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Abstract

Quantum state tomography is the process by which an identical ensem-
ble of unknown quantum states is completely characterized. A sequence of
identical measurements within a series of different bases allow the recon-
struction of a complete quantum wavefunction. This article reviews state
representation and notation, lays out the theory of ideal tomography, and
details the full experimental realization (measurement, electronics, error
correction, numerical analysis, measurement choice, and estimation of un-
certainties) of a tomographic system applied to polarized photonic qubits.

Unlike their classical counterparts, quantum states are notoriously difficult
to measure. In one sense, the spin of an electron can be in only one of two
states, up or down. A simple experiment can discover which state the electron
occupies, and further measurements on the same electron will always confirm
this answer. However, the simplicity of this picture belies the complex, complete
nature of an electron which always appears in one of exactly two states—states
which change depending on how it is measured.

Quantum state tomography is the process by which any quantum system,
including the spin of an electron, can be completely characterized using an en-
semble of many identical particles. Measurements of multiple types reconstruct
a quantum state from different eigenbases, just as classical tomography can im-
age a three-dimensional object by scanning it from different physical directions.
Additional measurements in any single basis bring that dimension into sharper
relief.

This article is structured into two major partitions1: the theory of tomogra-
phy (Sections I and II) and the experimental tomography of photonic systems

1The manuscript is based on a shorter article (Altepeter et al., 2004) which appeared in
the special volume Quantum State Estimation; here we have written the entire article to be
specific to polarization-based photonic tomography and extended the results to include qudits,
imperfect waveplates, a new type of maximum likelihood techniques, and information on the
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(Sections III–VI). The theoretical sections provide a foundation for quantum
state tomography, and should be applicable to any system, including photons
(White et al., 1999; Sanaka et al., 2001; Mair et al., 2001a; Nambu et al., 2002;
Giorgi et al., 2003; Yamamoto et al., 2003; Sergienko et al., 2003; Pittman
et al., 2003; O’Brien et al., 2003; Marcikic et al., 2003), spin- 1

2 particles (as,
e.g., are used in NMR quantum computing (Cory et al., 1997; Jones et al.,
1997; Weinstein et al., 2001; Laflamme et al., 2002)), and (effectively) 2-level
atoms (Monroe, 2002; Schmidt-Kaler et al., 2003). Section I provides an in-
troduction to state representation and the notation of this article. Section II
describes the theory of tomographic reconstruction assuming error-free, exact
measurements. The second part of the article contains not only information
specific to the experimental measurement of photon polarization (e.g., how to
deal with imperfect waveplates), but extensive information on how to deal with
real, error-prone systems; information useful to anyone implementing a real
tomography system. Section III concerns the collection of experimental data
(projectors, electronics, systematic error correction) and Section IV deals with
its analysis (numerical techniques for reconstructing states). Sections V and VI
describe how to choose which measurements to make and how to estimate the
uncertainty in a tomography, respectively.

In order to facilitate the use of these techniques by groups and individuals
working in any field, a website is available which provides both further details
about these techniques and working, documented code for implementing them.2

I State Representation

Before states can be analyzed, it is necessary to understand their representation.
In particular, the reconstruction of an unknown state is often simplified by a
specific state parametrization.

A Representation of Single-Qubit States

Rather than begin with a general treatment of tomography for an arbitrary
number of qubits, throughout this chapter the single-qubit case will be investi-
gated initially. This provides the opportunity to strengthen an intuitive grasp
of the fundamentals of state representation and tomography before moving on
to the more complex (and more useful) general case. In pursuance of this goal,
we will use graphical representations only available at the single-qubit level.

1 Pure States, Mixed States, and Diagonal Representations

In general, any single qubit in a pure state can be represented by

|ψ〉 = α|0〉 + β|1〉, (1)

choice of measurements. Because the conceptual background is identical, some of the text and
figures have been borrowed from that earlier work.

2http://www.physics.uiuc.edu/research/QI/Photonics/Tomography/
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where α and β are complex and |α|2 + |β|2 = 1 (Nielsen and Chuang, 2000). If
the normalization is written implicitly and the global phase is ignored, this can
be rewritten as

|ψ〉 = cos

(

θ

2

)

|0〉 + sin

(

θ

2

)

eiφ|1〉. (2)

Example 1. Pure States. Throughout this chapter, examples will be provided
using qubits encoded into the electric field polarization of photons. For a single
photon, this system has two levels, e.g., horizontal (|H〉 ≡ |0〉) and vertical
(|V 〉 ≡ |1〉), with all possible pure polarization states constructed from coherent
superpositions of these two states. For example, diagonal, antidiagonal, right-
circular and left-circular light are respectively represented by

|D〉 ≡ (|H〉 + |V 〉)/
√

2,

|A〉 ≡ (|H〉 − |V 〉)/
√

2,

|R〉 ≡ (|H〉 + i|V 〉)/
√

2,

and |L〉 ≡ (|H〉 − i|V 〉)/
√

2. (3)

This representation enables the tomography of an ensemble of identical pure
states, but is insufficient to describe either an ensemble containing a variety of
different pure states or an ensemble whose members are not pure (perhaps
because they are entangled to unobserved degrees of freedom). In this case the
overall state is mixed.

In general, these mixed states may be described by a probabilistically weighted
incoherent sum of pure states, i.e., they behave as if any particle in the ensemble
has a specific probability of being in a given pure state, and this state is distin-
guishably labelled in some way. If it were not distinguishable, the total state’s
constituent pure states would add coherently (with a definite relative phase),
yielding a single pure state.

A mixed state can be represented by a density matrix ρ̂, where

ρ̂ =
∑

i

Pi|ψi〉〈ψi| =

(

〈0| 〈1|
|0〉 A Ceiφ

|1〉 Ce−iφ B

)

. (4)

Pi is the probabalistic weighting (
∑

i Pi = 1), A,B and C are all real and

non-negative, A+B = 1, and C ≤
√
AB (Nielsen and Chuang, 2000).

While any ensemble of pure states can be represented in this way, it is also
true that any ensemble of single-qubit states can be represented by an ensemble
of only two orthogonal pure states. (Two pure states |ψi〉 and |ψj〉 are orthogonal
if |〈ψi|ψj〉| = 0). For example, if the matrix from Eqn. (4) were diagonal, then
it would clearly be a probabalistic combination of two orthogonal states, as

(

〈0| 〈1|
|0〉 A 0
|1〉 0 B

)

≡ A|0〉〈0| +B|1〉〈1|. (5)
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However, any physical density matrix can be diagonalized, such that

ρ̂ =

(

〈ψ| 〈ψ⊥|
|ψ〉 E1 0
|ψ⊥〉 0 E2

)

= E1|ψ〉〈ψ| + E2|ψ⊥〉〈ψ⊥|, (6)

where {E1, E2} are the eigenvalues of ρ̂, and {|ψ〉, |ψ⊥〉} are the eigenvectors
(recall that these eigenvectors are always mutually orthogonal, denoted here by
the ⊥ symbol). Thus the representation of any quantum state, no matter how it
is constructed, is identical to that of an ensemble of two orthogonal pure states.3

Example 2. A Mixed State. Now consider measuring a source of photons
which emits a one-photon wave packet each second, but alternates—perhaps
randomly—between horizontal, vertical, and diagonal polarizations. Their emis-
sion time labels these states (in principle) as distinguishable, and so if we ignore
that timing information when they are measured, we must represent their state
as a density matrix ρ̂:

ρ̂ =
1

3
(|H〉〈H| + |V 〉〈V | + |D〉〈D|)

=
1

3









(

〈H| 〈V |
|H〉 1 0
|V 〉 0 0

)

+

(

〈H| 〈V |
|H〉 0 0
|V 〉 0 1

)

+

(

〈H| 〈V |
|H〉 1

2
1
2

|V 〉 1
2

1
2

)









=
1

6









(

〈H| 〈V |
|H〉 3 1
|V 〉 1 3

)









. (7)

When diagonalized,

ρ̂ =
1

3









(

〈D| 〈A|
|D〉 2 0
|A〉 0 1

)









=
2

3
|D〉〈D| + 1

3
|A〉〈A|, (8)

which, as predicted in Eqn. (6), is a sum of only two orthogonal states.

3It is an interesting question whether all physical states described by a mixed state—e.g.,
Eqn. (6)—are indeed completely equivalent. For example, Lehner, Leonhardt, and Paul
discussed the notion that two types of unpolarized light could be considered, depending on
whether the incoherence between polarization components arose purely due to an averaging
over rapidly varying phases, or from an entanglement with another quantum system altogether
(Lehner et al., 1996). This line of thought can even be pushed further, by asking whether
all mixed states necessarily arise only from tracing over some unobserved degrees of freedom
with which the quantum system has become entangled, or if indeed such entanglement may
‘collapse’ when the systems involved approach macroscopic size (Kwiat and Englert, 2004).
If the latter were true, then there would exist mixed states that could not be seen as pure in
some larger Hilbert space. In any event, these subtleties of interpretation do not in any way
affect experimental results, at least insofar as state tomography is concerned.
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Henceforth, the ‘bra’ and ‘ket’ labels will be suppressed from written density
matrices where the basis is {|0〉, |1〉} or {|H〉, |V 〉}.

2 The Stokes Parameters and the Poincaré Sphere

Any single-qubit density matrix ρ̂ can be uniquely represented by three param-
eters {S1, S2, S3}:

ρ̂ =
1

2

3
∑

i=0

Siσ̂i. (9)

The σ̂i matrices are

σ̂0 ≡
(

1 0
0 1

)

, σ̂1 ≡
(

0 1
1 0

)

, σ̂2 ≡
(

0 −i
i 0

)

, σ̂3 ≡
(

1 0
0 −1

)

, (10)

and the Si values are given by

Si ≡ Tr {σ̂iρ̂} . (11)

For all pure states,
∑3
i=1 S

2
i = 1; for mixed states,

∑3
i=1 S

2
i < 1; for the com-

pletely mixed state,
∑3
i=1 S

2
i = 0. Due to normalization, S0 will always equal

one.
Physically, each of these parameters directly corresponds to the outcome of

a specific pair of projective measurements:

S0 = P|0〉 + P|1〉

S1 = P 1√
2
(|0〉+|1〉) − P 1√

2
(|0〉−|1〉)

S2 = P 1√
2
(|0〉+i|1〉) − P 1√

2
(|0〉−i|1〉)

S3 = P|0〉 − P|1〉, (12)

where P|ψ〉 is the probability to measure the state |ψ〉. As we shall see below,
these relationships between probabilities and S parameters are extremely useful
in understanding more general operators. Because P|ψ〉 + P|ψ⊥〉 = 1, these can
be simplified in the single-qubit case, and

P|ψ〉 − P|ψ⊥〉 = 2P|ψ〉 − 1. (13)

The probability of projecting a given state ρ̂ into the state |ψ〉 (the probability
of measuring |ψ〉) is given by (Gasiorowitz, 1996):

P|ψ〉 = 〈ψ|ρ̂|ψ〉
= Tr {|ψ〉〈ψ|ρ̂} . (14)

In Eqn. (12) above, the Si are defined with respect to three states, |φ〉i:

|φ〉1 =
1√
2

(|0〉 + |1〉)

|φ〉2 =
1√
2

(|0〉 + i|1〉)

|φ〉3 = |0〉, (15)
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and their orthogonal compliments, |φ⊥〉. Parameters similar to these and serving
the same function can be defined with respect to any three arbitrary states,
|ψi〉, as long as the matrices |ψi〉〈ψi| along with the identity must be linearly
independent. Operators analogous to the σ̂ operators can be defined relative to
these states:

τ̂i ≡ |ψi〉〈ψi| − |ψ⊥
i 〉〈ψ⊥

i |. (16)

We can further define an ‘S-like’ parameter T , given by:

Ti ≡ Tr {τ̂iρ̂} . (17)

Continuing the previous convention and to complete the set, we define τ̂0 ≡ σ̂0,
which then requires that T0 = 1. Note that the Si parameters are simply a
special case of the Ti, for the case when τ̂i = σ̂i.

Unlike the specific case of the S parameters which describe mutually unbi-
ased4 (MUB) measurement bases, for biased measurements

ρ̂ 6= 1

2

3
∑

i=0

Tiτ̂i. (18)

In order to reconstruct the density matrix, the T parameters must first be
transformed into the S parameters using Eqn. (21).

Example 3. The Stokes parameters.
For photon polarization, the Si are the famous Stokes parameters (though

normalized), and correspond to measurements in the D/A, R/L, and H/V bases
(Stokes, 1852). In terms of the τ̂ matrices just introduced, we would define a set
of basis states |ψ1〉 ≡ |D〉, |ψ2〉 ≡ |R〉, and |ψ3〉 ≡ |H〉. For these analysis bases,
τ̂1 = σ̂1, τ̂2 = σ̂2, and τ̂3 = σ̂3 (and therefore Ti = Si for this specific choice of
analysis bases).

As the simplest example, consider the input state |H〉. Applying Eqn. (11),
we find that

S0 = Tr {σ̂0ρ̂H} = 1

S1 = Tr {σ̂1ρ̂H} = 0

S2 = Tr {σ̂2ρ̂H} = 0

S3 = Tr {σ̂3ρ̂H} = 1, (19)

which from Eqn. (9) implies that

ρ̂H =
1

2
(σ̂0 + σ̂3) =

(

1 0
0 0

)

. (20)

4Two measurement bases, {〈ψi|} and {〈ψj |}, are mutually unbiased if ∀i,j |〈ψi|ψj〉|
2 = 1

d
,

where d is the dimension of the system (for a system of n qubits, d = 2n). A set of measurement
bases are mutually unbiased if each basis in the set is mutually unbiased with respect to every
other basis in the set. In single-qubit Poincaré space, the axes indicating mutually unbiased
measurement bases are at right angles (Lawrence et al., 2002).
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When the Stokes parameters (Si) are used as coordinates in 3-space, all
physically possible states fall within a sphere of radius one (the Poincaré sphere
for polarization, the Bloch sphere for electron spin or other two-level systems;
see Born and Wolf (1987)). The pure states are found on the surface, states
of linear polarization on the equator, circular states at the poles, mixed states
within, and the totally mixed state – corresponding to completely unpolarized
photons – at the center of the sphere. This provides a very convenient way
to visualize one-qubit states (see Figure 1). The θ and φ values from Eqn.
(2) allow any pure state to be easily mapped onto the sphere surface. These
values are the polar coordinates of the pure state they represent on the Poincaré
sphere.5 In addition to mapping states, the sphere can be used to represent any
unitary operation as a rotation about an arbitrary axis. For example, waveplates
implement rotations about an axis that passes through the equator.

Any state |ψ0〉 and its orthogonal partner, |ψ⊥
0 〉, are found on opposite points

of the Poincaré sphere. The line connecting these two points forms an axis of the
sphere, useful for visualizing the outcome of a measurement in the |ψ0〉/|ψ⊥

0 〉 ba-
sis. The projection of any state ρ̂ (through a line perpendicular to the |ψ0〉/|ψ⊥

0 〉
axis), will lie a distance along this axis corresponding to the relevant Stokes-like
parameter (T = 〈ψ0|ρ̂|ψ0〉 − 〈ψ⊥

0 |ρ̂|ψ⊥
0 〉).

Thus, just as any point in three-dimensional space can be specified by its pro-
jection onto three linearly independent axes, any quantum state can be specified
by the three parameters Ti = Tr {τ̂iρ̂}, where τ̂i=1,2,3 are linearly independent
matrices equal to |ψi〉〈ψi| − |ψ⊥

i 〉〈ψ⊥
i |. The τ̂i correspond to general Stokes-

like parameters for any three linearly independent axes on the Poincaré sphere.
However, they can differ from the canonical Stokes axes and need not even be
orthogonal. See Figure 1b for an example of state representation using non-
orthogonal axes.

In order to use these mutually biased Stokes-like parameters, it is necessary
to be able to transform a state from the mutually biased representation to the
Stokes representation and vice-versa. In general, for any two representations
Si = Tr {σ̂iρ̂} and Ti = Tr {τ̂iρ̂} it is possible to transform between them by
using









T0

T1

T2

T3









=
1

2









Tr {τ̂0σ̂0} Tr {τ̂0σ̂1} Tr {τ̂0σ̂2} Tr {τ̂0σ̂3}
Tr {τ̂1σ̂0} Tr {τ̂1σ̂1} Tr {τ̂1σ̂2} Tr {τ̂1σ̂3}
Tr {τ̂2σ̂0} Tr {τ̂2σ̂1} Tr {τ̂2σ̂2} Tr {τ̂2σ̂3}
Tr {τ̂3σ̂0} Tr {τ̂3σ̂1} Tr {τ̂3σ̂2} Tr {τ̂3σ̂3}

















S0

S1

S2

S3









.

(21)
This relation allows S parameters to be transformed into any set of T param-
eters. In order to transform from T to S, we can invert the 4 by 4 matrix in
Eqn. (21) and multiply both sides by this new matrix. This inversion is possible

5These polar coordinates are by convention rotated by 90◦, so that θ = 0 is on the equator
corresponding to the state |H〉 and θ = 90◦, φ = 90◦ is at the North Pole corresponding to the
state |R〉. This 90◦ rotation is particular to the Poincaré representation of photon polarization
(Peters et al., 2003); representations of two-level systems on the Bloch sphere do not introduce
it.
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H V

R

D

L

A

Ψ
S

2
=

1

√2

S
3
=

1

√2

S = 0
1

(b)

H V

R

D

L

A

Ψ
T

2
=1

½T =
1

T
3
=

1

√2

(a)

Figure 1: The Poincaré (or Bloch) sphere. Any single-qubit quantum state ρ̂
can be represented by three parameters Ti = Tr {τ̂iρ̂}, as long as the operators
τ̂i in addition to the identity are linearly independent. Physically, the Ti param-
eters directly correspond to the outcome of a specific projective measurement:
Ti = 2Pi − 1, where Pi is the probability of success for the measurement. The
Ti may be used as coordinates in 3-space. Then all 1-qubit quantum states fall
on or within a sphere of radius one. The surface of the sphere corresponds to
pure states, the interior to mixed states, and the origin to the totally mixed
state. Shown is a particular pure state |ψ〉, which is completely specified by
its projection onto a set of non-parallel basis vectors. (a) When τ̂i = σ̂i (the
Pauli matrices), the basis vectors are orthogonal, and in this particular case
the Ti are equal to the Si, the well known Stokes parameters, corresponding to
measurements of diagonal (S1), right-circular (S2), and horizontal (S3) polariza-
tions. (b) A non-orthogonal coordinate system in Poincaré space. It is possible
to represent a state using its projection onto non-orthogonal axes in Poincaré
space. This is of particular use when attempting to reconstruct a quantum state
from mutually biased measurements. Shown here are the axes corresponding to
measurements of 22.5◦ linear (T1), elliptical light rotated 22.5◦ from H towards
R (T2), and horizontal (T3). Taken from (Altepeter et al., 2004).
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because we have chosen the τ̂i operators to be linearly independent; otherwise
the Ti parameters would not specify a single point in Hilbert space.

B Representation of Multiple Qubits

With the extension of these ideas to cover multiple qubits, it becomes possi-
ble to investigate non-classical features, including the quintessentially quantum
mechanical phenomenon of entanglement.

1 Pure States, Mixed States, and Diagonal Representations

As the name implies, multiple-qubit states are constructed out of individual
qubits. As such, the Hilbert space of a many qubit system is spanned by state
vectors which are the tensor product of single-qubit state vectors. A general
n-qubit system can be written as

|ψ〉 =
∑

i1,i2,...in=0,1

αi1,i2,...in |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉. (22)

Here the αi are complex,
∑

i |αi|2 = 1, and ⊗ denotes a tensor product, used
to join component Hilbert spaces. For example, a general two-qubit pure state
can be written

|ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉, (23)

where |00〉 is shorthand for |0〉1 ⊗ |0〉2.
As before, we represent a general mixed state through an incoherent sum of

pure states:

ρ̂ =
∑

i

Pi|ψi〉〈ψi|. (24)

And, as before, this 2n-by-2n density matrix representing the n-qubit state may
always be diagonalized, allowing any state to be written as

ρ̂ =

2n

∑

i=1

Pi|φi〉〈φi|. (25)

(24) differs from (25) in that the φi are necessarily orthogonal (〈φi|φj〉 = δij),
and there are at most 2n of them; in (24) there could be an arbitrary number
of |ψi〉.
Example 4. A general two-qubit polarization state. Any two-qubit po-
larization state can be written as

ρ̂ =









〈HH| 〈HV | 〈V H| 〈V V |
|HH〉 A1 B1e

iφ1 B2e
iφ2 B3e

iφ3

|HV 〉 B1e
−iφ1 A2 B4e

iφ4 B5e
iφ5

|V H〉 B2e
−iφ2 B4e

−iφ4 A3 B6e
iφ6

|V V 〉 B3e
−iφ3 B5e

−iφ5 B6e
−iφ6 A4









, (26)

where ρ̂ is positive and Hermitian with unit trace. Henceforth, the ‘bra’ and ‘ket’
labels will be omitted from density matrices presented in this standard basis.
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Example 5. The Bell States. Perhaps the most famous examples of pure
two-qubit states are the Bell states (Bell, 1964):

|φ±〉 =
1√
2

(|HH〉 ± |V V 〉)

|ψ±〉 =
1√
2

(|HV 〉 ± |V H〉) . (27)

Mixed states of note include the Werner states (Werner, 1989),

ρ̂W = P |γ〉〈γ| + (1 − P )
1

4
I, (28)

where |γ〉 is a maximally entangled state and 1
4I is the totally mixed state,

and the maximally entangled mixed states (MEMS), which possess the maximal
amount of entanglement for a given amount of mixture (Munro et al., 2001).

Measures of entanglement and mixture may be derived from the density
matrix; for reference, we now describe several such measures used to characterize
a quantum state:

Fidelity Fidelity is a measure of state overlap:

F (ρ1, ρ2) =

(

Tr

{

√√
ρ1ρ2

√
ρ1

})2

, (29)

which - for ρ1 and ρ2 pure - simplifies to Tr {ρ1ρ2} = |〈ψ1|ψ2〉|2 (Jozsa, 1994)6.
Tangle The concurrence and tangle are measures of the non-classical

properties of a quantum state (Wooters, 1998; Coffman et al., 2000). For two
qubits7, concurrence is defined as follows: consider the non-Hermitian matrix
R̂ = ρ̂Σ̂ρ̂TΣ̂ where the superscript T denotes transpose and the ‘spin flip matrix’
Σ̂ is defined by:

Σ̂ ≡









0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0









. (30)

If the eigenvalues of R̂, arranged in decreasing order, are given by r1 ≥ r2 ≥
r3 ≥ r4, then the concurrence is defined by

C = Max {0,√r1 −
√
r2 −

√
r3 −

√
r4} . (31)

6Note that some groups use an alternate convention of fidelity, equal to the square root of
the formula presented here.

7The analysis in this subsection applies to the two-qubit case only. Measures of entangle-
ment for mixed n-qubit systems are a subject of on-going research: see, for example, (Terhal,
2001) for a recent survey. In some restricted cases it may be possible to measure entanglement
directly, without quantum state tomography; this possibility was investigated in (Sancho and
Huelga, 2000). Also, one can detect the presence of non-zero entanglement, without quan-
tifying it, using so-called “entanglement witnesses” (Lewenstein et al., 2000). Elsewhere we
describe the trade-offs associated with these other entanglement characterization schemes
(Altepeter et al., 2005).
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The tangle is calculated directly from the concurrence:

T ≡ C2. (32)

The tangle (and the concurrence) range from 0 for product states (or, more
generally, any incoherent mixture of product states) to a maximum value of 1
for Bell states.

Entropy and the Linear Entropy The Von Neuman entropy quantifies the
degree of mixture in a quantum state, and is given by

S ≡ −Tr {ρ̂ln [ρ̂]} = −
∑

i

piln {pi} , (33)

where the pi are the eigenvalues of ρ. The linear entropy (White et al., 1999) is
a more analytically convenient description of state mixture. The linear entropy
for a two-qubit system is defined by:

SL =
4

3

(

1 − Tr
{

ρ̂2
})

=
4

3

(

1 −
4
∑

a=1

p2
a

)

, (34)

where pa are the eigenvalues of ρ. Note that for pure states, ρ̂2 = ρ̂, and Tr [ρ̂]
is always 1, so that SL ranges from 0 for pure states to 1 for the completely
mixed state.

2 Multiple Qubit Stokes Parameters

Extending the single-qubit density matrix representation of Eqn. (9), any n-
qubit state ρ̂ may be represented as

ρ̂ =
1

2n

3
∑

i1,i2,...in=0

Si1,i2,...in σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in . (35)

Normalization requires that S0,0,...0 = 1, leaving 4n − 1 real parameters (the
multiple-qubit analog of the single-qubit Stokes parameters) to identify any
point in Hilbert space, just as three parameters determined the exact position
of a one-qubit state in the Bloch/Poincaré sphere. Already for two qubits, the
state space is much larger, requiring 15 independent real parameters to describe
it. For this reason, there is no convenient graphical picture of this space, as there
was in the single-qubit case (see, however, the interesting approaches made by
Zyczkowski (2000, 2001)).

For multiple qubits the link between the multiple-qubit Stokes parameters
(James et al., 2001; Abouraddy et al., 2002) and measurement probabilities still
exists. The formalism of τ̂ operators also still holds for larger qubit systems, so
that

T = Tr {τ̂ ρ̂} . (36)
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For ‘local’ measurements (a local measurement is the tensor product of a number
of single-qubit measurements: the first projecting qubit one along τ̂i1 , the second
qubit two along τ̂i2 , etc.), τ̂ = τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in . Combining Eqns. (35) and
(36),

Ti1,i2,...in = Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) ρ̂} (37)

=
1

2n

3
∑

j1,j2,...jn=0

Tr {τ̂i1 σ̂j1}Tr {τ̂i2 σ̂j2} . . .Tr {τ̂in σ̂jn}Sj1,j2,...jn .

Recall that for single qubits,

Ti=1,2,3 = P|ψi〉 − P|ψ⊥
i 〉

T0 = P|ψ〉 + P|ψ⊥〉 = 1,∀ψ (38)

Therefore, for an n-qubit system,

Ti1,i2,...in =

(P|ψi1
〉 ± P|ψ⊥

i1
〉) ⊗ (P|ψi2

〉 ± P|ψ⊥
i2

〉) ⊗ . . .⊗ (P|ψin 〉 ± P|ψ⊥
in

〉), (39)

where the plus sign is used for a zero index and the minus sign is used for a
nonzero index. For a two-qubit system where i1 6= 0 and i2 6= 0, Ti1,i2 simplifies
dramatically, giving

Ti1,i2 = (P|ψi1
〉 − P|ψ⊥

i1
〉) ⊗ (P|ψi2

〉 − P|ψ⊥
i2

〉)

= P|ψi1
〉|ψi2

〉 − P|ψi1
〉|ψ⊥

i2
〉 − P|ψ⊥

i1
〉|ψi2

〉 + P|ψ⊥
i1

〉|ψ⊥
i2

〉. (40)

This relation will be crucial for rebuilding a two-qubit state from local measure-
ments.

As before, we are not restricted to multiple-qubit Stokes parameters based
only on mutually unbiased operators. Extending Eqn. (21) to multiple qubits,
and again assuming two representations Si1,i2,...in = Tr {(σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in) ρ̂} ,
and Ti1,i2,...in = Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) ρ̂},

Ti1,i2,...in = (41)

1

2n

3
∑

j1,j2,...jn=0

Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) (σ̂j1 ⊗ σ̂j2 ⊗ . . .⊗ σ̂jn)}Sj1,j2,...jn .

In general, a given τ̂ operator is not uniquely mapped to a single pair of anal-
ysis states. For example, consider measurements of |H〉 and |V 〉 corresponding
to τ̂H = |H〉〈H| − |V 〉〈V | = σ̂3 and τ̂V = |V 〉〈V | − |H〉〈H| = −σ̂3. Therefore,
τ̂H,H ≡ σ̂3 ⊗ σ̂3 = −σ̂3 ⊗−σ̂3 ≡ τ̂V,V . This artifact of the mathematics does not
in practice affect the results of a tomography.

Example 6. A separable two-qubit polarization state.
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Consider the state |HH〉. Following the example in Eqns. (20),

ρ̂HH = |HH〉〈HH|

=
1

2
(σ̂0 + σ̂3) ⊗

1

2
(σ̂0 + σ̂3)

=
1

4
(σ̂0 ⊗ σ̂0 + σ̂0 ⊗ σ̂3 + σ̂3 ⊗ σ̂0 + σ̂3 ⊗ σ̂3). (42)

This implies that for this state there are exactly four non-zero two-qubit Stokes
parameters: S0,0, S0,3, S3,0, and S3,3 – all of which are equal to one. (As earlier,
for the special case when τ̂i,j = σ̂i,j, we relabel the Ti,j as Si,j , the two-qubit
Stokes parameters (James et al., 2001; Abouraddy et al., 2002).) The separable
nature of this state makes it easy to calculate the two-qubit Stokes decomposition.

Example 7. The singlet state. If instead we investigate the entangled state
|ψ−〉 ≡ (|HV 〉 − |V H〉) /

√
2, it will be necessary to calculate each two-qubit

Stokes parameter from the σ̂ matrices. As an example, consider σ̂3,3 ≡ σ̂3 ⊗ σ̂3,
for which

S3,3 = Tr
{

σ̂3,3|ψ−〉〈ψ−|
}

= −1. (43)

We could instead calculate S3,3 directly from probability outcomes of measure-
ments on |ψ−〉:

S3,3 = (PH − PV ) ⊗ (PH − PV )

= PHH − PHV − PV H + PV V

= 0 − 1

2
− 1

2
+ 0

= −1. (44)

Continuing on, we measure S0,3:

S0,3 = (PH + PV ) ⊗ (PH − PV )

= PHH − PHV + PV H − PV V

= 0 − 1

2
+

1

2
− 0

= 0. (45)

Here the signs of the probabilities changed due to the zero index in S0,3. These
results would have been the same even if the analysis bases of the first qubit had
been shifted to any other orthogonal basis, i.e., S0,3 =

(

Pψ + Pψ⊥
)

⊗(PH − PV ).
If the method above is continued for all the Stokes parameters, one concludes

that

ρ̂ψ− =
1

2
(|HV 〉 − |V H〉)(〈HV | − 〈V H|)

=
1

4
(σ̂0 ⊗ σ̂0 − σ̂1 ⊗ σ̂1 − σ̂2 ⊗ σ̂2 − σ̂3 ⊗ σ̂3). (46)
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C Representation of Non-Qubit Systems

Although most interest within the field of quantum information and computa-
tion has focused on two-level systems (qubits) due to their simplicity, availabil-
ity, and similarity to classical bits, nature contains a multitude of many-level
systems, both discrete and continuous. A discussion of continuous systems is
beyond the scope of this work—see Leonhardt (1997), but we will briefly address
here the representation and tomography of discrete, d-level systems (“qudits”).
For a more detailed description of qudit tomography, see Thew et al. (2002).

1 Pure, Mixed, and Diagonal Representations

Directly extending Eqns. (1) and (2), an d-level qudit can be represented as

|ψ〉 = α0|0〉 + α1|1〉 + . . .+ αd−1|d− 1〉, (47)

where
∑

i |αi|
2

= 1. Mixed qudit states can likewise be represented by general-
izing Eqns. (4) and (6):

ρ =
∑

k

Pk|φk〉〈φk| (48)

=

d−1
∑

i=0

Pi|ψi〉〈ψi|. (49)

Here {|φk〉} is completely unrestricted while |〈ψi|ψj〉| = δij . In other words,
while any mixed state is an incoherent superposition of an undetermined num-
ber of pure states, any mixed state can be represented by an incoherent super-
position of only n orthogonal states (the diagonal representation).

Example 8. Orbital Angular Momentum Modes. Orbital angular mo-
mentum is a multiple-level photonic system which has recently been studied for
quantum information (Mair et al., 2001b; Langford et al., 2004; Arnaut and
Barbosa, 2000). Consider a qudit system with an infinite number of levels rep-
resenting the quantization of orbital angular momentum. A superposition of the
three lowest angular momentum levels would look like

|ψ〉 = |+1〉 + |0〉 + |−1〉, (50)

where |+1〉 (|−1〉) corresponds to a mode where each photon has +~ (-~) orbital
angular momentum, and |0〉 corresponds to a zero angular momentum mode, e.g.
a Gaussian. Using specially designed holograms, these states can be measured
and interconverted (Allen et al., 2004).

2 Qudit Stokes Parameters

In order to completely generalize the qubit mathematics laid out previously to
the qudit case, it is necessary to find Stokes-like parameters which satisfy the
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following conditions:

ρ̂ =

n
∑

i=0

Siσ̂i, (51)

Si ≡ Tr {σ̂iρ̂} . (52)

In addition, in order to easily generalize the tomographic techniques of the next
Section, it will be necessary to find Si as a function of measureable probabilities:

Si = F
({

P|ψ〉
})

. (53)

Obviously, it would be ideal to find a simple form similar to the qubit σ̂ matrices.
Conveniently, the general qudit sigma matrices and corresponding Si parameters
can be divided into three groups (

{

σ̂Xi , σ̂
Y
i , σ̂

Z
i

}

and
{

SXi , S
Y
i , S

Z
i

}

), according
to their similarity to σ̂x = σ̂1, σ̂y = σ̂2, and σ̂z = σ̂3, respectively (Thew et al.,
2002). Using these divisions, we can expand Eqn. (51):

ρ̂ = S0σ̂0 +
∑

j,k∈{0,1,...n−1}
j 6=k

(

SXj,kσ̂
X
j,k + SYj,kσ̂

Y
j,k

)

+
n−1
∑

r=1

SZr σ̂
Z
r . (54)

Investigating the simplest group first, it is unsurprising that

σ̂0 = I, S0 = 1, (55)

continuing the previous qubit convention. The X and Y related variables are
defined almost identically to their predecesors:

σ̂Xj,k = |j〉〈k| + |k〉〈j|, (56)

SXj,k = P 1√
2
(|j〉+|k〉) − P 1√

2
(|j〉−|k〉), (57)

σ̂Yj,k = −i (|j〉〈k| − |k〉〈j|) , (58)

SYj,k = P 1√
2
(|j〉+i|k〉) − P 1√

2
(|j〉−i|k〉). (59)

The definitions for σ̂Zi and SZi are slightly more complicated:

σ̂Zr =

√

2

r (r + 1)









r−1
∑

j=0

|j〉〈j|



− r|r〉〈r|



 , (60)

SZr =

√

2

r (r + 1)









r−1
∑

j=0

P|j〉



− rP|r〉



 . (61)

These definitions complete the set of n2 sigma matrices, and have a slightly
more complex form in order to satisfy Tr [σ̂i] = 0 and Tr [σ̂iσ̂j ] = 2δij (these
definitions apply to all σ̂i except σ̂0).
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Example 9. The Qutrit. For a 3-level system (|0〉, |1〉, and |2〉), the σ̂ ma-
trices can be defined as:

σ̂0 =





1 0 0
0 1 0
0 0 1



 σ̂Z1 =





1 0 0
0 −1 0
0 0 0



 σ̂Z2 =
√

1
3





1 0 0
0 1 0
0 0 −2





σ̂X1,2 =





0 1 0
1 0 0
0 0 0



 σ̂X1,3 =





0 0 1
0 0 0
1 0 0



 σ̂X2,3 =





0 0 0
0 0 1
0 1 0





σ̂Y1,2 =





0 −i 0
i 0 0
0 0 0



 σ̂Y1,3 =





0 0 −i
0 0 0
i 0 0



 σ̂Y2,3 =





0 0 0
0 0 −i
0 i 0





Expanding the Si parameters in terms of probabilities, we find that:

S0 = 1,

SX1,2 = P 1√
2
(|0〉+|1〉) − P 1√

2
(|0〉−|1〉),

SX1,3 = P 1√
2
(|0〉+|2〉) − P 1√

2
(|0〉−|2〉),

SX2,3 = P 1√
2
(|1〉+|2〉) − P 1√

2
(|1〉−|2〉),

SY1,2 = P 1√
2
(|0〉+i|1〉) − P 1√

2
(|0〉−i|1〉),

SY1,3 = P 1√
2
(|0〉+i|2〉) − P 1√

2
(|0〉−i|2〉),

SY2,3 = P 1√
2
(|1〉+i|2〉) − P 1√

2
(|1〉−i|2〉),

SZ1 = P|0〉 − P|1〉,

SZ2 =
1√
3

(

P|0〉 + P|1〉 − 2P|2〉
)

.

II Tomography of Ideal Systems

The goal of tomography is to reconstruct the density matrix of an ensemble
of particles through a series of measurements. In practice, this can never be
performed exactly, as an infinite number of particles would be required to elim-
inate statistical error. If exact measurements were taken on infinite ensembles,
each measurement would yield an exact probability of success, which could then
be used to reconstruct a density matrix. Though unrealistic, it is highly illus-
trative to examine this exact tomography before considering the more general
treatment. Hence, this Section will treat all measurements as yielding exact
probabilities, and ignore all sources of error in those measurements.
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A Single-Qubit Tomography

Although reconstructive tomography of any size system follows the same general
procedure, beginning with tomography of a single qubit allows the visualization
of each step using the Poincaré sphere, in addition to providing a simpler math-
ematical introduction.

1 Visualization of Single-Qubit Tomography

Exact single-qubit tomography requires a sequence of three linearly independent
measurements. Each measurement exactly specifies one degree of freedom for
the measured state, reducing the free parameters of the unknown state’s possible
Hilbert space by one.

As an example, consider measuring R, D, and H on the partially mixed state

ρ̂ =

(

5
8

−i
2
√

2
i

2
√

2
3
8

)

. (62)

Rewriting the state using Eqn. (9) as

ρ̂ =
1

2

(

σ̂0 +
1√
2
σ̂2 +

1

4
σ̂3

)

(63)

allows us to read off the normalized Stokes parameters corresponding to these
measurements:

S1 = 0, S2 =
1√
2
, and S3 =

1

4
. (64)

As always, S0 = 1 due to normalization. Measuring R (which determines S2)
first, and looking to the Poincaré sphere, we determine that the unknown state
must lie in the z = 1√

2
plane (as S2 = 1√

2
). A measurement in the D basis

(with the result PD = PA = 1
2 ) further constrains the state to the y = 0 plane,

resulting in a total confinement to a line parallel to and directly above the x
axis. The final measurement of H pinpoints the state. This process is illustrated
in Figure 2a. Obviously the order of the measurements is irrelevant: it is the
intersection point of three orthogonal planes that defines the location of the
state.

If instead measurements are made along non-orthogonal axes, a very simi-
lar picture develops, as indicated in Figure 2b. The first measurement always
isolates the unknown state to a plane, the second to a line, and the third to a
point.

Of course, in practice, the experimenter has no knowledge of the unknown
state before a tomography. The set of the measured probabilities, transformed
into the Stokes parameters as above, allow a state to be directly reconstructed.

2 A Mathematical Look at Single-Qubit Tomography

Using the tools developed in the first Section of this chapter, single-qubit to-
mography is relatively straightforward. Recall Eqn. (9), ρ̂ = 1

2

∑3
i=0 Siσ̂i.
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Figure 2: A sequence of three linearly independent measurements isolates a sin-
gle quantum state in Hilbert space (shown here as an open circle in the Poincaré
sphere representation). The first measurement isolates the unknown state to a
plane perpendicular to the measurement basis. Further measurements isolate
the state to the intersections of non-parallel planes, which for the second and
third measurements correspond to a line and finally a point. The black dots
shown correspond to the projection of the unknown state onto the measurement
axes, which determines the position of the aforementioned planes. (a) A se-
quence of measurements along the right-circular, diagonal, and horizontal axes.
(b) A sequence of measurements on the same state taken using non-orthogonal
projections: elliptical light rotated 30◦ from H towards R, 22.5◦ linear, and
horizontal. Taken from (Altepeter et al., 2004).
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Considering that S1, S2, and S3 completely determine the state, we need only
measure them to complete the tomography. From Eqn. (13), Sj>0 = 2P|ψ〉 − 1,

thefrefore three measurements in the |0〉, 1√
2

(|0〉 + |1〉) , and 1√
2

(|0〉 + i|1〉) bases

will completely specify the unknown state. If instead measurements are made
in another basis, even a non-orthogonal one, they can be easily related back to
the Si parameters, and therefore the density matrix, by means of Eqn. (21).

While this procedure is straightforward, there is one subtlety which will be-
come important in the multiple-qubit case. Projective measurements generally
refer to the measurement of a single basis state and return a single value be-
tween zero and one. This corresponds, for example, to an electron beam passing
through a Stern-Gerlach apparatus with a detector placed at one output. While
a single detector and knowledge of the input particle intensity will – in the one-
qubit case – completely determine a single Stokes parameter, one could collect
data from both outputs of the Stern-Gerlach device. This would measure the
probability of projecting not only onto the state |ψ〉, but also onto |ψ⊥〉, and
without needing to know the input intensity. All physical measurements on sin-
gle qubits, regardless of implementation, can in principle be measured this way
(though in practice measurements of some qubit systems may typically detect
a population in only one of the states, as in Kielpinski et al. (2001)). We will
see below that although one detector functions as well as two in the single-qubit
case, this situation will not persist into higher dimensions.

B Multiple-Qubit Tomography

The same methods used to reconstruct an unknown single-qubit state can be
applied to multiple-qubit systems. Just as each single-qubit Stokes vector can
be expressed in terms of measurable probabilities—Eqn. (12), each multiple-
qubit Stokes vector can be measured in terms of the probabilities of projecting
the multiple-qubit state into a sequence of separable bases—Eqn. (39).

Using the most naive method, an n-qubit system, represented by 4n Stokes
parameters, would require 4n × 2n probabilities to reconstruct (2n probabilities
for each of 4n Stokes parameters).

Of course, because an n-qubit density matrix contains 4n−1 free parameters,
the 4n × 2n measured probabilities must be linearly dependent. As expected,
by using the extra information that measurements of complete orthogonal bases
must sum to one (e.g., PHH+PHV +PV H+PV V = 1, PHH+PHV = PHD+PHA),
we find that only 4n − 1 probability measurements are necessary to reconstruct
a density matrix.

While we can easily construct a minimum measurement set for an n-qubit
system by measuring every combination of {H,V,D,R} at each qubit, i.e.,

{M} = {H,V,D,R}1 ⊗ {H,V,D,R}2 ⊗ . . . {H,V,D,R}n , (65)

this is almost never optimal (see Section V). See Section II.D for a formal
method for testing whether a specific set of measuremnts is sufficient for tomog-
raphy.
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Example 10. An Ideal 2-Qubit Tomography of Photon Pairs.
Consider measuring a state in nine complete four-element bases, for a total

of 36 measurement results. These results are compiled below, with each row
representing a single basis, and therefore a single two-qubit Stokes parameter.

S1,1 =
+PDD

1

3

−PDA
1

6

−PAD
1

6

+PAA
1

3

=
1

3

S1,2 =
+PDR

1

4

−PDL
1

4

−PAR
1

4

+PAL
1

4

= 0

S1,3 =
+PDH

1

4

−PDV
1

4

−PAH
1

4

+PAV
1

4

= 0

S2,1 =
+PRD

1

4

−PRA
1

4

−PLD
1

4

+PLA
1

4

= 0

S2,2 =
+PRR

1

6

−PRL
1

3

−PLR
1

3

+PLL
1

6

= −1

3

S2,3 =
+PRH

1

4

−PRV
1

4

−PLH
1

4

+PLV
1

4

= 0

S3,1 =
+PHD

1

4

−PHA
1

4

−PV D
1

4

+PV A
1

4

= 0

S3,2 =
+PHR

1

4

−PHL
1

4

−PV R
1

4

+PV L
1

4

= 0

S3,3 =
+PHH

1

3

−PHV
1

6

−PV H
1

6

+PV V
1

3

=
1

3
(66)

Measurements are taken in each of these nine bases, determining the above
nine two-qubit Stokes Parameters. The six remaining required parameters, listed
below, are dependent upon the same measurements.

S0,1 =
+PDD

1

3

−PDA
1

6

+PAD
1

6

−PAA
1

3

= 0

S0,2 =
+PRR

1

6

−PLR
1

3

+PRL
1

3

−PLL
1

6

= 0

S0,3 =
+PHH

1

3

−PHV
1

6

+PV H
1

6

−PV V
1

3

= 0

S1,0 =
+PDD

1

3

+PDA
1

6

−PAD
1

6

−PAA
1

3

= 0

S2,0 =
+PRR

1

6

+PLR
1

3

−PRL
1

3

−PLL
1

6

= 0

S3,0 =
+PHH

1

3

+PHV
1

6

−PV H
1

6

−PV V
1

3

= 0

(67)

These terms will not in general be zero. Recall—c.f. Eqn. (42)—that for |HH〉,
S0,3 = S3,0 = 1. Of course, S0,0 = 1. Taken together, these two-qubit Stokes
parameters determine the density matrix:

ρ̂ =
1

4

(

σ̂0 ⊗ σ̂0 +
1

3
σ̂1 ⊗ σ̂1 −

1

3
σ̂2 ⊗ σ̂2 +

1

3
σ̂3 ⊗ σ̂3

)

(68)

=
1

6









2 0 0 1
0 1 0 0
0 0 1 0
1 0 0 2









=
1

6









1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1









+
1

6









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

This is the final density matrix, a Werner State, as defined in Eqn. (28).

21



C Tomography of Non-Qubit Systems

By making use of the qudit extensions to the Stokes parameter formalism—
Eqns. (57–61), we can reconstruct any qudit system in exactly the same manner
as qubit systems. For a single particle d-level system, a single Stokes parameter
is dependent on d − 1 independent probabilities, and d + 1 Stokes parameters
are necessary to reconstruct the density matrix.

Multiple-qudit systems can be reconstructed by using separable projectors
(Thew et al., 2002) upon which the multiple qudit Stokes parameters are depen-
dent (these dependencies were laid out in Section 53). Likewise, the following
Section on general tomography, while specific to qubits, can be easily adapted
to qudit systems.

D General Qubit Tomography

As discussed earlier, qubit tomography will require 4n− 1 probabilities in order
to define a complete set of Ti parameters. In practice, this will mean that 4n

measurements are necessary in order to normalize counts to probabilities. By
making projective measurements on each qubit and only taking into account
those results where a definite result is obtained (e.g., the photon was transmitted
by the polarizer), it is possible to reconstruct a state using the results of 4n

measurements.
Our first task is to represent the density matrix in a useful form. To this

end, define a set of 2n × 2n matrices which have the following properties:

Tr
{

Γ̂ν · Γ̂µ
}

= δν,µ

Â =
∑

ν

Γ̂νTr
{

Γ̂ν · Â
}

∀Â, (69)

where Â is an arbitrary 2n × 2n matrix. A convenient set of Γ̂ matrices to use
are tensor-products of the σ̂ matrices used throughout this paper:

Γ̂ν = σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in , (70)

where ν is simply a short-hand index by which to label the Γ matrices (there
are 4n of them) which is more concise than i1, i2, . . . in. Transforming Eqn. (35)
into this notation, we find that

ρ̂ =
1

2n

4n

∑

ν=1

Γ̂νSν . (71)

Next, it is necessary to consider exactly which measurements to use. In par-
ticular, we now wish to determine the necessary and sufficient conditions on the
4n measurements to allow reconstruction of any state.8 Let |ψµ〉 (µ = 1 to 4n)

8If exact probabilities are known, only 4n − 1 measurements are necessary. However, often
only numbers of counts (successful measurements) are known, with no information about the
number of counts which would have been measured by detectors in orthogonal bases. In this
case an extra measurement is necessary to normalize the inferred probabilities.
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be the measurement bases, and define the probability of the µth measurement
as Pµ ≡ 〈ψµ|ρ̂|ψµ〉.

Combining this with Eqn. (71),

Pµ = 〈ψµ|
1

2n

4n

∑

ν=1

Γ̂νSν |ψµ〉 =
1

2n

4n

∑

ν=1

Bµ,νSν , (72)

where the 4n × 4n matrix Bµ,ν is given by

Bµ,ν = 〈ψµ|Γ̂ν |ψµ〉. (73)

Immediately we find a necessary and sufficient condition for the completeness
of the set of tomographic states {|ψµ〉}: if the matrix Bµ,ν is nonsingular, then
eq.(72) can be inverted to give

Sν = 2n
4n

∑

µ=1

(

B−1
)

µ,ν
Pµ. (74)

While this provides an exact solution if exact probabilities are known, it leads
to a number of difficulties in real systems. First, it is possible for statistical errors
to cause a set of measurements to lead to an illegal density matrix. Second, if
more than the minimum number of measurements are taken and they contain
any error, they will overdefine the problem, eliminating the possibility of a
single analytically calculated answer. To solve these problems it is necessary to
analyze the data in a fundamentally different way, in which statistically varying
probabilities are assumed from the beginning and optimization algorithms find
the state most likely to have resulted in the measured data (Section IV.B).

III Collecting Tomographic Measurements

Before discussing the analysis of real experimental data, it is necessary to un-
derstand how that experimental data is collected. This chapter outlines the
experimental implementation of tomography on polarization entangled qubits
generated from spontaneous parametric downconversion (Kwiat et al., 1999),
though the techniques for projection and particularly systematic error correc-
tion will be applicable to many systems. We filter these photon pairs using both
spatial filters (irises used to isolate a specific k-vector, necessary because our
states are angle-dependent) and frequency filters (interference filters, typically
5–10 nm wide, FWHM).

After this initial filtering, measurement collection involves two central issues:
projection (into an ideally arbitrary range of states) and systematic error cor-
rection (to compensate for any number of experimental problems ranging from
imperfect optics to accidental coincidences).

23



A Projection

Any tomography, in fact any measurement on a quantum system, depends on
state projection; for the purposes of this chapter, these projections will be sepa-
rable. While tomography could be simplified by using arbitrary projectors (e.g.,
joint measurements on two qubits), this is experimentally difficult. We therefore
focus on the ability to create arbitrary single-qubit projectors which will then
be easily chained together to create any separable projector.

1 Arbitrary Single-Qubit Projection

An arbitary polarization measurement and its orthogonal compliment can be
realized using, in order, a quarter-wave plate, a half-waveplate, and a polarizing
beam splitter. Waveplates implement unitary operations, and in the Poincaré
sphere picture, act as rotations about an axis lying within the linear polariza-
tion plane (the equator) (Born and Wolf, 1987). Specifically, a waveplate whose
optic axis is oriented at angle θ with respect to the horizontal induces a rotation
on the Poincaré sphere about an axis 2θ from horizontal, in the linear plane.
The magnitude of this rotation is equal to the waveplate’s retardance (90◦ for
quarter-wave plates and 180◦ for half-wave plates). For the remainder of this
chapter we adopt the convention that polarizing beam splitters transmit hori-
zontally polarized light and reflect vertically polarized light—though for some
types the roles are reversed.

This analysis, while framed in terms of waveplates acting on photon po-
larization, is directly applicable to other systems, e.g., spin- 1

2 particles (Cory
et al., 1997; Jones et al., 1997; Weinstein et al., 2001; Laflamme et al., 2002)
or two-level atoms (Monroe, 2002; Schmidt-Kaler et al., 2003). In these sys-
tems, measurements in arbitrary bases are obtained using suitably phased π-
and π

2 -pulses (externally applied electromagnetic fields) to rotate the state to
be measured into the desired analysis basis.

To derive the settings for these waveplates as a function of the projection
state desired, we use the Poincaré sphere (see Figure 3). For any state on the
surface of the sphere, a 90◦ rotation about a linear axis directly below it will
rotate that state into a linear polarization (see Figure 3b). Assume the desired
projection state is

|ψP 〉 = cos

(

θ

2

)

|H〉 + sin

(

θ

2

)

eiφ|V 〉. (75)

Simple coordinate transforms from spherical to cartesian coordinates reveal that
a quarter-waveplate at θQWP = 1

2acos {sin(θ)tan(φ)} will rotate the projection
state (75) into a linear state

|ψ′
P 〉 = cos

(

θ′

2

)

|H〉 + sin

(

θ′

2

)

|V 〉. (76)

A half-waveplate at 1
4θ

′ (with respect to horizontal orientation) will then rotate
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this state to |H〉.9 Finally, the PBS will transmit the projected state and reflect
its orthogonal compliment.

Mathematically, this process of rotation and projection can be described us-
ing unitary transformations. The unitary transformations for half- and quarter-
waveplates in the H/V basis are

UHWP (θ) =

[

cos2(θ) − sin2(θ) 2cos(θ)sin(θ)
2cos(θ)sin(θ) sin2(θ) − cos2(θ)

]

,

UQWP (θ) =

[

cos2(θ) + isin2(θ) (1 − i)cos(θ)sin(θ)
(1 − i)cos(θ)sin(θ) sin2(θ) + icos2(θ)

]

, (77)

with θ denoting the rotation angle of the waveplate with respect to horizontal.
Assume that during the course of a tomography, the νth measurement setting
requires that the QWP be set to θQWP,ν and the HWP to θHWP,ν . Therefore,
the total unitary10 for the νth measurement setting will be

Uν = UHWP(θHWP,ν)UQWP(θQWP,ν). (78)

For multiple qubits, we can directly combine these unitaries such that

Uν = 1Uν ⊗ 2Uν ⊗ . . .⊗ nUν , (79)

where qUν denotes the qth qubit’s unitary transform due to waveplates. The
total projection operator for this system is therefore 〈0|Uν , where |0〉 is the first
computational basis state (the state which passes through the beamsplitters—
most likely |H〉 for each qubit). The measurement state (the state which will
pass through the measurement apparatus and be measured every time) is there-
fore U †

ν |0〉.
Of course, these calculations assume that we are using waveplates with re-

tardances equal to exactly π or π
2 (or Rabi pulses producing perfect phase differ-

ences). Imperfect yet well characterized waveplates will lead to measurements
in slightly different, yet known, bases. This can still yield an accurate tomog-
raphy, but first these results must be transformed from a biased basis into the
canonical Stokes parameters using Eqn. (21). As discussed below (see Section
III), the maximum likelihood technique provides a different but equally effective
way to accomodate for imperfect measurements.

2 Compensating for Imperfect Waveplates

While the previous Section shows that it is possible using a quarter- and half-
waveplate to project into an arbitrary single qubit state, perfect quarter- and
half-waveplates are experimentally impossible to obtain. More likely, the exper-
imenter will have access to waveplates with known retardances slightly different

9θ′ = acos {sin(θ)tan(φ)} − acos {cot(θ)cot(φ)}. In practice, care must be taken that
consistent conventions are used (e.g., right- vs. left-circular polarization), and it may be
easier to calculate this angle directly from waveplate operators and the initial state.

10Note the order of the unitary matrices for the HWP and QWP. Incoming light encounters
the QWP first, and therefore UQWP is last when defining Uν .
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Figure 3: A quarter-waveplate (QWP), half-waveplate (HWP), and polarizing
beam splitter (PBS) are used to make an arbitrary polarization measurement.
Both a diagram of the experimental apparatus (a) and the step-by-step evolution
of the state on the Poincaré sphere are shown. (b) The quarter-waveplate rotates
the projection state (the state we are projecting into, not the incoming unknown
state) into the linear polarization plane (the equator). (c) The half-waveplate
rotates this linear state to horizontal. The PBS transmits the projection state
(now |H〉) and reflects its orthogonal compliment (now |V 〉), which can then
both be measured.

than the ideal values of π (HWP) and π
2 (QWP). Even in this case, it is often

possible to obtain arbitrary single-qubit projections. (Note that this is the sec-
ond solution to the problem of imperfect waveplates. Imperfect waveplates could
be used at virtually any angles during a tomography—such as the same angles
at which perfect waveplates would be used to measure in the canonical basis—
resulting in a set of biased bases. The tomography mathematics have already
been shown to function for either mutually biased or unbiased bases, as long as
the set of bases is complete. In contrast, this section describes how—even using
imperfect waveplates—one can still measure in the canonical, mutually unbiased
bases.)

Analytically finding the angles where this is possible proves to be incon-
venient and, for some waveplates, impossible. Rather than solve a system of
equations based on the unitary waveplate matrices, we will examine the effect
of these waveplates graphically using the Poincaré sphere. For the remainder of
this discussion, we will assume that the experimenter has access to two wave-
plates, WP1 and WP2, which will respectively take the place of the QWP and
HWP normally present in the experimental setup. We constrain the retardances
of these waveplates to be 0 ≤ φ1 ≤ φ2 ≤ π.

In order to project into an arbitrary state |ψ〉, WP1 and WP2 must together
rotate the state |ψ〉 into the state |H〉 (assuming a horizontal polarizer is used
after the waveplates—any linear polarizer is equivalent). Taking a piecewise
approach, first consider which states are possible after acting on the input state
|ψ〉 with WP1. Figure 4a shows several example cases on the Poincaré sphere,
each resulting in curved band of possible states that can be reached by varying
the orientation of WP1. Next consider which states could be rotated by WP2

into the target state |H〉. Figure 4b shows several examples of these states,
which also take the form of a curved band, traversed by varying the orientation
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of WP2. In order for state |ψ〉 to be rotatable into state |H〉, these two bands
of potential states (shown in Figures 4a and 4b) must overlap.

Briefly examining the geometry of this system it appears that for most states
this will be possible as long as the waveplate phases do not differ too much from
the ideal HWP and QWP. Further consideration reveals that it is sufficient to
be able to project into the states on the H-R-V-L great circle. There are two
conditions under which this will not occur. First, if WP2 is too close to a HWP,
with WP1 far from a QWP, the states at the poles (close to |R〉 and |L〉) will be
unreachable from |H〉 (see Figure 4c). Quantifying this condition, we require
that

2
∣

∣

∣

π

2
− φ1

∣

∣

∣
≤ π − φ2. (80)

Put another way, the error in the QWP must be less than half the error in the
HWP. Second, the combined retardances from both waveplates can be insuffi-
cient to reach |V 〉 (see Figure 4c):

φ1 + φ2 ≥ π. (81)

Given these two conditions, numerical simulations confirm that arbitrary single-
qubit projectors can be constructed with two waveplates.

To clarify, as discussed in the previous section, one does not require arbi-
trary single-qubit projectors, since an accurate tomography can be obtained
with any set of linearly independent projectors as long as they are known. In
fact, one advantage to this approach is that the exact same tomography mea-
surement system can be used on photons with different wavelengths (on which
the waveplates’ birefringent phase retardances depend), simply by entering in
the analysis program what the actual phase retardances are at the new wave-
lengths (Peters et al., 2005).

Wedged Waveplates It is an experimental reality that all commercially
available waveplates have some degree of wedge (i.e., the surfaces of the wave-
plate are not parallel). This leads to a number of insidious difficulties which the
experimenter must confront, grouped into two categories: (1) The thickness of
the waveplate will change along its surface, providing a corresponding change in
the phase retardance of the waveplate. This means that during a tomography
when the waveplate is routinely rotated to different orientations, its total phase
after rotation will change according to a much more complex—and often very
difficult to calculate—formula. (In fact, if a large collection aperture is used,
then different parts of the beam will experience different phase shifts.) (2) The
direction (k-vector) of a beam will be deflected after passing through a wedged
waveplate. This deflection will again depend on waveplate orientation, there-
fore changing throughout a tomography. This can have the effect of changing
detector efficiencies (if, as in our case, a lens is used to focus to a portion of
a very small detector area, different pieces of which have different efficiencies).
This deflection will also affect any interferometric effects that depend on the
beam direction being stable under waveplate rotation. Some of these problems

27



(a)

(b)

(c)

Figure 4: Possible projectors simulated by waveplates and a stationary polarizer,
graphically shown on Poincaré spheres. (a) WP1, depending on its orientation,
can rotate an incoming state into a variety of possible output states. Shown here
on three Poincaré spheres are an initial incoming state (repesented by a solid
dot) and the set of all output states that WP1 can rotate it into (represented by
a dark band on the surface of the sphere). From left to right, the spheres depict
|R〉 transformed by a π

2 -waveplate, |γ〉 = cos
(

π
8

)

|H〉+ isin
(

π
8

)

|V 〉 transformed
by a π

3 -waveplate, and |γ〉 transformed by a 2π
3 -waveplate. (b) WP2, depending

on its orientation, can rotate a variety of states into the target state |H〉. Shown
here from left to right are the states able to be rotated into |H〉 by a 11π

12 -
waveplate, a 3π

4 -waveplate, and a π
2 -waveplate. (c) The possible projectors

able to be produced by two waveplates and a horizontal polarizer. A series of
arcs blanketing the Poincaré sphere show the areas of the sphere representing
acheivable projectors for each waveplate combination. From left to right, the
spheres show the states (in this case, all of them) accessible from an ideal QWP
and HWP, the states accessible using π

3 - and 11π
12 -waveplates (groups of states

near the poles are inaccessible), and the states accessible using π
3 - and 3π

5 -
waveplates (states on the equator are inaccessible). Note that the spheres shown
in (c) are not simply combinations of the spheres above it, but include retardance
values chosen to illustrate the possible failure modes of imperfect waveplates.
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can be mitigated (e.g., by taking care to pass through the exact center of the
waveplate), but in general the best solution is to select waveplates with faces
very close to parallel.

3 Multiple-Qubit Projections and Measurement Ordering

For multiple-qubit systems, separable projectors can be implemented by using
in parallel the single-qubit projectors described above. This, by construction,
allows the implementation of arbitrary separable projectors.

In practice, depending on the details of a specific tomography (see Section
V for a discussion of how to choose which and how many measurements to use),
multiple-qubit tomographies can require a large number of measurements. If
the time to switch from one measurement to another varies depending on which
measurements are switched between (as is the case with waveplates switching
to different values for each projector), minimizing the time spent switching is
a problem equivalent to the travelling salesman problem (Cormen et al., 2001).
A great deal of time can be saved by implementing a simple, partial solution
to this canonical problem (e.g., a genetic algorithm which is not guaranteed to
find the optimal solution but likely to find a comparably good solution).

B n vs. 2n Detectors

Until now, this chapter has discussed the use of an array of n detectors to mea-
sure a single separable projector at a time. While this is conceptually simple,
there is an extension to this technique which can dramatically improve the ef-
ficiency and accuracy of a tomography: using an array of 2n detectors, project
every incoming n-qubit state into one of 2n basis states. This is the generaliza-
tion of simultaneously measuring both outputs in the single-qubit case (the two
detectors used for single-qubit measurement are shown in Figure 3a), or all four
basis states (HH, HV, VH, and VV) in the two-qubit case; in the general case
2n detectors will measure in n-fold coincidence with 2n possible outcomes.

It should be emphasized that these additional detectors are not some ‘trick’,
effectively masking a number of sequential settings of n detectors. If only n de-
tectors are used, then over the course of a tomography most members comprising
the input ensemble will never be measured. For example, consider measuring the
projection of an unknown state into the |00〉 basis using two detectors. While
this will give some number of counts, unmeasured coincidences will be routed
into the |01〉, |10〉, and |11〉 modes. The information of how many coincidences
are routed to which mode will be lost, unless another two detectors are in place
in the ‘1’ modes to measure it.

Returning to the notation of Section III.A, recall that the state which passes
through every beamsplitter is U †

ν |0〉, but when 2n detectors are employed, the
states U †

ν |r〉 can all be measured, where r ranges from 0 to 2n−1 and |r〉 denotes
the rth element of the canonical basis (the canonical basis is chosen/enforced
by the beamsplitters themselves).
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Example 11. The |r〉 Notation for Two Qubits. For two qubits each
incident on separate beamsplitters which transmit |H〉 and reflect |V 〉, we can
define the following values of |r〉, the canonical basis:

|0〉 ≡ |HH〉, |1〉 ≡ |HV 〉, |2〉 ≡ |V H〉, |3〉 ≡ |V V 〉. (82)

The usefulness of this notation will become apparent during the discussion of
the Maximum Likelihood algorithm in Section IV.B.

The primary advantage to using 2n detectors is that every setting of the anal-
ysis system (every group of the projector and its orthogonal compliments) gen-
erates exactly enough information to determine a single multiple-qubit Stokes
vector. Expanding out the probabilities that a multiple-qubit Stokes vector
(which for now we will limit to those with only non-zero indices) is based on,

Si1,i2,...in =
(

Pψ1
− Pψ⊥

1

)

⊗
(

Pψ2
− Pψ⊥

2

)

⊗ . . .⊗
(

Pψn
− Pψ⊥

n

)

= Pψ1,ψ2,...ψn
− Pψ1,ψ2,...ψ⊥

n
− . . .± Pψ⊥

1
,ψ⊥

2
,...ψ⊥

n
, (83)

where the sign of each term on the last line is determined by the parity of the
number of orthogonal (⊥) terms.

These probabilities are precisely those measured by a single setting of the
entire analysis system followed by a 2n detector array. Returning to our primary
decomposition of the density matrix from Eqn. (35),

ρ̂ =
1

2n

3
∑

i1,i2,...in=0

Si1,i2,...in σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in ,

we once again need only determine all of the multiple-qubit Stokes parameters
to exactly characterize the density matrix. At first glance this might seem to
imply that we need to use 4n−1 settings of the analysis system, in order to find
all of the multiple-qubit Stokes parameters save S0,0,...0, which is always one.

While this is certainly sufficient to solve for ρ̂, many of these measurements
are redundant. In order to choose the smallest possible number of settings, note
that the probabilities that constitute some multiple-qubit Stokes parameters
overlap exactly with the probabilities for other multiple-qubit Stokes param-
eters. Specifically, any multiple-qubit Stokes parameter with at least one 0
subscript is derived from a set of probabilities that at least one other multiple-
qubit Stokes vector (with no 0 subscripts) is also derived from. As an example,
consider that

S0,3 = P|00〉 − P|01〉 + P|10〉 − P|11〉, (84)

while
S3,3 = P|00〉 − P|01〉 − P|10〉 + P|11〉. (85)

These four probabilities, measured simultaneously, will provide enough informa-
tion to determine both values. This dependent relationship between multiple-
qubit Stokes vectors is true in general, as can be seen by returning to Eqn. (83).
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Each subscript with non-zero value for S contributes a term to the tensor prod-

uct on the right that looks like
(

Pψi
− Pψ⊥

i

)

. Had there been subscripts with

value zero, however, they each would have contributed a
(

Pψi
+ Pψ⊥

i

)

term; as

an aside, terms with zero subscripts are always dependent on terms will all pos-
itive subscripts. This reduces the minimum number of analysis settings to 3n, a
huge improvement in multiple qubit systems (e.g., 9 vs. 15 settings for 2-qubit
tomography, 81 vs. 255 for 4-qubit tomography, etc.). Note that, as discussed
earlier, this benefit is only possible if one employs 2n detectors, leading to a
total of 6n measurements (2n measurements for each of 3n analysis settings).11

Because Eqn. (42) can be used to transform any set of non-orthogonal
multiple-qubit Stokes parameters into the canonical form, orthogonal measure-
ment sets need not be used. One advantage of the option to use non-orthogonal
measurement sets is that an orthogonal set may not be experimentally acheiv-
able, for instance, due to waveplate imperfections, as discussed in Section III.A.2.

C Electronics and Detectors

Single photon detectors and their supporting electronics are crucial to any pho-
tonic tomography. Figure 5 shows a simple diagram of the electronics used
to count in coincidence from a pair of Si-avalanche photodiodes. An electrical
pulse from a single-photon generated avalanche in the Silicon photodiode sends
a signal to a discriminator, which, after receiving a pulse of the appropriate
amplitude and width, produces in a fan-out configuration several TTL signals
which are fed into the coincidence circuitry. In order to avoid pulse relections,
a fan-out configuration is used in preference to repeatedly splitting one signal.

The signals from these discriminators represent physical counts, with the
number of discriminator signals sent to a detector equal to the singles counts
for that detector. A copy of this signal, after travelling through a variable length
delay line, is input into an AND gate with a similar pulse (with a static delay)
from a complimentary detector. The pulses sent from the discriminators are
variable width, typically about 2 ns, producing a 4-ns window in which the
AND gate can produce a signal. (The coincidence window is chosen to be as
small as conveniently possible, in order to reduce the number of “accidental”
coincidences, discussed below.) This signal is also sent to the counters and is
recorded as a coincidence between its two parent detectors.

As with any system of this sort, the experimenter must be wary of reflected
pulses generating false counts, delay lines being properly matched for correct
AND gate operation, and system saturation for high count rates.

11These measurements, even though they result from the minimum number of analysis
settings for 2n detectors, are overcomplete. A density matrix has only 4n −1 free parameters,
which implies that only 4n − 1 measurements are necessary to specify it (see n-detector
tomography). Because the overcomplete set of 6n measurements is not linearly independent,
it can be reduced to a 4n − 1 element subset and still completely specifiy an unknown state.

31



Phot on Count ers

Discriminat or

Discriminat or

Delay

C

o

u

n

t
e

r
s

1

2

Figure 5: A simple diagram of the electronics necessary to operate a coincidence-
based photon counting circuit. While this diagram depicts a two-detector count-
ing circuit, it is easily extendible to multiple detectors; by adding additional
detectors each fed into a discriminator and a fan-out, we gain the signals nec-
essary for one singles counter per detector and an AND gate for each pair of
detectors capable of recording a coincidence.

D Collecting Data and Systematic Error Correction

The projection optics and electronics described above will result in a list of
coincidence counts each tied to a single projective measurement. Incorporating
the projectors defined earlier in this section, we can now make a first estimate
on the number of counts we expect to receive for a given measurement of the
state ρ̂:

n̄ν,r = I0Tr
{

M̃ν,rρ̂
}

,

M̃ν,r = U †
ν |r〉〈r|Uν . (86)

Our eventually strategy (see Section IV.B) will be to vary ρ̂ until our expecta-
tions optimally match our actual measured counts. Here n̄ν,r is the expectation
value of the number of counts recorded for the νth measurement setting on the
rth pair of detectors (this is the pair of detectors which projects into the canon-
ical basis state |r〉). The density matrix to be measured is denoted by ρ̂ and
I0 is a constant scaling factor which takes into account the duration of a mea-
surement and the rate of state production. Note that regardless of whether n
or 2n detectors are used, each distinct measurement setting will be indexed by
ν. For n detectors, there will be a single value of r for each value of ν, as each
measurement setting projects into a single state. For 2n detectors, there will be
2n values of r, one for each pair of detectors capable of registering coincidences.

Throughout this Section we will modify formula (86) to give a more com-
plete estimate of the expected count rates, taking into account real errors and
statistical deviations. In particular, without adjustment, the expected coinci-
dence counts will likely be inaccurate without adjustment due to experimental
factors including accidental coincidences, imperfect optics, mismatched detector
efficiencies, and drifts in state intensity. Below we will discuss each of these in
turn.
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1 Accidental Coincidences

In general, the spontaneous generation of photon pairs from downconversion
processes can result in several pairs of photons being generated at the same time.
These multiple-pair generation events can lead to two uncorrelated photons
being detected as a coincidence, which will tend to raise all measured counts
and lead to state tomographies resulting in states closer to the maximally mixed
state.12

We can model these accidental coincidences for the two-qubit case by con-
sidering the probability that any given singles count will be detected during the
coincidence window of a conjugate photon. This model implies that the acciden-
tal coincidences for the νth measurement setting on the rth detector pair (naccid

ν,r )
will be dependent on the singles totals in each channel (1Sν,r and 2Sν,r), the
total coincidence window (∆tr, approximately equal to twice the pulse width
produced by the discriminators13), and the total measurement time (Tν). When
the singles channels are far from saturation (1,2Sν,r∆tdead ¿ Tν , where ∆tdead

is the dead time of the detectors, i.e., the time it takes after a detector registers a
singles count before it can register another), the percentage of time that a chan-

nel is triggered (able to produce a coincidence) is approximated by
1,2Sν,r∆tr

Tν
.

The probability that the other channel will produce a coincidence within this
time (again in the unsaturated regime) is proportional to the singles counts on
that channel. This allows us to approximate the total accidentals as

naccid
ν,r '

1Sν,r
2Sν,r∆tr
Tν

, (87)

implying that

n̄ν,r = I0Tr
{

M̃ν,rρ̂
}

+ naccid
ν,r . (88)

Because the accidental rate will be necessary for analyzing the data, these ex-
pected accidental counts will need to be calculated from the singles rates for
each measurement and recorded along with the actual measured coincidence
counts.14

2 Beamsplitter Crosstalk

In most experimental implementations, particularly those involving 2n detec-
tors, the polarizer used for single-qubit projection will be a beamsplitter, either
based on dielectric stacks, or crystal birefringence. In practice, all beamsplitters

12There is also a similar but generally smaller contribution from one real photon and a
detector noise count, and a smaller contribution still from two detector noise counts.

13If the pulses are not square, or the AND logic has speed limitations, this approximation
may become inaccurate.

14It is advisable to initially experimentally determine ∆tr by directly measuring the acci-
dental coincidence rate (by introducing an extra large time delay into the variable time delay
before the AND gate, shown in Figure 5), and using Eqn. (87) to solve for ∆tr. This should be
done for every pair of detectors, and ideally at several count rates, in case there are nonlinear
effects in the detectors.
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function with some levels of crosstalk and absorption, i.e., some probability of
reflecting or absorbing the polarization which should be transmitted and vice
versa. By measuring these crosstalk probabilities and adjusting the measured
counts accordingly, it is possible to recreate the approximate measurement val-
ues that would have resulted from a crosstalk-free system.

We can characterize a beamsplitter using four numbers Cr′→r which represent
the probability that state r′ will be measured as state r.

Example 12. A Faulty Beamsplitter. Assume that we have measured a
beamsplitter which transmits 90% and absorbs 10% of incident horizontal light
(state 0), while reflecting 80% and transmitting 10% of vertical light (state 1).
We would therefore use

C0→0 = 0.9

C0→1 = 0

C1→0 = 0.1

C1→1 = 0.8, (89)

to characterize the behavior of this beamsplitter.

Example 13. Two-Qubit Crosstalk. Consider two faulty beamsplitters iden-
tical to the one presented in Example 12, with crosstalk coefficients CAr′→r and
CBr′→r. Assuming that we label the two qubit canonical basis |r〉 as |0〉 ≡ |HH〉,
|1〉 ≡ |HV 〉, |2〉 ≡ |V H〉, and |3〉 ≡ |V V 〉, we can derive the general two-qubit
crosstalk coefficients Cr′→r by multiplying the single-qubit crosstalk coefficients,
according to the rule:

C(2r′
A

+r′
B

)→(2rA+rB) ≡ CAr′
A
→rA

CBr′
B
→rB

. (90)

Thus, the total crosstalk matrix will be

Cr′→r ≡









0′ 1′ 2′ 3′

→ 0 0.81 0.09 0.09 0.01
→ 1 0 0.72 0 0.08
→ 2 0 0 0.72 0.08
→ 3 0 0 0 0.64









. (91)

If we use this notation to modify Eqn. (88) for predicted counts, we find
that

n̄ν,r = I0Tr
{

M̂ν,rρ̂
}

+ naccid
ν,r

M̂ν,r ≡
∑

r′

(Cr′→r) M̃ν,r′ . (92)

3 Detector-Pair Efficiency Calibration

Because single-photon detectors will in general have different efficiencies, it may
be necessary to measure the relative efficiencies of any detector pairs used in
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the course of a tomography. For the n-detector case, this is unnecessary, as
all recorded counts will be taken with the same detectors and scaled equally.
For the 2n-detector configuration, this can be a noticeable problem, with each
of the n2 measurement bases using a different combination of detectors, with
a different total coincidence efficiency. By measuring the relative efficiencies of
each combination, it is possible to correct the measured counts by dividing them
by the appropriate relative efficiency.

Note that it is not necessary to know the absolute efficiency of each detec-
tor combination, but only the relative efficiencies. Knowing only the relative
efficiencies leaves a single scaling factor that is applied to all counts, but as the
error on a set of counts is dependent on the measured counts, rather than the
total number of incident states, this ambiguity does not affect the tomography
results.

The tomography process itself may be used to conveniently determine the
full set of relevent relative efficiencies. By performing enough measurements
to perform an n-detector tomography while using 2n detectors, it is possible
to perform a tomography for each detector combination, using only the results
of that detector combination’s measurements. Each of these sets will be suffi-
cient to perform a tomography, and the tomography algorithm (see Section IV)
will necessarily determine the total state intensity. The ratios between these
state intensities (one for each detector combination) will provide the relative ef-
ficiencies of each detector combination. In the two-qubit case, this means using
four detectors and 36 measurement settings, for a total of 144 measurements to
calibrate the relative efficiencies.

In order to continue to update our equation for n̄ν,r, we define an efficiency

Êr which describes the relative efficiency of the rth detector combination. This
allows us to correct our previous equation to

n̄ν,r = I0E0ErTr
{

M̂ν,rρ̂
}

+ naccid
ν,r , (93)

where E0 is a constant scalar, which combined with the easier to measure relative
efficiency Er, gives the absolute efficiency of each detector pair.

4 Intensity Drift

In polarization experiments based on downconversion sources, a major cause
of error can be drift in the intensity (or direction) of the pump, which causes
a drift in the rate of downconversion and therefore state production. If this
intensity drift is recorded, then the prediction of the expected number of counts
can be adjusted to account for this additional information. Alternatively, if 2n
detectors are used, the sum of the counts from each of the detectors will auto-
matically give the normalized intensity for each measurement setting, since the
sum of the counts in orthonormal bases must add up to the total counts (assum-
ing no state-dependent losses, e.g., in the polarizing beamsplitters). However,
when summing the counts from a complete basis like this, the measurements
must be taken at the same time, and the summed counts must take other sources
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of error, like detector inefficiency, accidental counts, and beamsplitter crosstalk
into account.

By whatever method it is measured, assume that the relative size of the
ensemble subject to the νth measurement setting is given by Iν . Then

n̄ν,r = I0E0IνErTr
{

M̂ν,rρ̂
}

+ naccid
ν,r . (94)

Now it becomes clear that I0 is the factor (not necessarily the total number of
pairs produced) which, combined with the relative efficiency Iν , gives the total
number of incident states for the νth measurement setting.

IV Analyzing Experimental Data

As discussed earlier, any real experiment will contain statistical and systematic
errors which preclude the use of the ideal tomography described in Section II.
Instead, it is necessary to use an algorithm (the Maximum Likelihood technique)
which assumes some uncertainty or error in measurement results, and returns a
state which is the most likely to have produced the measured results.

In order to describe real tomography, we will first discuss the types of errors
which are present in an experiment, the Maximum Likelihood algorithm, and
some details of the optimization of the entire process using numerical search
techniques. We first list the information that should have been gathered during
the experimental phase of the experiment, followed by the formulae used to
determine the expected number of measured counts for the νth measurement
setting on the rth detector combination:

Uν Measurement settings

nν,r Counts recorded

naccid
ν,r Accidental counts

Cr′→r Crosstalk coefficients

Er Relative efficiencies

Iν Relative intensities
(not used with 2n detectors)

n̄ν,r ≡ I0E0IνErTr
{

M̂ν,rρ̂
}

+ naccid
ν,r

M̂ν,r ≡
∑

r′ (Cr′→r) M̃ν,r′

M̃ν,r ≡ U †
ν |r〉〈r|Uν
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Given this information, we are be able to numerically estimate which state was
most likely to return the measured results. Note that the relative intensities
Iν are optional, can can be included for an n-detector tomography. For a 2n
detector tomography, the Iν parameters will be varied as part of the optimization
algorithm, and do not need to be provided as part of the experimental data.

A Types of Errors and State Estimation

Errors in the measurement of a density matrix fall into three main categories:
errors in the measurement basis, errors from counting statistics, and errors
from experimental stability. The first problem can be addressed by increasing
the accuracy of the measurement apparatus (e.g., obtaining higher tolerance
waveplates, better controlling the Rabi pulses, etc.) while the second problem
is reduced by performing each measurement on a larger ensemble (counting for
a longer time). The final difficulty is drift which occurs over the course of the
tomography.15 This drift occurs either in the state produced or the efficiency
of the detection system, and can constrain the data-collection time. Figure 6a
shows what a basis error looks like on the Poincaré sphere and how that error
affects the ability to isolate a state in Poincaré space. This picture indicates
that a basis error is more pronounced when measuring a pure state, but actually
has no effect when measuring a totally mixed state (because all bases give the
same answer).

Figure 6b shows the same analysis of errors in counting statistics. Any
real measurement can only be carried out on a limited size ensemble. Though
the details of the statistics will be dealt with later, the detection events are
accurately described by a Poissonian distribution, which for large numbers of
counts is well approximated by a Gaussian distribution. This will cause the
resultant knowledge about the unknown state to change from a plane (in the
exact case) to a thick disk (uniformally thick for pure and mixed states), a
one-dimensional Gaussian distribution plotted in three-dimensional space.

After all sources of error are taken into account, a single measurement results
in a distribution over all possible states describing the experimenter’s knowledge
of the unknown state. This distribution represents the likelihood that a par-
ticular state would give the measured results, relative to another state. When
independent measurements are combined, these distributions are multiplied,
and ideally the knowledge of the unknown state is restricted to a small ball in
Poincaré space, similar to a three-dimensional Gaussian (as a large uncertainty
in any one direction will lead to a large uncertainty in the state). State iso-
lation occurs regardless of which measurements are taken, as long as they are
linearly independent, and is shown graphically in Figure 7 for a set of orthogonal
measurements.

15These are the main sources of error that are likely to be present to some degree in any

qubit implementation. In addition, each implementation may have its own unique errors,
such as the wedged waveplates described earlier or accidental background counts from noisy
detectors. Here we neglect such system-specific difficulties.
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(a) (b)

Figure 6: Graphical representation of errors in a single-qubit tomography. (a)
Basis errors. Errors in the setting of measurement apparatus can result in an
accurate measurement being taken in an unintended basis. Shown graphically
is the effect that an uncertainty in the measurement basis can have on the
reconstruction of a state. Instead of a single axis on the Poincaré sphere, the
possible measurement axes form uncertainty cones touching at the center, since
all possible measurement axes pass through the origin. This uncertainty in axis
is then translated into an uncertainty in the state (shown on the right). Instead
of isolating the state to a plane, all possible measurement axes trace out a volume
with large uncertainty near the surface of the sphere and low uncertainty near
the center. (b) Counting errors. Even if the measurement basis is exactly
known, only a limited number of qubits can be measured to gain an estimate
of a state’s projection onto this axis (taken directly from the probability of a
successful measurement). This uncertainty results in an unknown state being
isolated to a one-dimensional gaussian (approximately) in three-dimensional
space, rather than to a plane.

Figure 7: Isolation of a quantum state through inexact measurements. Al-
though a series of real measurements (those with uncertainties) will never be
able to exactly isolate an unknown quantum state, they can isolate it to a re-
gion of Hilbert space that is far more likely than any other region to contain
the unknown state. Consider a series of three measurements, each containing
counting errors, along orthogonal axes. From left to right, the area of Hilbert
space containing the unknown state is truncated from a one-dimensional Gaus-
sian probability distribution (the disk in the left figure) to a two-dimensional
Gaussian (the cylinder in the middle figure) and finally to a three-dimensional
Gaussian (the ball in the right figure). This results in an ‘error ball’ which ap-
proximates the position of the unknown state. The global maximum, however,
can often be outside allowed Hilbert space (outside the Poincaré sphere), which
is one reason a maximum likelihood technique must be used to search over only
allowed quantum states.
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In contrast to the ideal case in the previous section, for which the accuracy
of a reconstructed state did not depend on whether mutually unbiased measure-
ments were made, with real measurements the advantage of mutually unbiased
measurement bases becomes clear. In contrast to the measurements shown in
Figure 7, mutually biased measurements result in a non-symmetric error ball,
increasing the error in state estimation in one direction in Hilbert space.

Even after tomography returns a distribution of likelihood over Poincaré
space, one final problem remains. It is very possible, especially with low counts
or with the measurement of very pure states, that state estimation will return
an “illegal” state. For example, in Figure 7, the measurements seem to place
the error ball just on the edge of the sphere and slightly outside it. As all legal
states have a radius of less than or equal to one in Poincaré space, it is necessary
to find a way to return the most likely legitimate state reconstructed from a set
of measurements.

B The Maximum Likelihood Technique

The problem of reconstructing illegal density matrices is resolved by selecting
the legitimate state most likely to have returned the measured counts (James
et al., 2001; Hradil and Rehacek, 2001). In practice, analytically calculating
this maximally likely state is prohibitively difficult, and a numerical search is
necessary. Three elements are required: a manifestly legal parametrization of a
density matrix, a likelihood function which can be maximized, and a technique
for numerically finding this maximum over a search of the density matrix’s
parameters.

The Stokes parameters are an unacceptable parametrization for this search,
as there are clearly combinations of these parameters which result in an illegal
state (e.g., S1 = S2 = S3 = 1). In this context, a legitimate state refers to a
non-negative definite Hermitian density matrix of trace one. The property of
non-negative definiteness for any matrix Ĝ is written mathematically as

〈ψ|Ĝ|ψ〉 ≥ 0 ∀|ψ〉. (95)

Any matrix that can be written in the form Ĝ = T̂ †T̂ must be non-negative
definite. To see that this is the case, substitute into eq.(95):

〈ψ|T̂ †T̂ |ψ〉 = 〈ψ′|ψ′〉 ≥ 0, (96)

where we have defined |ψ′〉 = T̂ |ψ〉. Furthermore (T̂ †T̂ )† = T̂ †(T̂ †)† = T̂ †T̂ , i.e.,
Ĝ = T̂ †T̂ must be Hermitian. To ensure normalization, one can simply divide
by the trace. Thus the matrix ĝ given by the formula

ĝ = T̂ †T̂ /Tr{T̂ †T̂} (97)

has all three of the mathematical properties required for density matrices.
For the one-qubit system, we have a 2×2 density matrix with 3 independent

real parameters (although we will search over 4 in order to fit the intensity of the
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data). Since it will be useful to be able to invert relation (97), it is convenient
to choose a tri-diagonal form for T̂ :

T̂ (~t ) =

(

t1 0
t3 + it4 t2

)

, (98)

where ~t is a vector containing each ti. The multiple-qubit form of the same
equation is given by:

T̂ (~t ) =









t1 0 . . . 0
t2n+1 + it2n+2 t2 . . . 0

. . . . . . . . . 0
t4n−1 + it4n t4n−3 + it4n−2 t4n−5 + it4n−4 t2n









. (99)

The manifestly ‘physical’ density matrix ρ̂p is then given by the formula

ρ̂p(~t ) = T̂ †(~t )T̂ (~t )/Tr{T̂ †(~t )T̂ (~t )}. (100)

This satisfies the first criterion for a successful maximum likelihood search,
by providing an explicitly physical parametrization for ρ̂. The second criterion,
a likelihood function, will in general depend on the specific measurement appa-
ratus used and the physical implementation of the qubit (as these will determine
the statistical distributions of counts, and therefore their relative weightings).
If we assume Gaussian counting statistics, then we can easily provide a suitable
likelihood function.

Let nν,r be the result for the νth measurement setting on the rth detector
combination. Let n̄ν,r be the counts that would be expected from the state ρ̂,
given all information about the system:

n̄ν,r ≡ I0E0IνErTr
{

M̂ν,rρ̂
}

+ naccid
ν,r (101)

M̂ν,r ≡
∑

r′

(Cr′→r) M̃ν,r′ (102)

M̃ν,r ≡ U †
ν |r〉〈r|Uν . (103)

Given that we wish to search over the parameters of ~t , rather than ρ̂, we will
rewrite this equation as

n̄ν,r = IνErTr
{

M̂ν,rT̂
† (~t

)

T̂
(

~t
)

}

+ naccid
ν,r . (104)

Notice that the unknown scalars I0 and E0 have been absorbed into the un-
normalized T̂ † (~t

)

T̂
(

~t
)

, allowing our numerical search to discover what their
combined effect is without ever knowing their individual values.

Given these definitions, the probability of obtaining the νth measurement on
the rth set of detectors, nν,r, from the search parameters ~t is proportional to

exp

[

− (n̄ν,r − nν,r)
2

2σ̂2
ν,r

]

, (105)
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where σ̂ν,r is the standard deviation of the νth measurement (given approx-
imately by

√
n̄ν,r). Therefore, the total probability of ρ̂ yielding the counts

{nν,r} is given by:

P (nν,r) =
1

Norm

∏

ν,r

exp

[

− (n̄ν,r − nν,r)
2

2n̄ν,r

]

, (106)

where Norm is the normalization constant. In order to find the ideal ~t , and
therefore the ideal ρ̂, we need to maximize the probability function above. This
is equivalent to maximizing the log of the same function, or equivalently, min-
imizing its negation, giving us our final likelihood function (notice that the
normalization constant is ignored for this function, as it will not affect the min-
imum):

L
(

~t
)

=
∑

ν,r

(n̄ν,r − nν,r)
2

2n̄ν,r
. (107)

The final piece in the maximum likelihood technique is an optimization rou-
tine, of which there are many available. The authors’ implementation will be
discussed in the next subsection16. After a minimum is found, ρ̂ can be recon-
structed from the values of ~t .

Example 14. A single-qubit tomography. Photon pairs generated via spon-
taneous parametric downconversion from a nonlinear crystal can be used to gen-
erate single-photon states. Measuring a photon in one arm collapses the state of
its partner to a single-qubit Fock state (Hong and Mandel, 1986). An ensemble
of these photons can be characterized using the maximum likelihood technique.
The following data was taken from an experiment in “Remote State Preparation”
(Peters et al., 2005):

H = 6237 D = 5793
V = 8333 R = 6202.

For this first example we will assume that no intensity normalization or
crosstalk compensation needs to occur (see Example 15 for a more thorough
example). After minimizing the likelihood function, we obtain the following T̂
matrix

T̂ =

(

73.4 0
−29.0 − 1.2i 77.1

)

, (108)

from which we can derive the density matrix,

ρ̂ =
T̂ †T̂

Tr
{

T̂ †T̂
} =

(

0.5121 0.1837 + 0.0075i
0.1837 − 0.0075i 0.4879

)

. (109)

16For freely available code and further examples, see:
http://www.physics.uiuc.edu/research/QI/Photonics/Tomography/.
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Note that the maximum likelihood technique easily adapts to measurements
in mutually biased bases (e.g., due to imperfect yet well characterized wave-
plates) and overcomplete measurements (taking more measurements than is
necessary). In the first case the set of |ψ〉 is mutually biased (i.e., not in the
canonical bases), though still governed by the mathematics of tomography we
have laid out; in the second case the sum in Eqn. (107) is extended beyond the
minimum number of measurement settings.

C Optimization Algorithms and Derivatives of the Fitness

Function

In order to complete a tomography, the likelihood function L
(

~t
)

must be min-
imized. A number of optimization programs exist which can search over a large
number of parameters (e.g., ~t ) in order to minimize a complex function. The
authors use the Matlab 7.0 function lsqnonlin, which is optimized to minimize
a sum of squares. This type of optimized algorithm is more efficient than a
generic search, such as the Matlab function fminunc. In order for this mini-

mization to work most effectively, it takes as parameters f(~t ) and ∂f(~t )
∂ti

, where

L
(

~t
)

is of the form

L
(

~t
)

=
∑

x

[

fx(~t )
]2
. (110)

For the problem of tomography, we can write

fν,r ≡ n̄ν,r − nν,r
√

2n̄ν,r
(111)

=
IνErTr

{

M̂ν,rT̂
† (~t

)

T̂
(

~t
)

}

+ naccid
ν,r − nν,r

√

2
(

IνErTr
{

M̂ν,rT̂ † (~t
)

T̂
(

~t
)

}

+ naccid
ν,r

)

.

. (112)

With some effort, we can analytically derive the partial derivatives of these
terms, allowing the optimization algorithm to not only run much faster, but to
converge quickly regardless of the initial search condition:

∂fν,r
∂ti

=

[

∂
∂ti

(n̄ν,r − nν,r)
]√

n̄ν,r − (n̄ν,r − nν,r)
(

∂
∂ti

√
n̄ν,r

)

√
2n̄ν,r

=

(

∂n̄ν,r

∂ti

)

(n̄ν,r)
1

2 − (n̄ν,r − nν,r)
[

1
2 (n̄ν,r)

− 1

2
∂n̄ν,r

∂ti

]

√
2n̄ν,r

=
1

2
√

2n̄ν,r

∂n̄ν,r
∂ti

(

1 +
nν,r
n̄ν,r

)

. (113)

Note that it is impossible for this function to go to zero unless
∂n̄ν,r

∂ti
goes to zero,

important when considering whether or not the maximum likelihood function
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will have several local minima. Because T̂ is a linear function, we can easily
write down

∂n̄ν,r
∂ti

= IνEr
∂

∂ti
Tr
{

M̂ν,rT̂
† (~t

)

T̂
(

~t
)

}

= IνErTr
{

M̂ν,r

[

T̂ † (~t
)

T̂
(

~δij

)

+ T̂ †
(

~δij

)

T̂
(

~t
)

]}

, (114)

where ~δij is a j-element vector whose ith element is equal to one. All other

elements of ~δij are equal to zero. (Here j is the length of ~t .)
Even using these derivatives (and especially if they are not used), it is im-

portant to choose an initial condition for the search which is as close as possible
to the correct answer. This amounts to making the best analytic guess possible
using the ideal tomographic techniques presented in Section II. It is possible
that those ideal techniques will result in an illegal density matrix, i.e., some
of its eigenvalues will be negative. If this happens (indeed, this happening is
the reason we need the Maximum Likelihood technique), we simply set those
negative eigenvalues to zero, renormalize the positive eigenvalues, and use this
truncated state as the starting condition for the search.

V Choice of Measurements

After describing how to take measurements and how to analyze them, it is
necessary to discuss how to choose which measurements to take. This general
problem includes several choices, from whether to measure projectors indepen-
dently or simultaneously as part of a complete basis (n versus 2n detectors) to
how many measurements to take (the minimum set or an overcomplete set full
of redundancy).

A How Many Measurements?

The choice of how many measurements to perform depends on the details of
the experimental setup and the goals of the experiment. For most applications,
the speed of a tomography is paramount. At first it might appear obvious that
the optimal number of measurements to perform would also be the minimum
number of measurements to perform, seemingly implying the minimum time
necessary to finish a tomography. This intuitive assumption is in fact false; it
is often true that taking more measurements can in fact reduce the total time
to achieve a specified level of accuracy for a complete tomography.

If changing between measurements requires little time or effort, as is the case
when using fast, automated waveplates, then the primary consideration will be
the total number of state copies necessary to run an accurate tomography. If,
however, changing bases is time-intensive or error-prone, such as when moving
waveplates by hand, it may be desirable to minimize the number of measurement
settings.
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As discussed in Section II, minimizing the number of measurements will re-
sult in 4n distinct measurement settings for n detectors, or 3n settings for 2n
detectors. In order to minimize state copies necessary, even for n detectors,
every measurement should be accompanied by its complimentary orthogonal
measurements, in effect simulating a 2n detector measurement with only n de-
tectors. For example, shen measuring a two-qubit system, one should use 9
measurement settings (with 4 detectors) or 36 measurement settings (with only
2 detectors).

The reason that making more measurements can be so beneficial is simple:
in order to transform the measured counts into probabilities, complete bases
are necessary. If no complete bases are measured, then there is no scaling
information about the rate at which state copies are being measured. Taking this
information redundantly within every measured basis very precisely determines
the state intensity, allowing every other measurement to become more accurate.
Alternatively, this can function as a detector of systematic errors, allowing the
experimenter to notice when the sum of the measured counts in one basis differs
from the sum in another basis, e.g., due to a drift in the production rate of the
source.

B How Many Counts per Measurement?

In order to quantify the conclusions of the previous section, Monte Carlo sim-
ulations were used to estimate the number of state copies per measurement
that would be necessary to achieve an average of 99% fidelity (between the to-
mography result and the “unknown” state) for a variety of two-qubit states,
using both 2- and 4-detector measurements. Keep in mind that the 4-detector
results, each of which require nine measurements, could be achieved by using
36 measurements with two detectors, which in many cases is still superior to
the 16-measurement case. (For example, the Bell state requires 150 counts per
measurement setting for 16 measurements on two detectors—a total of 150×16
counts, while at the same time 36 measurements on two detectors requires a
total of 50× 36 counts—a factor of two improvement.) Table B shows the state
copies per measurement necessary to achieve a 99% fidelity for five families of
states.

In order to understand these numbers, consider just the Werner state’s be-
havior as it transitions from a maximally entangled state (λ = 0) to a totally
mixed state (λ = 1). Figure 8 shows the counts necessary to achieve either a
99% (dotted line) or 99.9% (solid line) fidelity for the full range of λ.

For very low λ (very pure states), almost no state copies are necessary.
When measuring these states, several measurements return a value close to zero
counts. This value of zero probability guarantees that the state will be near the
border of allowable states (e.g., near the surface of the Poincaré sphere for one-
qubit states). This one measurement, because it isolates the allowable states
to a very small area, can very quickly lead to a high fidelity. For example, if
after measuring 100 copies in the H-V basis, one has recorded 100 H counts
and 0 V counts, then there is a very high probability that the state |H〉 is the
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The Werner State

ρ̂1 (λ) = (1 − λ) ρ̂ 1√
2
(|HH〉+|V V 〉) + λ

I

4

The Bell State −→ The Half-Mixed State

ρ̂2 (λ) =
1

2
(|HH〉〈HH| + |V V 〉〈V V |) +

1 − λ

2
(|HH〉〈V V | + |V V 〉〈HH|)

HH −→ The Half-Mixed State

ρ̂3 (λ) =

(

1 − λ

2

)

|HH〉〈HH| + λ

2
|V V 〉〈V V |

Maximally Entangled Mixed States (MEMS)

ρ̂4

(

λ <
1

3

)

=

(

1 − λ

2

)

(|HH〉 + |V V 〉) (〈HH| + 〈V V |) + λ|HV 〉〈HV |

ρ̂4

(

λ ≥ 1

3

)

=

(

1 − λ

2

)

(|HH〉〈V V | + |V V 〉〈HH|) +

1

3
(|HH〉〈HH| + |HV 〉〈HV | + |V V 〉〈V V |)

HH −→ The Totally Mixed State

ρ̂3 (λ) = (1 − λ) |HH〉〈HH| + λ
I

4

λ 0 0.01 0.1 0.25 0.5 1.0
ρ̂1 2 det. 150 900 1300 4900 2400 1600

4 det. 50 150 1200 600 350 350
ρ̂2 2 det. 150 200 250 300 350 350

4 det. 50 100 150 150 150 150
ρ̂3 2 det. 75 200 350 350 300 350

4 det. 50 100 150 150 150 150
ρ̂4 2 det. 150 1100 1600 1500 1000 700

4 det. 50 100 300 500 250 200
ρ̂5 2 det. 75 300 6800 3500 2100 1600

4 det. 50 100 1000 450 350 350

Table 1: Counts per measurement setting necessary to achieve, on average, a
99% fidelity state. To calculate the total counts necessary for a 2-(4-)detector
tomography, multiply the listed number by 16 (9).
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Figure 8: This plot shows the counts per measurement for a 4-detector system
using the minimum nine measurement settings to achieve either a 99% (dotted
line) or a 99.9% (solid line) target fidelity (Ft) with the ideal state. These results
used Monte Carlo simulations on the Werner State (1 − λ)ρ̂ 1√

2
|HH+V V 〉 + λ I4 ,

for a range of values of λ.
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target state, because every other axis in Hilbert space has also been isolated
by this measurement (in this specific example, the results of measurements in
the D-A and R-L basis—50 counts in each—can be inferred from this one H-V
measurement).

As the state becomes more mixed, it moves away from the border in Hilbert
space and now many counts are necessary to isolate the position of the state in
those other directions. Continuing the example above, if our first measurement
was instead 90 H and 10 V, we cannot infer the results of a D-A measurement.
If for instance, it results in 50 D and 50 A, these counts have a great deal more
uncertainty than a 90/10 split, due to the nature of the fitness function. This
accounts for the sharp transition in Figure 8, a transition which moves closer to
the pure states for a higher fidelity cutoff, as expected.

The last behavior shown in the graph, the gradual decrease in necessary
counts for increasing mixedness, occurs because fidelity becomes less sensitive
for states of greater mixedness (Peters et al., 2004).

VI Error Analysis

Error analysis of reconstructed density matrices is in practice a non-trivial pro-
cess. The traditional method of error analysis involves analytically solving for
the error in each measurement due to each source of error, then propagating
these errors through a calculation of any derived quantity. In the photon case,
for example, errors in counting statistics and waveplate settings were analyzed
in some detail in reference (James et al., 2001), giving errors in both density
matrices and commonly derived quantities, such as the tangle and the linear
entropy. In practice, however, these errors appear to be too large: We have
experimentally repeated some of our measurements many times, and observed
a spread in the value of derived quantities which is approximately an order of
magnitude smaller that the spread predicted from an analytic calculation of the
uncertainty. Obviously, the correctness of the analytic calculation is question-
able. Thus it is worthwhile to discuss alternate methods of error analysis.

One promising numerical method is the ‘Monte Carlo’ technique, whereby
additional numerically simulated data is used to provide a statistical distribution
over any derived quantity. Once an error distribution is understood over a single
measurement (e.g., Gaussian for waveplate setting errors or Poissonian over
count statistics), a set of ‘simulated’ results can be generated. These results are
simulated using the known error distributions in such a way as to produce a full
set of numerically generated data which could feasibly have come from the same
system. These data are numerically generated (at the measured counts level),
and each set is used to calculate a density matrix via the maximum likelihood
technique. This set of density matrices is then used to calculate the standard
error on any quantity implicit in or derived from the density matrix.

As an example, consider the application of the Monte Carlo technique to the
downconversion results from Example 15. Two polarization-encoded qubits are
generated within ensembles that obey Poissonian statistics, and these ensembles
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are used to generate a density matrix using the maximum likelihood technique.
In order to find the error on a quantity derived from this density matrix (e.g.,
the tangle), 36 new measurement results are numerically generated, each drawn
randomly from a Poissonian distribution with mean equal to the original number
of counts. These 36 numerically generated results are then fed into the maximum
likelihood technique, in order to generate a new density matrix, from which, e.g.,
the tangle may be calculated. This process is repeated many times, generating
many density matrices and a distribution of tangle values, from which the error
in the initial tangle may be determined. In practice, additional sets of simulated
data must be generated until the error on the quantity of interest converges to
a single value. For the data in Examples 14 and 15, a total of 100 simulations
were used.

VII A Complete Example of Tomography

In order to demonstrate how all of the concepts presented in this chapter are ac-
tually applied, we have included an example which from start to finish uses lab-
oratory parameters and data, taken from a two-qubit entangled photon source.
Throughout this example we will use our usual convention for the canonical
basis: |0〉 ≡ |HH〉, |1〉 ≡ |HV 〉, |2〉 ≡ |V H〉, and |3〉 ≡ |V V 〉.
Example 15. A Complete Two-Qubit Tomography.

Before collecting tomography data, there are several measurement parame-
ters that must be measured. After experimentally determining that each of our
beamsplitters has negligible absorption, a 0.8% chance to reflect |H〉, and a 0.5%
chance to transmit |V 〉, we can determine that

Cr′→r ≡









0′ 1′ 2′ 3′

→ 0 0.9842 00049 0.0049 0.0000
→ 1 0.0079 0.9871 0.0000 0.0050
→ 2 0.0079 0.0000 0.9871 0.0050
→ 3 0.0001 0.0079 0.0079 0.9901









. (115)

Rather than measuring intensity fluctuations by picking off a part of the
pump laser, we will choose during this tomography to fit the intensity parameters
Iν as part of the maximum likelihood technique (we use four detectors, which
will allow us to fit a relative intensity to each measurement setting by using the
measured counts from each of four orthogonal projectors).

Because this particular tomography will use a total of nine measurement set-
tings (the minimum number required), there will not be enough information to fit
for the detector-pair efficiencies. A previous tomography (using 36 measurement
settings and not shown here) was used to solve for the Er, using a two-detector
tomography applied to the 36 measurement results from each of the four pairs
of detectors:

E1 = 0.9998 E3 = 0.9195
E2 = 1.0146 E4 = 0.9265 .
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To simplify the example, we will make all measurements in the canonical bases
(this could be accomplished using either ideal waveplates or, in some cases, im-
perfect waveplates—see Section III.A.2).

With these parameters recorded, we can now take the data. The following
counts were recorded for a slightly mixed Bell state (close to 1√

2
(|HH〉 + i|V V 〉)):

n1,r: HH = 3708 HV = 77 VH = 51 VV = 3642
n2,r: HD = 1791 HA = 1987 VD = 2096 VA = 3642
n3,r: HR = 2048 HL = 1854 VR = 1926 VL = 1892
n4,r: DH = 1766 DV = 1914 AH = 2153 AV = 1741
n5,r: DD = 1713 DA = 1945 AD = 2208 AA = 1647
n6,r: DR = 3729 DL = 91 AR = 102 AL = 3662
n7,r: RH = 2017 RV = 1709 LH = 1917 LV = 1955
n8,r: RD = 3686 RA = 102 LD = 109 LA = 3651
n9,r: RR = 2404 RL = 1474 LR = 1712 LL = 2209,

with the corresponding accidental counts (calculated using the measured singles
rates and the previously determined coincidence window ∆tr (c.f., Eqn. (87)).

naccid
1,1 = 5.4 naccid

1,2 = 5.6 naccid
1,3 = 5.9 naccid

1,4 = 6.0
naccid

2,1 = 5.2 naccid
2,2 = 5.5 naccid

2,3 = 5.6 naccid
2,4 = 6.0

naccid
3,1 = 5.3 naccid

3,2 = 5.5 naccid
3,3 = 5.6 naccid

3,4 = 5.9
naccid

4,1 = 5.2 naccid
4,2 = 5.3 naccid

4,3 = 6.0 naccid
4,4 = 6.1

naccid
5,1 = 5.2 naccid

5,2 = 5.4 naccid
5,3 = 5.9 naccid

5,4 = 6.2
naccid

6,1 = 5.2 naccid
6,2 = 5.3 naccid

6,3 = 5.9 naccid
6,4 = 6.1

naccid
7,1 = 5.3 naccid

7,2 = 5.4 naccid
7,3 = 5.9 naccid

7,4 = 6.1
naccid

8,1 = 5.4 naccid
8,2 = 5.9 naccid

8,3 = 6.1 naccid
8,4 = 6.6

naccid
9,1 = 5.3 naccid

9,2 = 5.4 naccid
9,3 = 6.0 naccid

9,4 = 6.2.

After minimizing the likelihood function, we obtain the following T̂ matrix

T̂ =









0 0 0 0
2.401 + 3.167i 2.372 0 0
−6.381 − 2.649i 3.919 − 0.897i 2.674 0
−8.975 + 58.630i 1.356 − 2.106i 1.685 − 1.514i 60.08









, (116)

from which we can derive the density matrix,

ρ̂ =
T̂ †T̂

Tr
{

T̂ †T̂
}

=









0.50 −0.02 − 0.01i −0.02 − 0.01i −0.07 − 0.49i
−0.02 + 0.01i 0.00 0.00 + 0.00i 0.01 + 0.02i
−0.02 + 0.01i 0.00 − 0.01i 0.00 0.01 + 0.01i
−0.07 + 0.49i 0.01 − 0.02i 0.01 − 0.01i 0.50









.

(117)

Our search algorithm returned this density matrix because it minimized not only
the main search parameters ~t , but the intensities Iν :

49



I1 = 7647 I2 = 7745 I3 = 7879
I4 = 7725 I5 = 7669 I6 = 7754
I7 = 7751 I8 = 7716 I9 = 7967,

allowing us to calculate the expected counts n̄ν,r (for the final density matrix):

n̄1,1 = 3792 n̄1,2 = 81 n̄1,3 = 67 n̄1,4 = 3544
n̄2,1 = 1794 n̄2,2 = 1956 n̄2,3 = 2106 n̄2,4 = 1735
n̄3,1 = 2046 n̄3,2 = 1787 n̄3,3 = 1933 n̄3,4 = 1956
n̄4,1 = 1815 n̄4,2 = 1895 n̄4,3 = 2108 n̄4,4 = 1758
n̄5,1 = 1618 n̄5,2 = 2050 n̄5,3 = 2247 n̄5,4 = 1604
n̄6,1 = 3792 n̄6,2 = 97 n̄6,3 = 103 n̄6,4 = 3594
n̄7,1 = 2032 n̄7,2 = 1699 n̄7,3 = 1901 n̄7,4 = 1966
n̄8,1 = 3758 n̄8,2 = 103 n̄8,3 = 105 n̄8,4 = 3583
n̄9,1 = 2271 n̄9,2 = 1580 n̄9,3 = 1751 n̄9,4 = 2206,

Using the error analysis techniques presented in Section VI, we can estimate
this state’s fidelity with the Bell state 1√

2
(|HH〉 + i|V V 〉) to be 98.4 ± 0.2%.

VIII Outlook

This chapter represents our best efforts to date to experimentally optimize quan-
tum tomography of discrete systems, but fails to address several key areas that
future research will need to address: (1) As discussed earlier, tomographic er-
ror analysis is still in the nascent stages of development, and to date the only
acceptable error estimates have come from Monte Carlo simulations. Analytic
solutions to the problem of error estimation could greatly speed up this compu-
tationally intensive task. (2) The study of adaptive tomography has motivated a
number of the improvements presented in this chapter, notably the use of more
measurement settings to achieve a more efficient and accurate tomography in
less time. A general theory of how to adapt measurement settings and measure-
ment times based on the data that has already been collected—which can be
experimentally applied in real time—has yet to be fully realized (see however,
D’Ariano et al. (2004)). (3) The number of measurements necessary to perform
tomography grows exponentially with the number of qubits; it will eventually be
necessary to partially characterize states using fewer measurements. This will
be particularly important for error—as the analysis of large systems takes more
and more time, it will become less and less feasible to use Monte Carlo simula-
tions to estimate the error. (4) Each distinct qubit implementation provides a
unique challenges, which will need to be explored by the experimental groups
specializing in those systems; hopefully, the study of each system’s differences
will illuminate new areas for tomographic improvement.
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