ̂ where the super-
script T denotes transpose and the ‘spin flip matrix’ Σ̂ is defined by:

Σ̂ ≡









0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0









. (29)

If the eigenvalues of R̂, arranged in decreasing order, are given by r1 ≥ r2 ≥
r3 ≥ r4, then the concurrence is defined by

C = Max {0,√r1 −
√
r2 −

√
r3 −

√
r4} . (30)

The tangle is calculated directly from the concurrence:

T = C2. (31)

The tangle (and the concurrence) range from 0 for product states (or, more
generally, any incoherent mixture of product states) to a maximum value of
1 for Bell states.

Entropy and the Linear Entropy The Von Neuman entropy quantifies the
degree of mixture in a quantum state, and is given by

S ≡ −Tr {ρ̂ln [ρ̂]} = −
∑

i

piln {pi} , (32)

where the pi are the eigenvalues of ρ. The linear entropy [1] is a more analyti-
cally convenient form of the same quantity. The linear entropy for a two-qubit
system is defined by:

6 The analysis in this subsection applies to the two qubit case only. Measures of
entanglement for mixed n-qubit systems are a subject of on-going research: see,
for example, [35] for a recent survey. It may be possible to measure entanglement
directly, without quantum state tomography; this possibility was investigated in
[36].
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SL =
4

3

(

1 − Tr
{

ρ̂2
})

=
4

3

(

1 −
4
∑

a=1

p2
a

)

, (33)

where pa are the eigenvalues of ρ. SL ranges from 0 for pure states to 1 for
the completely mixed state.

Multiple Qubit Stokes Parameters

Extending the single-qubit density matrix representation (equation 9), any
n-qubit state ρ̂ may be represented as

ρ̂ =
1

2n

3
∑

i1,i2,...in=0

Si1,i2,...in σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in . (34)

Normalization requires that S0,0,...0 = 1, allowing 4n−1 real parameters (the
multiple-qubit analog of the single-qubit Stokes parameters) to identify any
point in Hilbert space, just as three parameters determined the exact position
of a one-qubit state in Bloch/Poincaré space. Already for two qubits, the state
space is much larger, requiring 15 independent real parameters to describe
it. For this reason, there is no convenient graphical picture of this space, as
there was in the single-qubit case (see, however, the interesting approaches
made by Zyczkowski [31]).

For multiple qubits the link between the multiple-qubit Stokes parame-
ters [28, 30] and measurement probabilities still exists. The formalism of τ̂
operators also still holds for larger qubit systems, so that

T = Tr {τ̂ ρ̂} . (35)

For ‘local’ measurements (a local measurement is the tensor product of a
number of single-qubit measurements: the first projecting qubit one along
τ̂i1 , the second qubit two along τ̂i2 , , etc.), τ̂ = τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in . Combining
equations 34 and 35,

Ti1,i2,...in = Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) ρ̂} (36)

=
1

2n

3
∑

j1,j2,...jn=0

Tr {τ̂i1 σ̂j1}Tr {τ̂i2 σ̂j2} . . .Tr {τ̂in σ̂jn}Sj1,j2,...jn .

Recall that for single qubits,

Ti=1,2,3 = P|ψi〉 − P|ψ⊥
i
〉

T0 = P|ψ〉 + P|ψ⊥〉,∀ψ (37)

Therefore, for an n-qubit system,
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Ti1,i2,...in =

(P|ψi1
〉 ± P|ψ⊥

i1
〉) ⊗ (P|ψi2

〉 ± P|ψ⊥
i2

〉) ⊗ . . .⊗ (P|ψin
〉 ± P|ψ⊥

in
〉), (38)

where the plus sign is used for a 0 index and the minus sign is used for
a nonzero index. For a two-qubit system where i1 6= 0 and i2 6= 0, Ti1,i2
simplifies dramatically, giving

Ti1,i2 = (P|ψi1
〉 − P|ψ⊥

i1
〉) ⊗ (P|ψi2

〉 − P|ψ⊥
i2

〉)

= P|ψi1
〉|ψi2

〉 − P|ψi1
〉|ψ⊥

i2
〉 − P|ψ⊥

i1
〉|ψi2

〉 + P|ψ⊥
i1

〉|ψ⊥
i2

〉. (39)

This relation will be crucial for rebuilding a two-qubit state from local mea-
surements.

As before, we are not restricted to multiple-qubit Stokes parameters based
on orthogonal operators. Extending equation 21 to multiple qubits, and again
assuming two representations Si1,i2,...in = Tr {(σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in) ρ̂} , and
Ti1,i2,...in = Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) ρ̂},

Ti1,i2,...in = (40)

1

2n

3
∑

j1,j2,...jn=0

Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) (σ̂j1 ⊗ σ̂j2 ⊗ . . .⊗ σ̂jn)}Sj1,j2,...jn .

Example: Two-Qubit Polarization States

Consider the state |HH〉. Following the example in equation 20,

ρ̂HH = |HH〉〈HH|

=
1

2
(σ̂0 + σ̂3) ⊗

1

2
(σ̂0 + σ̂3)

=
1

4
(σ̂0 ⊗ σ̂0 + σ̂3 ⊗ σ̂0 + σ̂0 ⊗ σ̂3 + σ̂3 ⊗ σ̂3). (41)

This implies that there are exactly four non-zero two-qubit Stokes parame-
ters: S0,0, S0,3, S3,0, and S3,3 – all of which are equal to one. (As earlier, for
the special case when τ̂i,j = σ̂i,j , we relabel the Ti,j as Si,j , the two-qubit
Stokes parameters [28, 30].) The separable nature of this state makes it easy
to calculate the two-qubit Stokes decomposition.

If instead we investigate an entangled state, |ψ−〉, it will be necessary
to calculate each two-qubit Stokes parameter from the σ̂ matrices. As an
example, consider σ̂3,3 ≡ σ̂3 ⊗ σ̂3, for which

S3,3 = Tr
{

σ̂3,3|ψ−〉〈ψ−|
}

= −1. (42)

We could instead calculate S3,3 directly from probability outcomes of mea-
surements on |ψ−〉:
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S3,3 = (PH − PV ) ⊗ (PH − PV )

= PHH − PHV − PV H + PV V

= 0 − 1

2
− 1

2
+ 0

= −1. (43)

In general, a given τ̂ operator is not uniquely mapped to a single pair of anal-
ysis states. For example, if the analysis statse are |ψ1〉 ≡ |H〉 and |ψ2〉 ≡ |V 〉,
τ̂1,1 ≡ σ̂3 ⊗ σ̂3 = −σ̂3 ⊗−σ̂3 ≡ τ̂2,2. However, this would be an unacceptable
choice for |ψ1〉 and |ψ2〉, as their respective density matrices are not linearly
independent.

Continuing on, we measure S0,3:

S0,3 = (PH + PV ) ⊗ (PH − PV )

= PHH − PHV + PV H − PV V

= 0 − 1

2
+

1

2
− 0

= 0. (44)

Here the signs of the probabilities changed due to the zero index in S0,3. These
results would have been the same even if the analysis bases of the first qubit
had been shifted to any other orthogonal basis, i.e., S0,3 =

(

Pψ + Pψ⊥
)

⊗
(PH − PV ).

If the method above is continued for all the Stokes parameters, one con-
cludes that

ρ̂ψ− =
1

2
(|HV 〉 − |V H〉)(〈HV | − 〈V H|)

=
1

4
(σ̂0 ⊗ σ̂0 − σ̂1 ⊗ σ̂1 − σ̂2 ⊗ σ̂2 − σ̂3 ⊗ σ̂3). (45)

2 Exact Tomography

The goal of tomography is to reconstruct the density matrix of an unknown
ensemble of particles through a series of measurements. In practice, this can
never be performed exactly, as an infinite number of particles would be re-
quired to eliminate statistical error. If exact measurements were taken on
infinite ensembles, each measurement would yield an exact probability of
success, which could then be used to reconstruct a density matrix. Though
unrealistic, it is highly illustrative to examine this exact tomography before
seeing the more general treatment. Hence, this section will treat all measure-
ments as yielding exact probabilities, and ignore all sources of error in those
measurements.
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2.1 Single Qubit Tomography

Although reconstructive tomography of any size system follows the same
general procedure, beginning with tomography of a single qubit allows the
visualization of each step using the Poincaré sphere, in addition to providing
a simpler mathematical introduction.

Visualization of Single Qubit Tomography

Exact single-qubit tomography requires a sequence of three linearly indepen-
dent measurements. Each measurement exactly specifies one degree of free-
dom for the measured state, reducing the free parameters of the unknown
state’s possible Hilbert space by one.

As an example, consider measuring R, D, and H on the mixed state

ρ̂ =

(

5
8

−i√
2

i√
2

3
8

)

(46)

Rewriting the state (using equation 9) as

ρ̂ =
1

2

(

σ̂0 +
1√
2
σ̂2 +

1

4
σ̂3

)

(47)

allows us to read off the normalized Stokes parameters corresponding to these
measurements:

S1 = 0, S2 =
1√
2
, and S3 =

1

4
. (48)

As always, S0 = 1 due to normalization. Measuring R first, and looking to
the Poincaré sphere, we see that the unknown state must lie in the z = 1√

2

plane (as S2 = 1√
2
). A measurement in the D basis further constrains the

state to the y = 0 plane, resulting in a total confinement to a line parallel
to and directly above the x axis. The final measurement of H pinpoints the
state. This process is illustrated in figure 2a. Obviously the order of the
measurements is irrelevant: it is the intersection point of three orthogonal
planes that defines the location of the state.

If instead measurements are made along non-orthogonal axes, a very sim-
ilar picture develops, as indicated in figure 2b. The first measurement always
isolates the unknown state to a plane, the second to a line, and the third to
a point.

Of course, in practice, the experimenter has no knowledge of the un-
known state before a tomography. The set of the measured probabilities,
transformed into the Stokes parameters as above, allow a state to be directly
reconstructed.
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Fig. 2. A sequence of three linearly independent measurements isolates a single
quantum state in Hilbert space (shown here as an open circle in the Poincaré sphere
representation). The first measurement isolates the unknown state to a plane per-
pendicular to the measurement basis. Further measurements isolate the state to the
intersections of non-parallel planes, which for the second and third measurements
correspond to a line and finally a point. The black dots shown correspond to the
projection of the unknown state onto the measurement axes, which determines the
position of the aforementioned planes. (a) A sequence of measurements along the
right-circular, diagonal, and horizontal axes. (b) A sequence of measurements on
the same state taken using non-orthogonal projections: elliptical light rotated 30◦

from H towards R, 22.5◦ linear, and horizontal.

A Mathematical Look at Single Qubit Tomography

Using the tools developed in the first section of this chapter, single-qubit to-
mography is relatively straightforward. Recall equation 9, ρ̂ = 1

2

∑3
i=0 Siσ̂i.

Considering that S1, S2, and S3 completely determine the state, we need
only measure them to complete the tomography. As Sj>0 = 2P|ψ〉 − 1

(equation 13), three measurements respectively in the |0〉, 1√
2

(|0〉 + |1〉) , and
1√
2

(|0〉 + i|1〉) bases will completely specify the unknown state. If instead

measurements are made in another basis, even a non-orthogonal one, they
can be easily related back to the Si parameters, and therefore the density
matrix, by means of equation 21.

While this procedure is straightforward, there is one subtlety which will
become important in the multiple-qubit case. Projective measurements gen-
erally refer to the measurement of a single basis state and return a single



16 J. B. Altepeter, D. F. V. James, and P. G. Kwiat

value between zero and one. This corresponds, for example, to an electron
beam passing through a Stern-Gerlach apparatus with a detector placed at
one output. While a single detector and knowledge of the input particle in-
tensity will – in the one-qubit case – completely determine a single Stokes
parameter, one could collect data from both outputs of the Stern-Gerlach de-
vice. This would measure the probability of projecting not only onto the state
|ψ〉, but also onto |ψ⊥〉, and without needing to know the input intensity. All
physical measurements on single qubits, regardless of implementation, can in
principle be measured this way (though in practice measurements of some
qubit systems may typically detect a population in only one of the states
[32]). We will see below that although one detector functions as well as two
in the single-qubit case, this situation will not persist into higher dimensions.

Arbitrary Measurements Using Waveplates and Polarizers

An arbitary polarization measurement and its orthogonal compliment can be
realized using, in order, a quarter-wave plate, a half-waveplate, and a po-
larizing beam splitter. Waveplates implement unitary operations, and in the
Poincaré sphere picture, act as rotations about an axis lying within the lin-
ear polarization plane (the equator) [26]. Specifically, a waveplate whose optic
axis is oriented at angle θ with respect to the horizontal induces a rotation
on the Poincaré sphere about an axis 2θ from horizontal, in the linear plane.
The magnitude of this rotation is equal to the waveplate’s retardance (90◦

for quarter-wave plates and 180◦ for half-wave plates). For the remainder of
this chapter we adopt the convention that polarizing beam splitters transmit
horizontally polarized light and reflect vertically polarized light.

This analysis, while framed in terms of waveplates acting on photon
polarization, is directly applicable to other systems, e.g., spin- 1

2 particles
[11, 12, 13, 14] or two-level atoms [15, 16]. In these systems, measurements
in arbitrary bases are obtained using suitably phased π- and π

2 -pulses (exter-
nally applied electromagnetic fields) to rotate the state to be measured into
the desired analysis basis.

To derive the settings for these waveplates as a function of the projection
state desired, we use the Poincaré sphere (see figure 3). For any state on the
surface of the sphere, a 90◦ rotation about a linear axis directly below it will
rotate that state into a linear polarization (see figure 3b). Assume the desired
projection state is

|ψP 〉 = cos

(

θ

2

)

|H〉 + sin

(

θ

2

)

eiφ|V 〉. (49)

Simple coordinate transforms from spherical to cartesian coordinates reveal
that a quarter-waveplate at θQWP = 1

2acos {sin(θ)tan(φ)} will rotate the
projection state (49) into a linear state

|ψ′
P 〉 = cos

(

θ′

2

)

|H〉 + sin

(

θ′

2

)

|V 〉. (50)
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A half-waveplate at 1
4θ

′ will rotate this state to |H〉.7 The PBS will then
transmit the projected state and reflect its orthogonal compliment.

Of course, these calculations assume that waveplates with retardances
equal to exactly π or π

2 are used (or Rabi pulses producing perfect phase dif-
ferences). Imperfect yet well characterized waveplates will lead to measure-
ments in slightly different yet known bases. This will still yield an accurate to-
mography, but first these results must be transformed from a non-orthogonal
basis into the canonical Stokes parameters using equation 21. Later, the max-
imum likelihood technique (see section 3) will provide a different but equally
effective way to accomodate for imperfect measurements.

H

Ψ

(b) (c)(a)

QWP HWP

V

QWP 

  Axis

90 Arc°

180 Arc°

HWP 

 Axis

H H

Ψ

Fig. 3. A quarter-waveplate (QWP), half-waveplate (HWP), and polarizing beam
splitter (PBS) are used to make an arbitrary polarization measurement. Both a
diagram of the experimental apparatus (a) and the step-by-step evolution of the
state on the Poincaré sphere are shown. (b) The quarter-waveplate rotates the
projection state (the state we are projecting into, not the incoming unknown state)
into the linear polarization plane (the equator). (c) The half-waveplate rotates this
linear state to horizontal. The PBS transmits the projection state (now |H〉) and
reflects its orthogonal compliment (now |V 〉), which can then both be measured.

Exact Tomography of Multiple Qubits Using 2n Detectors

Tomography of multiple qubits, though an extension of the single-qubit tech-
nique, becomes more complicated and depends on the experimental appara-
tus used. The simplest, fastest, and most intuitive version of this tomography
uses an array of 2n detectors, which project every incoming n-qubit state into
one of 2n basis states. This is the generalization of simultaneously measur-
ing both outputs in the single qubit case. These detectors must measure in
n-fold coincidence, and for the purposes of exact tomography it is assumed
they have no errors and operate on an infinite ensemble of states. It should
be emphasized that these additional detectors are not some ‘trick’, effectively

7 θ′ = acos {sin(θ)tan(φ)} − acos {cot(θ)cot(φ)}. In practice, care must be taken
that consistent conventions are used (e.g., right vs. left circular polarization),
and it may be easier to calculate this angle directly from waveplate operators
and the initial state.
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masking a number of sequential settings of n detectors. If only n detectors
are used, then over the course of a tomography most states within the input
ensemble will never be measured. For example, consider measuring the pro-
jection of an unknown state into the |00〉 basis using two detectors. While
this will give a number of counts, unmeasured coincidences will be routed into
the |01〉, |10〉, and |11〉 modes. The information of how many coincidences are
routed to which mode will be lost, unless another two detectors are in place
in the ‘1’ modes to measure it.

The primary advantage to using 2n detectors is that every setting of the
analysis system (every group of the projector and its orthogonal compliments)
generates exactly enough information to define a single multiple-qubit Stokes
vector. Expanding out the probabilities that a multiple-qubit Stokes vector
(which for now we will limit to those with only non-zero indices) is based on,

Si1,i2,...in =
(

Pψ1
− Pψ⊥

1

)

⊗
(

Pψ2
− Pψ⊥

2

)

⊗ . . .⊗
(

Pψn
− Pψ⊥

n

)

= Pψ1,ψ2,...ψn
− Pψ1,ψ2,...ψ⊥

n
− . . .± Pψ⊥

1
,ψ⊥

2
,...ψ⊥

n
, (51)

where the sign of each term on the last line is determined by the parity of
the number of orthogonal (⊥) terms. (If instead we had included zero indices,
each zero index in S would correspond to a plus sign in the first line of 51.)

These probabilities are precisely those measured by a single setting of
the entire analysis system followed by a 2n detector array. Returning to our
primary decomposition of the density matrix (equation 34),

ρ̂ =
1

2n

3
∑

i1,i2,...in=0

Si1,i2,...in σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in , (52)

we once again need only determine all of the multiple-qubit Stokes parameters
to exactly characterize the density matrix. At first glance this might seem to
imply that we need to use 4n − 1 settings of the analysis system, in order to
find all of the multiple-qubit Stokes parameters save S0,0,...0, which is always
one.

While this is certainly sufficient to solve for ρ̂, many of these measure-
ments are redundant. In order to choose the smallest possible number of set-
tings, note that the probabilities that constitute some multiple-qubit Stokes
parameters overlap exactly with the probabilities for other multiple-qubit
Stokes parameters. Specifically, any multiple-qubit Stokes parameter with at
least one 0 subscript is derived from a set of probabilities that at least one
other multiple-qubit Stokes vector (with no 0 subscripts) is also derived from.
As an example, consider that

S0,3 = P|00〉 − P|01〉 + P|10〉 − P|11〉, (53)

while
S3,3 = P|00〉 − P|01〉 − P|10〉 + P|11〉. (54)
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The same analysis settings will provide enough information to determine both
values. This dependent relationship between multiple-qubit Stokes vectors
is true in general, as can be seen by returning to equation 51. Each non-
zero subscript for S contributes a term to the tensor product on the right

that looks like
(

Pψi
− Pψ⊥

i

)

. Had there been zero subscripts, however, they

each would have contributed a
(

Pψi
+ Pψ⊥

i

)

term, which would have been

totally redundant with any other term that has a non-zero term in the same
index. This reduces the minimum number of analysis settings to 3n, a huge
improvement in multiple qubit systems (e.g., 9 vs. 15 settings for 2-qubit
tomography, 81 vs. 255 for 4-qubit tomography, etc.). Note that, as discussed
earlier, this benefit is only possible if one employs 2n detectors, leading to a
total of 6n measurements.8

Because equation 41 can be used to transform any set of non-orthogonal
multiple-qubit Stokes parameters into the canonical form, orthogonal mea-
surement sets need not be used. One advantage of the option to use non-
orthogonal measurement sets is that an orthogonal set may not be experi-
mentally acheivable, for instance, due to waveplate imperfections.

Example: A Complete Ideal 2-Qubit Tomography of Photon Pairs

Consider measuring a state with nine settings of the apparatus and four de-
tectors, for a total of 36 measurement results. The results for this example are
compiled below, with each row representing a single setting of the apparatus,
and therefore a single two-qubit Stokes parameter. All measured probabilities
are non-negative, but the results below have been given a minus sign if they
are negated when summed into their respective two-qubit Stokes parameter.

S1,1 =
+PDD

1

3

−PDA
1

6

−PAD
1

6

+PAA
1

3

=
1

3

S1,2 =
+PDR

1

4

−PDL
1

4

−PAR
1

4

+PAL
1

4

= 0

S1,3 =
+PDH

1

4

−PDV
1

4

−PAH
1

4

+PAV
1

4

= 0

S2,1 =
+PRD

1

4

−PRA
1

4

−PLD
1

4

+PLA
1

4

= 0

S2,2 =
+PRR

1

6

−PRL
1

3

−PLR
1

3

+PLL
1

6

= −1

3

S2,3 =
+PRH

1

4

−PRV
1

4

−PLH
1

4

+PLV
1

4

= 0

S3,1 =
+PHD

1

4

−PHA
1

4

−PV D
1

4

+PV A
1

4

= 0

8 These measurements, even though they result from the minimum number of
analysis settings for 2n detectors, are overcomplete. A density matrix has only
4n−1 free parameters, which implies that only 4n−1 measurements are necessary
to specify it (see n-detector tomography). Because the overcomplete set of 6n

measurements is not linearly independent, they can be reduced to a 4n−1 element
subset and still completely specifiy an unknown state.
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S3,2 =
+PHR

1

4

−PHL
1

4

−PV R
1

4

+PV L
1

4

= 0

S3,3 =
+PHH

1

3

−PHV
1

6

−PV H
1

6

+PV V
1

3

=
1

3
(55)

Measurements are taken at each of these nine settings, directly determin-
ing the above nine two-qubit Stokes Parameters. The six remaining required
parameters, listed below, are dependent upon the same measurements.

S0,1 =
+PDD

1

3

−PDA
1

6

+PAD
1

6

−PAA
1

3

= 0

S0,2 =
+PRR

1

6

−PLR
1

3

+PRL
1

3

−PLL
1

6

= 0

S0,3 =
+PHH

1

3

−PHV
1

6

+PV H
1

6

−PV V
1

3

= 0

S1,0 =
+PDD

1

3

+PDA
1

6

−PAD
1

6

−PAA
1

3

= 0

S2,0 =
+PRR

1

6

+PLR
1

3

−PRL
1

3

−PLL
1

6

= 0

S3,0 =
+PHH

1

3

+PHV
1

6

−PV H
1

6

−PV V
1

3

= 0

(56)

These terms will not in general be zero. Recall (c.f. equation 41) that for
|HH〉, S0,3 = S3,0 = 1. Of course, S0,0 = 1. Taken together, these two-qubit
Stokes parameters determine the density matrix.

ρ̂ =
1

4

(

σ̂0 ⊗ σ̂0 +
1

3
σ̂1 ⊗ σ̂1 −

1

3
σ̂2 ⊗ σ̂2 +

1

3
σ̂3 ⊗ σ̂3

)

=
1

6









2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2









=
1

6









1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1









+
1

6









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (57)

This is the final density matrix, a Werner State, as defined in equation 28.

Exact Tomography of Multiple Qubits Using n Detectors

While the scheme outlined above is most efficient in the sense that it requires
only 3n analysis settings for the experimental apparatus, in practice it may
only be experimentally possible to make a single projective measurement at
a time (e.g., because the analyzer can monitor only a single outcome). As
discussed earlier, this will require 4n − 1 probabilities in order to define a
complete set of Ti parameters. In practice, this will mean that 4n measure-
ments are necessary in order to normalize counts to probabilities. By making
a set of single projective measurements on each qubit and only taking into
account those results where a definite result is obtained (e.g., the photon was
transmitted by the polarizer), it is possible to reconstruct a state using only
n detectors.
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First define a set of 2n× 2n matrices which have the following properties:

Tr
{

Γ̂ν · Γ̂µ
}

= δν,µ

Â =
∑

ν

Γ̂νTr
{

Γ̂ν · Â
}

∀Â, (58)

where Â is an arbitrary 2n × 2n matrix. A convenient set of Γ̂ matrices to
use are the tensor producted σ̂ matrices used throughout this paper:

Γ̂ν = σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in , (59)

where ν is simply a short-handed index by which to label the Γ matrices,
which is simpler than writing out i1, i2, . . . in. Given this notation, we sub-
stitute into equation 34 and find that

ρ̂ =
1

2n

∑

ν

Γ̂νSν . (60)

Now that the density matrix is represented in a useful form, it is necessary
to consider exactly which measurements to use. In particular, we now wish to
determine the necessary and sufficient conditions on the 4n measurements.9

Let |ψµ〉 (µ = 1 to 4n) be the measurement bases. We can then define the

probability of the µth measurement as Pµ = 〈ψµ|ρ̂|ψµ〉.
Combining this with equation 60,

Pµ = 〈ψµ|
1

2n

4n

∑

ν=1

Γ̂νSν |ψµ〉 =
1

2n

4n

∑

ν=1

Bµ,νSν , (61)

where the 4n × 4n matrix Bµ,ν is given by

Bµ,ν = 〈ψµ|Γ̂ν |ψµ〉. (62)

Immediately we find a necessary and sufficient condition for the completeness
of the set of tomographic states {|ψµ〉}: if the matrix Bµ,ν is nonsingular, then
eq.(61) can be inverted to give

9 While only 4n−1 measurements are necessary, in practice it is often the case that
exact probabilities are not known, only numbers of counts (successful measure-
ments), with no information about the number of counts which would have been
measured by detectors in orthogonal bases. In this case an extra measurement
is necessary to normalize the inferred probabilities. If instead exact probabilities
are known, the final result need not actually be measured, but instead can be
calculated from three of the other measurements (choose this last measurement

to be the nth in a complete basis of measurements, and use the normalization
constraint that all probabilities in a complete basis must sum to one).
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Sν = 2n
4n

∑

µ=1

(

B−1
)

µ,ν
Pµ. (63)

As before, the density matrix can be calculated directly from the Sν values.
Obviously, this reconstruction technique would also work with 2n detectors,
as the measurements gained from 3n analysis settings are more than sufficient
to define the Pµ above.

3 Real Tomography: Errors and the Maximum

Likelihood Technique

The tools developed so far allow the perfect reconstruction of a density ma-
trix from an infinite set of ideal data. When applying this technique to any
set of real measurements, the assumption of ideal probabilities must be dis-
carded. In fact, the probabilities predicted by real results can in practice be
contradictory or even physically impossible. It is therefore necessary to im-
plement a procedure that takes these errors into account yet always returns
a legitimate density matrix.

3.1 Real Tomography of a Single Qubit

Once again, the single-qubit example precedes the general treatment in order
to provide intuition and a graphical picture.

Types of Errors

Errors in the measurement of a density matrix fall into three main categories:
errors in the measurement basis, errors from counting statistics, and errors
from experimental stability. The first problem can be addressed by increasing
the accuracy of the measurement apparatus (e.g., obtaining higher tolerance
waveplates, better controlling the Rabi pulses, etc.) while the second problem
is reduced by performing each measurement on a larger ensemble (counting
for a longer time). The final difficulty is drift which occurs over the course
of the tomography. 10 This drift occurs either in the state produced or the
efficiency of the detection system, and can constrain the data-collection time.

10 These are the main sources of error that are likely to be present to some degree in
any qubit implementation. In addition, each implementation may have its own
unique errors. For example, if the waveplates used to analyze optical polarization
qubits are slightly wedged, and the detectors slightly non-uniform, this can lead
to a troubling systematic error whereby the detector efficiency depends on the
analysis settings. Other errors can be compensated, such as when accidental
coincidence counts due to background light are subtracted from measured count
rates. Here we neglect such system-specific difficulties.
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Figure 4a shows what a basis error looks like on the Poincaré sphere and
how that error affects the ability to isolate a state in Poincaré space. Acciden-
tally measuring in a different basis, slightly different than the intended one,
introduces a different amount of error depending on the state being measured.
All possible measurement axes must pass through the center of the Poincaré
sphere, corresponding to the fact that the totally mixed state has a probabil-
ity of 1

2 of being measured in any basis. Some Gaussian distribution of error
around the intended axis looks like two cones meeting point to point at the
center of the sphere, traced out by all of the nearby measurement axes. When
translated into knowledge of the state, this transforms what would have been
a single plane (perpendicular to the measurement axis) into a disk, thick at
the edges of the sphere and thinning to a single point at the origin. This
picture indicates that a basis error is more pronounced when measuring a
pure state, but actually has no effect when measuring a totally mixed state
(because all bases give the same answer).

(a) (b)

Fig. 4. Graphical representation of errors in a single-qubit tomography. (a) Basis
errors. Errors in the setting of measurement apparatus can result in an accurate
measurement being taken in an unintended basis. Shown graphically is the effect
that an uncertainty in the measurement basis can have on the reconstruction of
a state. Instead of a single axis on the Poincaré sphere, the possible measurement
axes form uncertainty cones touching at the center, since all possible measurement
axes pass through the origin. This uncertainty in axis is then translated into an
uncertainty in the state (shown on the right). Instead of isolating the state to a
plane, all possible measurement axes trace out a volume with large uncertainty near
the surface of the sphere and low uncertainty near the center. (b) Counting errors.
Even if the measurement basis is exactly known, only a limited number of qubits
can be measured to gain an estimate of a state’s projection onto this axis (taken
directly from the probability of a successful measurement). This uncertainty results
in an unknown state being isolated to a one-dimensional gaussian (approximately)
in three-dimensional space, rather than to a plane.

Figure 4b shows the same analysis of errors in counting statistics. Any
real measurement can only be carried out on a limited size ensemble. Though
the details of the statistics will be dealt with later, the detection events are
accurately described by a Poissonian distribution, which for large numbers of
counts is well approximated by a Gaussian distribution. This will cause the
resultant knowledge about the unknown state to change from a plane (in the
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exact case) to a thick disk (uniformally thick for pure and mixed states), a
one-dimensional Gaussian distribution plotted in three-dimensional space.

The final source of error, that of drift, can occur on three distinct
timescales. Quickly varying systems experience drift which cycles many times
within the span of a single measurement. Rather than producing errors, these
types of drift result in the measurement of a mixed state (which describes a
probabilistic mixture of several states, exactly the situation when a state
drifts). Very slowly varying systems also do not introduce errors, as the
timescale of the drift exceeds the timescale of the measurements (during
the measurement process, the state is essentially constant). The final source
of drift occurs on the timescale of the measurement, allowing a totally differ-
ent state to be measured from one analysis setting to the next. This error is
difficult to characterize, as it is difficult to know what the correct answer for
a tomography would be, much less how far the predicted value strayed from
it.

Drift in state intensity (e.g., the rate of photons produced) can be com-
pensated for by employing to a 2n detector system. Because every member
of the ensemble is measured in a complete basis, this gives an exact intensity
for each set of 2n measurements, eliminating the need for the assumption
that each measurement run is over the same size ensemble. (Recall that a
measurement gives the probability to project the unknown ρ into a single
state |ψ〉. When using 2n detectors, therefore, each analysis setting will yield
2n measurement results.)

Detector efficiency drift also presents a problem, with similar effects to
state drift. Special care must be taken to address this problem when using
a 2n detector scheme, as measurements taken with each pair of detectors
may appear to give different values, when in fact a particular detector pair
is simply more efficient than another. In order to compensate for this, the
relative efficiencies of each detector pair must be measured, and all counts
taken renormalized using these efficiencies.

Combining Real Measurements: State Estimation

After all sources of error are taken into account, a single measurement re-
sults in a distribution over all possible states describing the experimenter’s
knowledge of the unknown state. This distribution represents the likelihood
that a particular state would give the measured results, relative to another
state. When independent measurements are combined, these distributions are
multiplied, and ideally the knowledge of the unknown state is restricted to
a small ball in Poincaré space, approximately equal to a three-dimensional
Gaussian. This type of state isolation occurs regardless of which measure-
ments are taken, as long as they are linearly independent. State isolation is
shown graphically in figure 5 for a set of orthogonal measurements.

In contrast to the ideal case in the previous section, for which the ac-
curacy of a reconstructed state did not depend on whether orthogonal or



Quantum State Tomography 25

Fig. 5. Isolation of a quantum state through inexact measurements. Although a
series of real measurements (those with uncertainties) will never be able to exactly
isolate an unknown quantum state, they can isolate it to a region of Hilbert space
that is far more likely than any other region to contain the unknown state. Consider
a series of three measurements, each containing counting errors, along orthogonal
axes. From left to right, the area of Hilbert space containing the unknown state
is truncated from a one-dimensional Gaussian probability distribution (the disk in
the left figure) to a two-dimensional Gaussian (the cylinder in the middle figure)
and finally to a three-dimensional Gaussian (the ball in the right figure). This
results in an ‘error ball’ which approximates the position of the unknown state.
The global maximum, however, can often be outside allowed Hilbert space (outside
the Poincaré sphere), which is one reason a maximum likelihood technique must be
used to search over only allowed quantum states.

non-orthogonal measurements were made, with real measurements the ad-
vantage of orthogonal measurements becomes clear. Unlike in figure 5, non-
orthogonal measurements result in a non-symmetric error ball, increasing the
error in state estimation in one direction in Hilbert space. In practice, making
the right measurements for the right amount of time to make this error ball
spherical can be acheived by adaptive tomography [37], but this is beyond
the scope of this work.

Even after tomography returns a distribution of likelihood over Poincaré
space, one final problem remains. It is very possible, especially with low
counts or with the measurement of very pure states, that state estimation
will return an illegal state. For example, in figure 5, the measurements seem
to place the error ball just on the edge of the sphere and slightly outside
it. As all legal states have a radius of less than or equal to one in Poincaré
space, it is necessary to find a way to return the most likely legitimate state
reconstructed from a set of measurements.

The Maximum Likelihood Technique

The problem of reconstructing illegal density matrices is resolved by select-
ing the legitimate state most likely to have returned the measured counts
[28, 29]. In practice, analytically calculating this maximally likely state is
prohibitively difficult, and a numerical search is necessary. Three elements
are required: a manifestly legal parametrization of a density matrix, a like-
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lihood function which can be maximized, and a technique for numerically
finding this maximum over a search of the density matrix’s parameters.

The Stokes parameters are an unacceptable parametrization for this
search, as there are clearly legitimate combinations of these parameters which
result in an illegal state. In this context, a legitimate state refers to a non-
negative definite Hermitian density matrix of trace one. The property of
non-negative definiteness for any matrix Ĝ is written mathematically as

〈ψ|Ĝ|ψ〉 ≥ 0 ∀|ψ〉. (64)

Any matrix that can be written in the form Ĝ = T̂ †T̂ must be non-negative
definite. To see that this is the case, substitute into eq.(64):

〈ψ|T̂ †T̂ |ψ〉 = 〈ψ′|ψ′〉 ≥ 0, (65)

where we have defined |ψ′〉 = T̂ |ψ〉. Furthermore (T̂ †T̂ )† = T̂ †(T̂ †)† = T̂ †T̂ ,
i.e., Ĝ = T̂ †T̂ must be Hermitian. To ensure normalization, one can simply
divide by the trace. Thus the matrix ĝ given by the formula

ĝ = T̂ †T̂ /Tr{T̂ †T̂} (66)

has all three of the mathematical properties required for density matrices.
For the one-qubit system, we have a 2 × 2 density matrix with 3 inde-

pendent real parameters (although we will search over 4 in order to fit the
intensity of the data). Since it will be useful to be able to invert relation (66),
it is convenient to choose a tri-diagonal form for T̂ :

T̂ (t) =

(

t1 0
t3 + it4 t2

)

. (67)

The manifestly ‘physical’ density matrix ρ̂p is then given by the formula

ρ̂p(t) = T̂ †(t)T̂ (t)/Tr{T̂ †(t)T̂ (t)}, (68)

where t is shorthand for all ti.
This satisfies the first criterion for a successful maximum likelihood search,

by providing an explicitly physical parametrization for ρ̂. The second crite-
rion, a likelihood function, will in general depend on the specific measurement
apparatus used and the physical implementation of the qubit (as these will
determine the statistical distributions of counts, and therefore their relative
weightings).

If we assume both Gaussian counting statistics and that each of our mea-
surements is taken for the same amount of time, then we can provide a
suitable likelihood function. (Basis errors are neglected on the assumption
that they are symmetric about a known central basis, and so will not affect
the outcome, though they will affect the error on that outcome.)
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Let nν be the result for the νth measurement, out of a total of Ξ mea-
surements. For the two techniques presented in the previous section applied
to measurement of a single-qubit, Ξ would equal four for one detector and
six for two detectors (with two detectors there are three analysis settings
but six measurements). The expected values for these measurements on an
unknown state ρ̂ are given by n̄ν = N〈ψν |ρ̂|ψν〉. Here N is an unknown nor-
malization parameter defined by nν

N = Pν , corresponding to the total size per
measurement of the ensemble. (It is not always possible to know the size of a
measured ensemble, and so the counts rather than the probabilities are used
in the likelihood function. In addition, the Gaussian statistical distribution
is over counts, not probabilities.) Given these definitions, the probability of
obtaining the observed experimental counts nν from the density matrix ρ̂ is

P (n1, n2, . . . nΞ) =
1

Norm

∏

ν

exp

[

− (n̄ν − nν)
2

2σ̂2
ν

]

, (69)

where σ̂ν is the standard deviation of the νth measurement (given approxi-
mately by

√
n̄ν) and Norm is the normalization constant. For our candidate

physical density matrix ρ̂p the number of counts expected for the ν-th mea-
surement is

n̄ν (t1, t2, . . . tn2) = N〈ψν |ρ̂p (t1, t2, . . . tn2) |ψν〉. (70)

Thus the likelihood that the matrix ρ̂p (t1, t2, . . . tn2) could produce the mea-
sured data {n1, n2, . . . nΞ} is

P (n1, n2, . . . nΞ) =
1

Norm

∏

ν

exp

[

− (N〈ψν |ρ̂p (t1, t2, . . . tn2) |ψν〉 − nν)
2

2N〈ψν |ρ̂p (t1, t2, . . . tn2) |ψν〉

]

.

(71)
Note that here we assume that N is the same for each measurement. In
practice this may not necessarily be the case due to drift (in either source
intensity or detector efficiencies) or differing measurement conditions.

Rather than find the maximum value of P (t1, t2, . . . tn2), it is somewhat
simpler to find the maximum of its logarithm (which is mathematically equiv-
alent). In addition, because N is unknown, we absorb it into the T̂ matrix,
by setting

t′i = N ti. (72)

Thus the optimization problem reduces to finding the minimum of the fol-
lowing function:

L (t′1, t
′
2, . . . t

′
n2) =

∑

ν

(〈ψν |ρ̂p
(

t′1, t
′
2, . . . t

′
n2

)

|ψν〉 − nν)
2

2〈ψν |ρ̂p
(

t′1, t
′
2, . . . t

′
n2

)

|ψν〉
. (73)

The final piece in the maximum likelihood technique is an optimization
routine, of which there are many available. The authors used the Matlab
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function fminunc for the examples given in this chapter.11 After a minimum
is found, ρ̂ can be reconstructed from the values of t′.

Note that the maximum likelihood technique easily adapts to measure-
ments in non-orthogonal bases (e.g., due to imperfect yet well chacterized
waveplates) and overcomplete measurements (taking more measurements
than is necessary). In the first case the set of |ψ〉 is simply non-orthogonal
with no effect on the above equations; in the second case the sum in equation
73 is extended beyond the minimum Ξ.

An Example Using Photons

Photon pairs generated via spontaneous parametric downconversion from a
nonlinear crystal can be used to generate single photon states. Measuring a
photon in one arm collapses the state of its partner to a single qubit Fock state
[33]. An ensemble of these photons can be used to implement the maximum
likelihood technique. See figure 6 for the measured counts and the final density
matrix. While these counts would have resulted in an illegal density matrix
using the simple linear reconstruction of section 2, the maximum likelihood
technique returns the most likely legal state to have given this data.
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Fig. 6. Example results for the maximum likelihood technique, taken from single-
qubit data. The data was taken using downconverted photons from a nonlinear
crystal, using one half of a photon pair as a trigger. (a) The measured counts in
four linear independent bases. (b) The likelihood function is minimized for these
counts, yielding the listed density matrix, shown graphically. The entropy, linear
entropy, and the three normalized Stokes parameters are shown. The errors on
these values were calculated using a Monte Carlo simulation of the data in (a). (c)
Numerical results. Both the T̂ matrix, calculated using the maximum likelihood
technique. and the resulting density matrix ρ̂ are shown,

11 For freely available code and further examples, see:
http://www.physics.uiuc.edu/research/QuantumPhotonics/Tomography/
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3.2 The Multiple Qubit Maximum Likelihood Technique

Extending the maximum likelihood technique into the multiple-qubit regime
is surprisingly straightforward. Virtually all of the mathematics from the
previous section is still applicable, with minor changes. In fact, after rewriting
equation 68 to be more general:

T̂ (t) =









t1 0 . . . 0
t2n+1 + it2n+2 t2 . . . 0

. . . . . . . . . 0
t4n−1 + it4n t4n−3 + it4n−2 t4n−5 + it4n−4 t2n









, (74)

all other equations in the previous section are correct, and the procedure for
isolating the reconstructed density matrix is exactly the same.

A 2-Qubit Example in Photons

In the 2-qubit case, equation 74 becomes

T̂ (t) =









t1 0 0 0
t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3 0
t15 + it16 t13 + it14 t9 + it10 t4









. (75)

Figure 7 shows a set of real data and its analysis. This data represents two-
qubit polarization states produced via spontaneous parametric downconver-
sion from two adjacent nonlinear crystals. The resulting uncertainty as to
which crystal generated the pair leads to a nearly ideal maximally entangled
state [27]. The data shown was measured using the four-detector technique;
9 analysis settings were required, for a total of 36 measurement results.

4 Error Analysis

Error analysis of reconstructed density matrices is in practice a non-trivial
process. The traditional method of error analysis involves analytically solving
for the error in each measurement due to each source of error, then propagat-
ing these errors through a calculation of any derived quantity. In the photon
case, for example, errors in counting statistics and waveplate settings are an-
alyzed in some detail in reference [28], giving errors in both density matrices
and commonly derived quantities, such as the tangle and the linear entropy.
In practice, however, these errors appear to be too large: We have experi-
mentally repeated some of our measurements many times, and observed a
spread in the value of derived quantities which is approximately an order of
magnitude smaller that the spread predicted from an analytic calculation of
the uncertainty. Thus it is worthwhile to discuss alternate methods of error
analysis.



30 J. B. Altepeter, D. F. V. James, and P. G. Kwiat

D.C. 

(BBO)

HWP

QWP

PBS

10 nm 

Filter

(a)

351 nm 

pump laser

PBS

HWP

QWP

702 nm 

downconversion

HV

VV

HH

VH

HH

VH

HV

VV

   0.509           -0.006 - 0.012i   0.008 + 0.011i  -0.489 + 0.017i 

  -0.006 + 0.012i   0.002           -0.000 + 0.002i   0.004 - 0.008i 

   0.009 - 0.011i  -0.000 - 0.002i   0.003           -0.007 + 0.014i 

  -0.489 - 0.017i   0.004 + 0.008i  -0.007 - 0.014i   0.486         

(c) Tangle

Entropy

Lin. Ent.

Fidelity

0.9519   0.0013±

0.1033   0.0026±

0.0318   0.0008±

0.9868   0.0001±

40230         150         220       39094 

19970       20533       18542       20050 

21988       18910       18003       21054 

20556       19706       20010       18629 

  333       39918       38011         440 

20475       19975       18931       19544 

19900       19649       20761       19330 

17423       21755       21207       18804 

38717         401         483       39382 

HH 

HD 

HR 

DH 

DD 

DR 

RH 

RD 

RR

VV 

VA 

VL 

AV 

AA 

AL 

LV 

LA 

LL

VH 

VD 

VR 

AH 

AD 

AR 

LH 

LD 

LR

HV 

HA 

HL 

DV 

DA 

DL 

RV 

RA 

RL

(b)

Fig. 7. (a) Experimental setup for producing two-qubit polarization states from
spontaneous parameteric downconversion. (b) Experimental data for a near-Bell
state (9̃9% fidelity with |φ−〉 = 1√

2
(|HH〉 − |V V 〉)). Shown are the single photon

counts from a complete tomography using four detectors. Nine analysis settings
yields the 36 measurement results shown. These counts are adjusted for accidentals
(dark counts) and renormalized for differences in detector efficiencies (see text for
details). (c) The density matrix is shown in both numeric and graphical form, along
with several quantities derived from that matrix. The errors shown were calculated
using a Monte Carlo simulation of the data from (b).
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One promising numerical method is the ‘Monte Carlo’ technique, whereby
additional numerically simulated data is used to provide a statistical distri-
bution over any derived quantity. Once an error distribution is understood
over a single measurement (e.g., Gaussian for waveplate setting errors or
Poissonian over count statistics), a set of ‘simulated’ results can be gener-
ated. These results are simulated using the known error distributions in such
a way as to produce a full set of numerically generated data which could
feasibly have come from the same system. Many of these sets of data are
numerically generated (at the measured counts level), and each set is used to
calculate a density matrix via the maximum likelihood technique. This set
of density matrices is used to calculate the standard error on any quantity
implicit in or derived from the density matrix.

As an example, consider the application of the Monte Carlo technique to
the downconversion results from figure 7. Two polarization encoded qubits
are generated within ensembles that obey Poissonian statistics, and these en-
sembles are used to generate a density matrix using the maximum likelihood
technique. In order to find the error on a quantity derived from this density
matrix (e.g., the tangle), 36 new measurement results are numerically gener-
ated, each drawn randomly from a Poissonian distribution with mean equal
to the original number of counts. These 36 numerically generated results are
then fed into the maximum likelihood technique, in order to generate a new
density matrix, from which, e.g., the tangle may be calculated. This process
is repeated many times, generating both many density matrices and a dis-
tribution of tangle values, from which the error in the initial tangle may be
determined. In practice, additional sets of simulated data must be generated
until the error on the quantity of interest converges to a single value. For the
data in figures 6 and 7, a total of 100 simulations were used.

Clearly, the problem of error analysis in state tomography is an area of
continuing research – one of many. The development of adaptive tomography
techniques could allow both specific measurements and the data collection
times to be tailored in order to optimize for each state to be measured [37].
In addition, because the number of measurements necessary to perform to-
mography grows exponentially with the number of qubits, it will eventually be
necessary to partially characterize states with fewer measurements. Finally,
each distinct qubit implementation provides a myriad of unique challenges.
Nevertheless, we hope the discussions presented here will be useful for char-
acterizing quantum systems in a broad spectrum of qubit realizations.
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