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Abstract

Nonclassical Effects from Spontaneous Parametric Down-Conversion:

Adventures in Quantum Wonderland

by

Paul Gregory Kwiat

Doctor of Philosophy in Physics
University of California at Berkeley

Professor Raymond Y. Chiao, Chair

The present treatise describes research investigating the inherent nonlocality in
quantum mechanics and the role of (in-)distinguishability in interference. The intent is to
promote an intuitive understanding of the underlying principles, by means of fairly
straightforward yet nonetheless striking experiments (and proposals for experiments).
Central to all of these are the pairs of correlated photons produced when an ultraviolet
photon interacts with a nonlinear optical medium, and via the process of spontaneous
parametric down-conversion splits into two infrared photons. These pairs possess the
useful property that one can produce essentially single-photon states by triggering on
one of the photons, and counting the other in coincidence. The photons may also be
prepared in several sorts of entangled states, which are intrinsically nonlocal.

Coincidence detection of the photon pairs, in conjunction with a Michelson
interferometer in which one member of each pair acquired a geometrical phase due to a
cycle in polarization states, has allowed the first observation of Berry's phase at the

single photon level. We have verified that each interfering photon was essentially in an



n=1 Fock state, by means of a beam splitter following the interferometer, combined with
2 triple-coincidence technique. When the interferometer is set outside the white-light
fringe regime, the results can be interpreted in terms of a nonlocal “collapse of the
wavefunction™.

We have also observed an effect known as a quantum eraser, in which an
interfering system is first rendered incoherent by making the alternate Feynman paths
which contribute to the overall process distinguishablc; with our apparatus, polarization
is used to label the path of a given photon. The quantum “eraser” removes this
information from the state vector, after the output port of the interferometer, so that one
may recover interference upon coincidence detection. In addition, we show how this
procedure may do more than merely erase, in that the act of “pasting together” two
previously distinguishable paths can introduce a new relative phase between them.
Finally, we propose three new quantum eraser schemes, each of which satisfies all the
criteria for an optimal demonstration. As the proposed schemes are all modifications or
combinations of previously completed experiments, they are deemed to be feasible.

We also report on a two-photon interference experiment proposed by Franson, in
which each of the down-converted photons is sent into an unbalanced interferometer.
Employing large path-length differences and high time-resolution detectors, we were
able to observe sinusoidal coincidence fringes with visibilities of up to 90%, while the
classical limit for such fringes is only 50%. Moreover, we were able to violate an
appropriate Bell’s inequality (after several reasonable supplementary assumptions were
made), which limits the correlations permitted by any theory constrained by “local
realism”. Here the elements of reality under consideration are the energy and time of
emission of the photons. We infer that photons produced in spontaneous parametric

down-conversion know neither their color nor their birthdays, and that Nature is

inherently nonlocal, but only just barely so.



To perform an experiment of this sort that is incontrovertible is very difficult, and
has not yet been done; one reason is that detection efficiencies need to be quite high. To
this end, we have used our light source to measure the absolute quantum efficiencies
(and other operating characteristics) of several single-photon detectors. Efficiencies as
high as 76.4+2.3% were seen, with implications that efficiencies as high as 90% may be
achicvable. A suitable source for a loophole-free test of Bell’s inequalities is also
required. We propose such a source, relying on type-II collinear phase-matching in
two down-conversion crystals, which should permit a violation of Bell’s inequalities

without the need for the usual supplementary assumptions.

W% 8/3’/73



Abstract

Table of Contents

Table of Contents

List of Figures

List of Cartoons

Preface

List of Publications

Acknowledgements

Chapter 1: Entanglement, Interference, and an Overview

1L
1.IL
1.III
1.IV.

Introduction

Entangled States
Interference 4 la Feynman
What Lies Ahead

Chapter 2: Spontaneous Parametric Down-Conversion

21
2.1
2.111.
2.IV.
2.V.

in Potassium Dihydrogen Phosphate

Introduction

General Theory

Phase Matching in KDP
Our Source
Applications

Chapter 3: Single-Photon Berry’s Phase

3.1
3.1
3111
3.IV.
3.V.

Introduction

Berry’s Phases in Optics
Experimental Setup
Results

Discussion and Conclusion

i1i.

XV

~NOR N =

10

10
12
17
19

24

27
28
31
35
39



Chapter 4: “Collapse of the Wavefunction”
4.1.  Introducton
4.I1. Theoretical Analysis
4.III. Experiment and Results
4.IV. Interpretation and Conclusion

Chapter 5: Quantum Erasers—-Theory and Practice
5.1.  Intoduction
5.11. Idealized Quantum Eraser
5.III. Experimental Setup
5.IV. Hong-Ou-Mandel Interference
5.V. Loss of Interference
5.VIL. Quantum Eraser
5.VII. Discussion
5.VIII. Conclusions

Chapter 6: Three Proposed Quantum Erasers
6.1. Introduction
6.II.  Experimental Requirements
6.I11. Past Experiments
6.IV. Proposed Quantum Erasers
6.V. Conclusion

Chapter 7: The Einstein-Podolsky-Rosen “Paradox” and Bell’s Inequalities
7.1.  Introduction
7.11. The EPR-“Paradox”
7.1I1. Bell’s Inequalities, 4 1a Shimony
7.1V. Bell’s Inequalities, 4 la Eberhard
7.V. Loopholes
7.VI1. Interpretation

7.VII. Quantum Cryptography

iv.

41
41
42
46
49

54
54
58
59
61

69
73
77

80
80
81
82
86
90

92
93
96
103
108
114
121



Chapter 8: The Franson Experiment

8.L
8.11.
8.IIL.
8.IV.
8.V.
8.VL

Introduction

Theory

Dual-Beam Michelson Experiment
Mach-Zehnder Experiment
Interpretations and Bell’s Inequalities
Future Possibilities

Chapter 9: High-Efficiency Single-Photon Detectors

9.1
9.11.
9.I11.
9.IV.
9.V.
9.VL
9.VIL

Introduction
Motivation

The Method

The Detectors
Experimental Setup
General Procedure
Efficiency Results

9.VIII. Timing Resolution and Related Results

9.IX.

Chapter 10: Proposal for a Loophole-Free Bell’s Inequality Experiment

10.1.
10.11.

10.111. Non-Ideal Down-Conversion Considerations
10.IV.

10.V.

10.VL

Conclusion

Introduction
Proposed Source

Non-Maximal Entanglement
Imperfect Optcal Elements
Conclusion

Chapter 11: Conclusion

Aopendiv A:

Appendix B1: General Calculation for Polarization Quantum Eraser

Triple-Coincidence Inequality

125
125
126
135
142
155
159

163
163
165
166
168
170
176
177
182
192

196
196
198
204
209
214
219

220

224

229



Appendix B2: General Calculation for Quantum Eraser Proposal
Appendix C: Error-Analysis for Absolute Efficiency Measurements
C.I. Introduction
C.II. Purely Poisson Approach
C.III. Binomial Approach
Appendix D1: BBO--General Information and Phase Matching

Appendix D2: Iris Size Effect on Collection Efficiency

Appendix D3: General Calculation for Loophole-Free
EPR Proposal
Appendix E: Detector Trivia
Photomultiplier Tube

Avalanche Photodiode
Photon Counting Module

Bibliography

Vi.

232

249

249

249

252

254

259

265

273

274

277
287

293



Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

-

rig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

1.1:

2.1
2.2
23
24
25

3.1
32
33

4.1
4.2

5.1
5.2
5.3
54
55
5.6

6.1
6.2
6.3

7.1
7.2
7.3
74

List of Figures
Interference-fringe visibility versus path attenuation

Down-converted light-cones emitted from a nonlinear crystal
Schematic of type-I vector phase matching

Vector phase-matching angles in KDP

Setup to measure angular spectral profiles

Angular spectral profiles in KDP

Schematic of single-photon Berry’s phase experiment
Generalized Poincaré sphere to calculate Pancharatmam’s phase
Data from single-photon Berry’s phase interference

Lack of singles fringes outside the white-light regime
Coincidence fringes outside the white-light regime

Schematic of polarization-based quantum eraser experiment
Basic Hong-Ou-Mandel interferometer

Coincidence interference versus half waveplate orientation
Polarization-dependent quantum erasure: Theory and experiment
Plot of coincidence rate versus relative angle of polarizers
Quantum erasure, with identical polarizer orientations

Schematic of “pseudo”-quantum eraser
Schematic of proposed polarization-based quantum eraser
Schematic of proposed time-delay-based quantum eraser

Simplified Bell’s inequality source

Optimal set of angles to violate a Bell’s inequality
“Classical” LHV predictions

Deterministic LHV predictions

vii.

32
34
36

47
48

60
62
67
71
73
74

83
84
87

97
102
117
118



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.

Fig.
Fig.

8.1
8.2
8.3
8.4
8.5
8.6
8.7

8.8

8.9

8.10
8.11
8.12
8.13
8.14

8.15

9.1

9.2
9.3

Table 9.1

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

94
9.5
9.6
9.7
9.8

10.1a,b

10.1c

10.2
10.3

Simplified schematic of basic Franson experiment

Numerical calculation of various regimes in a Franson experiment
Experimental setup for dual-beam Michelson Franson experiment
Singles and coincidence interference in the white-light regime
Sinc-like visibility of singles fringes: Experiment and theory
Two-photon interference in a dual-beam Michelson interferometer
Experimental setup for separated Mach-Zehnder

Franson experiment, and path-equalization version 143,

Coincidence timing profile in a Franson setup

Narrowband and broadband filter coincidence fringes

Envelope profile of Franson interference fringes

Complementary coincidence fringes from two beam splitter ports
Plot of coincidence fringe visibility versus long-long attenuation
Interference fringes for two quarter waveplate orientations

Use of a polarization-singlet state to perform a “lossless” version
of the Franson experiment

Proposal to produce a doubly-entangled state

Simplified setup to measure absolute detection efficiencies
Detailed setup to measure absolute detection efficiencies
Singles and coincidence spot profile

Corrected efficiencies

SSPM efficiency versus bias voltage

Saturation effects on efficiency

SPCM time resolution data

SSPM time resclution data

Afterpulsing in an SPCM

Proposed two-crystal source for loophole-free Bell’s
inequality experiment

One-crystal version of EPR-source

Collection efficiency versus iris size for a gaussian pump beam
Three examples of type-II vector phase matching

viii.

127
134
136
137
139
140

145
146
149
151
152
153
154

160
161

167
171
173
180
183
184
187
190
193

200
204
207
210



(L8]
[
£

Fig. 10.4  Vector phase-matching angles in BBO
Fig. 10.5 Minimum efficiency to violate a Bell’s inequality, versus

beam splitter inefficiency--balanced case 216
Fig. 10.6 Minimum efficiency to violate a Bell’s inequality, versus

beam splitter inefficiency--imbalanced case 217
Fig. 10.7 The dependence of the Bell-function on interferometer phase shift 218
Fig. Al Simplified schematic of triple-coincidence detection system 224
Fig. B2.1 Schematic for general time-dependent quantum eraser proposal 232
Fig. B2.2  Plots of singles and coincidence fringe visibility,

versus transmissivity of inter-crystal Mach-Zehnder beam splitters 244
Fig. D1 Schematic representation of type-11 vector phase maiching 256
Fig. D2.1 Surface plot of effective efficiency versus collection-iris sizes 264
Fig. E.1 Schematics for APD temperature controller 284

and passive quench circuitry 285
Fig. E2 Circuit layout for temperature controller 286

List of Cartoons

Quantum Eraser Motivation 79
Mother Nature on the Rack 124
The Proof Is in the Pudding 162

Bell’s Inequality Tug of War 195

ix.



Preface

Contained within these pages are the significant experimental and theoretical results
of my last six years’ research, consisting of four main experiments and two recent
proposals for new experiments. While it was not always clear during this time exactly
what form the experiments would take, the general desire to foster a better intuition
about quantum mechanics has been an underlying theme. In particular, using
nonclassical staies of light, I have atiempted to investigate severai fundamental quantum-
mechanical concepts involving interference and nonlocality, by performing experiments
that hitherto existed only at the gedanken level, and by proposing new experiments also
within the realm of current technologies.

It is not my claim that the experiments described here teach us anything
fundamentally new. ALl of the results are predictable using the formalism of quantum
optics, and from that vantage point are unsurprising. However, the intent of the
experiments is to generate an intuitive understanding of the principles underlying all of
our quantum mechanical machinery -- in essence, to shed more light on these principles.
While there are those who maintain that one should just blindly apply the calculational
tools which have proven to be so successful over the last 70 years, I feel one must strive
for a deeper understanding. If any modifications to or extensions of existing quantum
theory are to made (as perhaps they must be to smoothly join the quantum world of
superpositions to the classical world of definite outcomes, and to account for gravity, for
example), one must have a clear picture of the heart of the theory one is rying to

change--what elements are essential?



The results that follow highlight those areas where physical intuition is most
lacking, and classical descriptions lead to incorrect predictions. (Hence, the first part of
the ttle of this dissertation.) The reason is two-fold. First, because insight into these
phenomena is needed, it is sensible to attack the most obvious problems first. Second,
exactly because they are at such odds with one’s classical intuitions, these experiments
have a profound sense of “coolness” about them (a high “gee whiz”-factor) and have
therefore been extremely enjoyable to carry out. Although there is nothing inherently
more strange about a single photon travelling two paths simultaneously than a baseball
knowing which way and how fast to fall to earth (an effect mediated by gravitational
fields, constructs which only seem “friendly” due to our constant association with
them), somehow the wonder of the larter effect is reduced by familiarity. (Hence, the
second part of the title.)

Nearly all of the results contained herein have been reported in other articles (cf.
the List of Publications), with the noteworthy exceptions of some of the detailed
calculations in the Appendices, the most recent data for the Franson experiment (Figs.
8.9b - 8.13), and the cartoons used to open four of the chapters.

Lastly, throughout we have attempted to follow “intelligent” rules of punctuation,

so that quotation marks mostly fall inside other punctuation marks.
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these sordid details.

Xviii.



Chapter 1: Entanglement, Interference,
and an Overview

“What do you wish from me?” the master asked.

“I wish to be your student and become the finest ... in the land,” the boy
replied. “How long must I study?”

“Ten years at least,” the master answered.

“Ten years is a long time,” said the boy. “What if I studied twice as
hard as all your other students?”

“Twenty years,” replied the master.

“Twenty years! What if I study day and night with all my effort?”

“Thirty years,” was the master’s reply.

“How is it that each time I say I will work harder, you tell me that it will

take longer?” the boy asked.
“The answer is clear. When one eye is fixed upon your destination,

there is only one eye left with which to find the Way.”

-Anonymous; taken from Zen in the Martial Arts, by Joe Hyams

1.I. Introduction

The present treatise describes research focussing on the nonlocality inherent in
quantum mechanics, as manifested by entangled states of two or more particles, and the
role of (in-)distinguishability in interference. Central to all of the experiments and
proposals included herein are the pairs of correlated photons produced when an
ultraviolet photon interacts with a nonlinear optical medium, and via the process of
spontaneous parametric down-conversion splits into two infrared photons. These pairs
possess the useful property that one can produce essentially single-photon states by

triggering on one of the photons, and counting the other in coincidence. The photons



may also be prepared in various types of entangled states. In the next section we shall
briefly discuss these states, why they are preferred over others, and how the process of
parametric down-conversion is an ideal source of them. Sect. 1.1 reviews the
Feynman approach to understanding interference, which we shall employ throughout,

while Sect. 1.IV gives a preview of the remainder of this work.

1.11. Entangl

It has been said that “entangled states lead to interesting effects”. Nearly all of
our experiments and proposals rely on them. A quantum-mechanical state Iw) 1,20f
two particles (or more generally, two systems) is said to be an “entangled” state if there
is no basis in which the state can be factorized into a single product state of the form

|x>; ® |®>, . The canonical example is the spin (here, polarization) singlet state:
IW>={-1§(|H1,V2> - v, HY), (1.1)

which describes a pair of particles--photons, say--whose polarizations are strongly
correlated, even though the polarization of either photon individually is not well-defined.
If we measure the polarization of one of them to be horizontal (H), then the other is
certain to be vertically (V) polarized, and vice versa. Moreover, the state described by
Eq. (1.1) is symmetric, so no matter what polarization-component we measure for the
first particle, the polarization of the other cne will be orthogonal. This rather strange
state of affairs constitutes an undeniable nonlocality in quantum mechanics. Although
one can concoct theories which are completely local to explain some of the correlations,
no such theory can completely mimic all the predictions of quantum mechanics, as

proved by Bell in 1964 [Bell, 1964], and discussed in Chaps. 7, 8, and 10. In

! Although admittedly this is a quote of the author several years back, and thus of
dubious origin, it should be pointed out that a great many people nodded when he spoke
it at a conference.

2.



particular, simple classical-field models are in contradiction with quantum mechanics,
and more importantly, with experimental results.

Using the correlated photons produced in spontaneous parametric down-
conversion, it is possible to create polarization-entangled states like that of Eq. (1.1)
(see, for instance, Chaps. 5 and 10). However, it is a remarkable feature of the down-
conversion process that the photons are automatically produced in an energy-entangled

state, as discussed in the next chapter:
lwd =[dEA(E) |E>) |Eg-ED,. (1.2)

According to the standard Copenhagen interpretation, the meaning of this entangled state
is that when a measurement of the energy of one photon results in a sharp value E’, there
is a sudden “collapse” of the wavefunction such that the other photon, no matter how
remote, instantly also possesses a sharp value of energy E, - E’.

Just as one can investigate nonlocality with Eq. (1.1) by using variable polarization
analyzers, one can similarly investigate the nonlocality associated with Eq. (1.2) by
using variable frequency analyzers. We have done this, using both narrow-band filters
(Chap. 4), and unbalanced interferometers for this purpose (Chap. 8). The
interpretation of our results is that Nature is nonlocal, and contrary to what one might
naively think, the energy and time of emission of the down-converted photons have no
definite values until we make a precise measurement, at which point both the photon we
measured and the other one acquire well-defined properties.

The states described by Egs. (1.1) and (1.2) involve entangling similar types of
quantum systems, i.e., entangling the polarization (energy) of one photon with the

polarization (energy) of a second photon. We shall see in the discussion of quantum



erasers (Chaps. 5 and 6) that it is also possible to entangle different types of systems.
For example, the trajectory of a photon may be linked to its own polarization (Chap. 5),
or to the energy of a different photon (Chap. 6). In fact, not only is it possible for this
1o occur--it is crucial, from the standpoint of measurements. The quantum-mechanical
description of a measurement (as given by von Neumann [von Neumann, 1983}, and
modified by others [Peres, 1980; Peres, 1986 ; Wheeler, 1983; Zurek, 1986; Zurek,
1991)) is that the system which one is measuring becomes entangled with the states of
the measuring apparatus. The measuring apparatus similarly becomes entangled with the
states of environment, and an effective irreversibility is achieved, somehow destroying
the subtle quantum coherences (of course, the whole problem in measurement theory is
that a linear theory such as standard QM cannot actually lose the information). Clearly.
we need 1o have a better understanding of the role entanglement plays in the
measurement process.

As alluded to above, our source of entangled states are the correlated photon pairs
from spontaneous down-conversion. We shall describe their characteristics in much
greater detail in the next chapter; it suffices here to stress that due to the strong time,
energy, and momentum correlations of the twin photons, they are ideal for investigating

many fundamental quantum-mechanical phenomena.

LIIL Interference 4 la Fevnman

Most of the experiments discussed in this manuscript involve interference, or lack
of it, in some form. While the rigorous formalism of quantum optics is certainly capable
of explaining the results, we find that Feynman’s procedure for calculating final
probabilities is much more useful (and definitely quicker!) for gaining an intuitive,
comprehensive picture regarding the nature of interference. There are two basic rules to
calculate the probability of a certain outcome, given a specific initial state [Feynman,

1965]:



1. If the processes leading to the particular outcome are
indistinguishable, then one must add the probability amplitudes of these
processes, and then take the absolute square to obtain the probability.

2. If, on the other hand, the contributing processes are distinguishable,
then their probabilities (i.e., the absolute square of the amplitude of each
process) should be added.

It is remarkable that these two simple rules, correctly applied, can account for all
interference effects. In particular, it is the indistinguishable processes which lead to
interference, for the relative phase information is not lost in the taking of the absolute
square; in contrast, the distinguishable processes contribute to a non-interfering
background, because any coherence between them is lost when the absolute square is
taken. The key point is that one must thoroughly understand what is meant by
distinguishable and indistinguishable. As used in Feynman’s rules, these constructs
concern what is in-principle knowable. It matters not whether one makes an effort to
actually distinguish two “distinguishable” processes in practice. The mere possibility
that one could distinguish means that rule 2 applies.

Of course, the physical content of the Feynman rules is contained within the
standard quantum formalism, according to which one determines the total state of a
system (e.g., an interfering particle and any “measuring apparatus” along the way),
projected onto a given outcome, and then takes the absolute square. If the various
processes leading to the outcome of interest are distinguishable, then the component final
states will be orthogonal, and no cross-terms will survive. Alternately, for
indistinguishable processes the final states will not be orthogonal, and therefore the
Cross-terms containing relative phase informaticn will remain, yielding interference.
Thus, we see that by “distinguishable” processes, we mean those that lead to orthogonal

final states.



Given the preceding discussion, one is led to ask, just how distinguishable is
distinguishable enough (to remove the possibility of interference)? Of course, there is
no hard cutoff--the more information one has about which way a particle goes in a two-
slit experiment, the lower the visibility of the interference fringes2, until finally they
are indistinguishable (in an experimental sense) from random fluctuations. In Fig. 1.1
we show a plot of the visibility of fringes from a Mach-Zehnder interferometer as a
function of attenuation in one of the arms. Remarkably, the attenuation must be quite
high (implying a high degree of certainty about which way a given photon took) before
the visibility is significantly affected.

Although we shall use the Feynman rules throughout, nowhere are they as

conspicuous as in the quantum eraser experiments, discussed in Chaps. 5 and 6. In

i Bt N R

z t/
04

0.2 {

0 0.2 0.4 0.6 0.8 1
Relative intensity of paths

Figure 1.1 A plot of the visibility of interference fringes in a two-path
interferometer, in which one of the paths is attenuated. Unless the attenuation is
rather severe, implying a strong predilection for which path a given interfering
particle might take, the interference is seen to persist.

2 This has been put in more quantitative terms by Ya’sin and Greenberger [Ya'sin and
Greenberger, 1986] and by Mandel [Mandel, 1991].
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some sense, these are the archetypical demonstrations of the rules “at work™. As is
standard knowledge, if one attempts to determine through which slit a particle went in
the canonical double-slit experiment, then interference will be lost. This is just the
principle of complementarity. Typicaily some form of Heisenberg’s uncertainty relation
is cited as the underlying “mechanism” by which phase information is lost. However, in
terms of Feynman’s rules, it is the fact that the final states are distinguishable which is
responsible. If one somehow manages to erase this distinguishability, then the
interference can be recovered. That is the basic idea of the quantum eraser. Its
interpretation relies wholly on the notions of distinguishability and indistinguishability

leading to which-path information and interference, respectively.

1JV. What Lies Ahead

Each chapter of this dissertation is intended to be somewhat self-contained,
although all rely on the basic results of Chap. 2, in which we discuss the nature of the
source of our correlated photons (viz., spontaneous parametric down-conversion), both
in an abstract sense, and for our particular nonlinear crystal. In the following two
chapters we preser:t the results of two similar arrangements that involve sending one
photon through an interferometer and the other straight to a detector. Chap. 3 focusses
on the fact that the interference observed arises from a Berry’s phase; by violating an
inequality regarding the statistics of any classical light source, we shall conclude that the
topological phase is essentially quantum mechanical. In Chap. 4 the above
interferometer is set outside the white-light fringe regime, so that no fringes exist in the
rate of singles detection at the output port of the interferometer. Nevertheless, by
placing a narrow-band filter in front of the detector collecting the conjugate photons, one
can observe the interference in the rate of coincidences between the detectors. The

results are interpreted in terms of the “collapse of the wavefunction”.



Quantum erasers are the subject of Chaps. 5 and 6. In the former, the results of
the first quantum eraser are presented, after a general discussion of the phenomenon.
Chap. 6 discusses several proposals for “new and improved” quantum erasers, which
are pedagogically superior to the experiment of the previous chapter. The central
element of these experiments is the entangled state of system plus measuring apparatus.
In Chap. 7 we discuss entangled states from the viewpoint of the EPR paradox and
Bell’s inequalities. No substantively new results are reported in this review of the issues
involved, although it may be useful to see in one place two rather different derivations of
Bell’s inequalities. We also discuss in some detail the various technical loopholes still to
be overcome in any “true test” (i.e., completely incontrovertible) of local realism, as well
as the leading interpretations and implications of violations of Bell’s inequalities.
Finally, we briefly point out how the nonlocal correlations may used to send un-
eavesdroppable messages via quantum cryptographic schemes.

Having laid the groundwork in Chap. 7, in Chap. 8 we tumn to a Bell-type test
relying on energy and time correlations, instead of the typical spin (or equivalently,
polarization) correlations. Based on a two-photon interference effect (predicted first by
Franson [Franson, 1989]) which is interesting in its own right, the experiment allows us
1o chalienge the locality of nature in a never-before tested realm. We shall discuss the
relation to the original EPR proposal, as well as the explicit non-classicality of the
results.

In Chap. 9 we describe an experiment to determine the absolute detection
efficiency of single-photon detectors, relying on the strong momentum correlations of
the photons from our source, and the fact that they are always produced in pairs. We
believe our measured efficiencies of ~75% to be the highest reported to date, with
indications that they may actually be improvable to 90% or better. Such high efficiencies

are absolutely crucial if one desires to close the technical loopholes that have plagued



every Bell’s-inequality until now. A suitable source is also required to close these
loopholes. In Chapter 10 we propose such a source, and investigate in detail its
advantages over previous schemes, both actual and proposed. Specifically, we show
how it should permit a loophole-free test of Bell’s inequalities. Lastly, in Chap. 11 we
summarize and discuss some of the most important results, emphasizing the
reladonships between the various experiments, and concluding with some general
remarks concerning the various sorts of non-classicality revealed in our experiments.

A number of Appendices have been included also, to admit detailed calculations
not appropriate for the general text, and also specifications of our various detectors. In
Appendix A an inequality for the statistics of a classical light field, which is violated by
the photon pairs from our light source, is derived. Appendices B1 and B2 present
formal calculations of two quantum eraser effects. Two approaches to the error analysis
in our efficiency measurements are given in Appendix C. Various aspects of the Bell’s
inequality-proposal scheme of Chap. 10 are detailed in Appendix D: D1 contains the
derivation of type-II vector phase matching in a negative uniaxial crystal, such as BBO:
D2 considers the effect of finite iris sizes on collection efficiency; and D3 presents a
general calculation for our proposal, allowing for non-ideal optical elements. In
Appendix E we compile specification sheets for the three types of detectors used for our

experiments.



Chapter 2: Spontaneous Parametric Down-
Conversion in Potassium Dihydrogen Phosphate

I am never forget the day I am given first original paper to write. It was on
analytic and algebraic topology of local Euclidean metrization of infinitely
differentiable Riemannian manifold. Bozhe moi! This I know from nothing.

-Tom Lehrer, singing “Lobachevsky”

Man: Hello my boy. And what is your dog’s name?
Boy: 1don’tknow. I caii him Rover.

--Anonymous

2.L.__Introduction

Because all of the experiments described herein use the correlated photons emitted
in spontaneous down-conversion, it is important to understand the relevant
characteristics of this source. Basically, contrary to the somewhat daunting name, the
salient features are simply described: Due to a nonlinear interaction in a crystal (KDP,
for our experiments), an ultraviolet “parent” photon may spontaneously split into two
infrared photons, historically called the “signal” and “idler”. Due to the nature of the
production process, they are strongly correlated in time (they are emitted within 100
femtoseconds of each other [Hong et al., 1987; Steinberg et al., 1992], as determined by
the inverse-bandwidth of each), in energy (the sum of their energies is essentally a
constant, to within the extremely narrow pump bandwidth; see Chaps. 4 and 8), and in
momentum (given the direction of one photon, the direction of the twin is determined to

within less than a milliradian).
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For our source, we employ type-I vector phase-matching, so that the identically-
polarized signal and idler photons are emitted on opposite sides of the “down-conversion
cone™--see Fig. 2.1. The opening angle of the cone depends on the wavelength of the
light, for although the sum of the frequencies is well-defined, each photon individuaily
possesses a broad bandwidth. Selecting out one photon with a narrow-bandwidth filter
and small iris immediately constrains the energy and direction of the conjugate photon.

In Sect. 2.I1 we describe theoretically the state of light produced in down-
conversion, while the calculation of type-II vector phase-matching is reviewed in Sect.
2.101. The particulars of our source are described in Sect. 2.IV. Finally, in Sect. 2.V,

we discuss briefly three “practical” applications of the down-converted pairs.

KDP crystal

Figure 2.1 A sketch of the down-converted light cones emitted from a nonlinear
crystal, pumped from the left. Some of the pump photons are split into two lower-
frequency photons--three such pairs are shown, i.e., the two squares represent a
conjugate pair, as do the two circles and the two triangles. The opening angle of
the cone on which a given photon exits depends on the color of the photon. Inthe
diagram the triangles represent the degenerate case, where both signal and idler
have exactly half the energy of the pump.

11.



2.11 neral Theor

A full treatment of parametric down-conversion is beyond the scope of this work,
and superfluous in any event, as the theory is described in many standard books on
nonlinear optics [Shen, 1984; Yariv, 1988; Dmitriev et al., 1991]. We wiii focus on
those aspects not generally covered in the standard texts, which are relevant for our
experiments. Following Hong [Hong, 1988; Hong and Mandel, 1985], we can write
the pump input state to the crystal as a superposition of single-photon states | kp> (since

the pump photons are assumed not to interact with one another):
|W>in = { d3kp ¢p(kp) I kp> ’ 2.0
J

where qu(kp) is assumed to describe a nearly-monochromatic (at cop), highly-directional

pump. After interacting! with the nonlinear medium, the state is

"V)oul =0 , W> in+ f d3kp ¢p(kp) f d3ksf d3ki Q(Z)[mp’ @, COi]

3
x 8(eop = 05~ ©; —Aw) TT sinc[(x, - ks~ K)mLm2] [ ke k> , 2.2)
1

where the first term represents the unconverted pump photons, and the second term

describes the signal and idler photons, with frequencies g and w;, respectively. i(z) is

related to the second-order susceptibility, but has different dimensions, and is assumed

! A much-simplified interaction Hamiltonian for down-conversion is

H=%@ as'fai"'ap +h. a., where as(i)T denotes the creation operator of the signal (idler)
photon, and ap the annihilation operator for the pump photon. See [Hong, 1988; Hong,
1985] for the complete interaction Hamiltonian that leads to 2.2).
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to be a slowly-varying function of the frequencies. The delta-function describes energy-
conservation; the uncertainty A is essentially the reciprocal of the effective interaction
time, effectively infinite for a cw pump. (Note: There has been a bit of confusion about
this in the literature, so we shall discuss it in greater detail presently.) The sinc-function
[= (sin x) 4] demonstrates the need for phase matching: the photon momentum vectors
inside the material (the X’s, related to the free-space k-vectors by K= n(mj) kj, where n
is the index of refraction) must satisfy momentum conservation to within ~1/Lp (where
L is the relevant dimension of the nonlinear medium) to have efficient down-
conversion. In practice, the transverse L’s are much larger than the transverse extent of
the pump beam [as governed by ¢p(kp)], so it is the divergence of the pump that leads to
a range of efficient phase-maiching. Also, although the crystal’s finite iongitdinai
length will lead to a finite bandwidth of down-converted light (along any specific
direction), this does not affect the frequency-correlation imposed by the delta-function of
(2.2).

Eq. (2.2) has contained within it the tight time, energy, and momentum
correlations of the photons. However, it will be easier to discuss the relevant features

using the less cumbersome state:
l\y} =fdoos A(wy) I‘”s>s ,"’p‘“’s>i , (2.3)

where A(s) = A(@, — @) is the complex probability amplitude for finding one signal
photon with a frequency oy (i.e., in the n=1 Fock state | o.)s>s) and one idler photon
with a frequency @, — @ (i.e., in the n=1 Fock state lwp—cos>i). In going from (2.2)
to (2.3) we have dropped the uninteresting term corresponding to non-conversion of the
pump photon, and have assumed a plane-wave pump and a crystal very large compared

to a wavelength (i.e., we have assumed that the phase-matching constraints are
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satisfied?), allowing us to focus on the energy-correlations of the photons. We have
also assumed a cw, monochromatic pump, so that the delta-function enforcing energy-
conservation (g + ®; = wp) is exact.

Note that energy conservation does not forbid the signal photon from havin ga
broad spread in energy, however, and the idler photon from having a conjugately broad
spread in energy. In principle, the spread in signal and idler frequencies is limited only
by phase-matching considerations (see Sect. 2.II), but in practice, it is usually limited
by the bandwidth of the filters and size of irises placed in front of the detectors (see Sect.
2.IV). Nevertheless, the energy-correlation is exact (to within the bandwidth of the
pump). We now elaborate on this. It has been suggested [Rubin and Shih, 1992; Shih
et al., 1393] that the idealized deita function in the frequencies of the two photons, (g
+ ©j ~Wp), is in practice “replaced by functions with nonzero widths, giving . . . &g +
©j + Aw”, where the uncertainty is due to the “finite size of the crystal and the finite
interaction time of the down-conversion”. These same authors acknowledge that “one
can easily arrange a narrow enough spectral bandwidth of the pump field by means of a
single mode laser”. Thus, the implication is that the energy uncertainty is primarily due
to the finite length of the crystal. This is not so, because although the finite crystal size
does lead to an uncertainty hAk in total momentum, it is not correct to simply multiply
this by c to obtain the uncertainty in total energy. Energy conservation imposes a much
stricter requirement, due to the fact that the pump photon originated in a continuous-
wave, single-mode laser. The effective interaction time of the down-conversion process

is determined in this case by the coherence length of the pump laser, nor by the much-

2 The assumption of phase-matching also fixes the polarizations of the down-
converted photons--for type-I phase-matching in a crystal such as KDP, they will be
ordinary-polarized, while the pump is extraordinary-polarized. In Chap. 10 and in
Appendix D1 we will examine type-II phase-matching, in which only one of the down-
converted photons is ordinary-polarized, and the other is extraordinary-polarized (in a
crystal such as BBO, the pump is also extraordinary-polarized).

14.



shorter crystal length. Although a finite crystal size gives an energy-uncentainty, a finite
bandwidth, to each of the photons individually, the sum of their energies remains
extremely well defined (to within the inverse of the pump coherence time). This is the
central feature of the entangled state (2.3). The claim that a finite interaction time can
limit the two-photon coherence length is correct, in that the two-photon coherence length
can never be greater than the pump coherence length (cf. the total loss of interference
for path lengths greater than the pump coherence length, shown in Fig. 8.2).

The tight ime-correlation implied by Eq. (2.3) can be seen by calculating the joint
probability of detecting a signal photon at time tg and its conjugate idler at time tj-
According to the standard Glauber theory of photodetection [Glauber, 1963], this is
given by

GOt 13,10) =y | B B P ) B ) | w)
_ IA(«») ) F
= |E"WE, @l [, (2.4)

where Eﬁ‘(?)(zs Gy and ﬁﬁ& (*si)), the negative- and positive-frequency parts of the electric
field for the signal (idler) mode, may be Fourier expanded in terms of frequency-
dependent detection efficiencies 14(,) and 1;(w;), and creation and destruction

operators 3 () and A(w):

E ) = f do, N3(,) i(w,) e1Osls | (2.52)
D) = [E ), (2.5b)
E?’(tﬂ = f do; N () 3(w,) 19l | (2.5¢)
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and

o~ o~ f
EPw =(EPw) . 2.5d)
Substituting these and Egq. (2.3) into Eq. (2.4) we have

Gt tt) =

' f f f do, da; do M3(w) 17 () A) €70t et 3 (@) aw) | o, |y ~

2
- i J[ de (@) T;(@) ~ ) A(@) e7Os eiop - 0)y , ’ (2.6)

where we have used the canonical commutation relations to set ®; = o and
®; = @Wp — . We are interested in the ultimate limit of the time correlation between
members of a signal-idler pair, so infinitely fast detectors are assumed, with frequency-

independent efficiencies. Then Eg. (2.6) becomes

2

G, t,t) = Q.7

*

I do A() el® i~ 1)

which clearly vanishes unless the time difference tj - tg is less than frequency spread
described by A(w). Ultimately the spread is limited by the phase-matching constraints
(see below), but in practice it is determined by the size of collection irises and by filters
in front of the detectors. This behavior has now been verified in many experiments

[Hong et al., 1987; Kwiat and Chiao, 1991; Steinberg et al., 1993].
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21, Ph M ing in

KDP is a negative uniaxial crystal (ng > ne). The indices of refraction are given

[Dmitriev et al., 1991] by

2
nd = 2.259276 + —0Q.01008956 _ , 13-20#21 , (2.82)
A" -0.012942625 A =400
and

2
ng =2.132668 + 20.008637494 + 3.22279924 A ] (2.8b)
A7 -0.012281043 A -400

The effective nonlinearity for type-I phase matching (extraordinary-polarized pump,
ordinary-poiarized down-converted light) is def = d3¢ sin® sin 2¢. Here 6 and ¢ are
polar coordinates referring to z (the optic axis) and x, respectively. The nonlinear
coefficient d3¢ for conversion of 351-nm light is ~5 x 10-13 my/V. The linear absorption
coefficient in the range 350-530 nm is less than 0.005 cm"1, while by 780 nm it has
climbed to 0.024 cm-1.

We now present the calculation for type-I vector phase-matching, which is
basically just a statement of momentum conservation inside the crystal. From the
schematic in Fig. 2.2 we can immediately write down the longitudinal- and transverse-

momentum conservation relations:

Kp = K cos8s + K; cos9; , (2.9a)
and

K sinfg = —x; sin6; , (2.9b)

where the ’s are the momenta inside ihe crystal, given by xp =y Ne(Wp, Opm)

Ks = 05 (), and X; = o ny(w;). Here Bpm is the angle between the pump and the
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Figure 2.2. Schematic representation of type-I vector phase-matching (angles are

exaggerated for clarity).

optic axis. Squaring Eq. (2.9b) and using the trigonometric idenaty,

sin?0 = 1 - cos26, we have
x§ cos?@, = K,z (coszei - 1) + wc'z , (2.10)

Moving x; cos6; to the left-hand side of Eq. (2.9a), and squaring and substituting
(2.10) for :c% c0529s gives

Kg'epm + ¥ cos?; - 2Kp,0,,, Ki €Os6; = K7 cos26; + k2 — x? (2.11a)

or

pm

2“p,epm'ci cos®; = Kg,e = ‘é + '<.2 ) (2.11b)

so that

(2.11c)

Kg.epm = K§ + K?J

8; = cos’!
2 Kp’epm X;

Lastly, using Snell’s law to obtain the laboratory an gles6's and 6°;:
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sin€'s = ny(w;) sinBg and sin@'; = ny(;) sinb; , (2.12)

where it has been assumed that the pump is incident normal to the crystal face. Using
the formulas (2.8) for the indices of refraction, one can now generate plots of the output
angles of the down-converted light (with respect to the pump beam), for various values

of 8pm. as shown in Fig. 2.3.

2.1V. Our Source

Our KDP crystal (custom-manufactured by Cleveland Crystals) was 10-cm lon g,
with a 2.54-cm square cross-section3. It was housed in a sealed alumninum container,
with index matching fluid (n=1.29) and fused silica end-windows. The crystal “input™
was anti-reflection coated [single-layer of MgF», 1/4 wave at 351 nm] to reduce losses
of the pump beam. The crystal “output” was broadband anti-reflection (BBAR) coated
[multi-layer coating] to reduce output losses to less than 0.5% over the ran ge 400-750
nm?®. Our pump was 2 Coherent Innova-200 Argon-ion laser, operated at 351.1
nm>; the polarization was vertical, with a purity of 100:1. A “black-glass” filter was
used to supress the blue-fluorescence from the laser. Typically, we found it necessary
to further attenuate the pump (with a variable neutral density filter wheel), so that typical
power into the crystal was only ~150 mW. After passing through the crystal, the

remaining, unscattered uv beam was directed by a small mirror to a beam dump. A uv-

3 In principle, since our pump-beam diameter was only 2 mm, this was “overkill™--in
practice, it was useful on several occasions to work with a different part of the crystal,
due to some sort of optical damage from the ultraviolet pump.

4 Note: These directions were accidentally reversed in all experiments presented here,
except for a few of the detector-efficiency measurements (Chap. 9).

5 With the exception of the Berry’s phase experiments and the dual-beamn Michelson
experiment (Section 8.1I), all the experiments had the pump operating in single-line
mode (from a temperature-stabilized intracavity etalon), with a nominal bandwidth of 50
MHz, corresponding to a coherence length of about 6 m.
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cutoff filter [Schott GG-475] was used to remove any scattered uv and laser
fluorescence from the down-converted beamlines.

One can see from the curves of Fig. 2.3, that the bandwidth (over all angles) of the
detected output light can be quite broad®. In practice, it is usually determined by filters
and irises before the detectors. In most of the experiments described herein, we select
out the nearly-degenerate signal and idler pairs at 702.2 nm. However, we did have
occasion to map out parts of the angular spectrum, by translating a detector preceded by
an interference filter transversly to the beam (see Fig. 2.4). The transverse profiles from
several interference filters are shown in Fig. 2.5a. From the positions of the peaks of
the various colors, a curve similar to Fig. 2.3 can be obtained (see Fig. 2.5b). We find
that the angle (in the crystal) between the pump beam and the crystal optic axis is 50.5°;
the degenerate (A = 702 nm) signal and idler beams emerge on opposite sides of a cone

whose half opening angle is 2.1°.7

Interference

ﬁlter\ ,/ Iris
e

Figure 2.4 Simple setup to measure spectral profiles, either in singles or
coincidence. The effective size of the iris, which must be deconvolved from all

ST

profiles, was typically 0.5 mm.

® As stressed earlier, though, the correlation between photons in a given signal-idler
pair is very tight.

7 The crystal optic axis was nominally cut at 50.3° to the normal to the crystal input
face, but due to pump-beam wander, the pump was not always perfectly normal to this
face.
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Figure 2.5 Data from transverse profiles of detector (see Fig. 2.4). a) Color filters
used had different bandwidths; curves have been rescaled to a nominal 10-nm filter
width, for an approximation of true relative intensity. b) The location of the peaks in

a) is plotted against wavelength; cf. Fig. 2.3.
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By looking at coincidence rates between the signal and idler detectors, as one of
them is translated, one may investigate the conditional angular-profile; i.e., given that a
photon of a well-defined color (determined by a narrow bandwidth filter) is detected at
the fixed detector, what is the angular spread of its conjugate? We performed many such
profiles. For a plane-wave monochromatic pump, in the limit of perfect phase-matchin g
(i.e., infinitely long crystal), there will be no spread. In practice, the angular spread of a
given color in coincidence arises from the pump-beam divergence.

There is an assymetry in the width for different parts of a given cone, however,
and different directions at a given part. In particular, the angular correlation width for
photons whose k-vectors lie in the plane determined by the pump and the optic axis
(which we shall call the POA plane) should be roughly twice the width for photons
whose k-vectors form a plane perpendicular to the POA plane. The reason can be seen
from the curves in Fig. 2.3, where a 1° difference in the angle between the pump beam
and optic axis corresponds to a ~2° shift in the opening angle of a given color. In other
words, if one had a plane-wave pump, angling it slightly transversely to the POA plane
would have almost no effect on the opening angles (with respect to the pump beam) of
the down-converted cone. In contrast, angling the pump i the POA plane would
actually change the opening angles, by roughly twice the angular tilt of the pump. All of
the experiments described herein selected out signal and idler photons whose k-vectors
form a plane perpendicular to the POA plane; i.e, the conjugate k-vectors lay on either
side of the crystal optic axis.

Our pump was specified to have a full-angle beam divergence of 0.4 mrad, and a
beam diameter (at the crystal) of 2 mm. Spatial profiles performed in coincidence
showed that 1.5 m from the crystal, the signal beam conjugate to an idler beam selected
by a 0.4-mm pinhole and a 0.86-nm FWHM filter (centered at 702.2 nm) had a
horizontal size of 1.1 mm and a vertical size of 2.5 mm. Using near and far irises, or

placing the iris in the focal-plane of a lens, we measured a horizontal (vertical)
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divergence angle of ~1 mrad (~2 mrad).

We used three types of photon detectors in the experimental work described here.
Specifications are reproduced in Appendix E. Initially, we employed photomultiplier
tubes (Burle #C31034A-02), selected for high-sensitivity (tvpical efficiencies were 5%
at 702 nm) and low dark count rate (~10 cps). These were cooled to approximately
-30° C with Pacific Instruments #3470 Thermoelectric PMT Housings, and required
biasing of about 2000 V. The active area of the PMT was 4 x 10 mm. Next we
switched to silicon avalanche photodiodes (EG&G C30902S) operated in the Geiger
mode, requiring a bias voltage of approximately —200 V. When cooled to -18° C
(temperature controller circuit is listed in Appendix E, along with the passive-quench
circuit), dark count rates were typically 500 cps. Detection efficiencies of 40% were
measured at 702 nm. The active diameter of these devices is about 0.7 mm. Finally, we
switched to single-photon counting modules (EG&G SPCM-200-PQ), which also
employ silicon avalanche photodiodes, but with a much better performance than typical
APDs. (See Sect. 9.IV for more explanation of why they are better.) Specifically, we
have measured efficiencies of 75%, and dark counts of only about 60 cps. Moreover,
these devices require only standard low-voltage power supplies, and produce a TTL-like

pulse for each detection event. The main drawback is the small active area 0.1 mm-

diameter), which makes alignment difficult.

2.V, Applications

Aside from the fundamental sorts of experiments which make up the bulk of this
work, there are several more “practical” applications of the spontaneously-generated
photons, which we will discuss briefly here. The first is communication. One can view

the tight time correlations as leading to correlated intensity (noise) fluctuations between

the signal and idler pairs®. Several researchers have proposed utilizing these
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correlations in an optical binary communication channel [Mandel, 1984; Hong et al.,
1985]. By modulating both the signal and idler beams, and using two separate receivers
to detect their arrivals in coincidence, one can in principle achieve tremendous
discrimination against background and noise. Other suggestions and demonstrations
have been made, using the photons in various quantum cryptographic schemes [Ekert et
al.,, 1992; Ekert, 1991}, in which the nonlocal correlations arising from an entangled
state allow two collaborators to share a secret, random key. This is discussed in more
detail in Sect. 7.VIL.

A second application of the down-converted pairs is in the measurement of
propagation times, with very high resolution. In the simplest case, one would simply
use one photon as a timing migger for the other. The arrival imes with and without the
presence of some sample could be directly compared. In practice, current single-photon
detectors are far too slow to be used directly. Fortunately, there exists a two-photon
interference effect [Hong et al., 1987], described in Chap. 5, which permits one to
measure timing to within a fraction of the coherence times of the down-converted
photons. Moreover, due to the energy-entangled nature of the photons, there arises a
dispersion-cancellation effect, so that normal group-velocity broadening of the photon

wavepackets does not degrade the resolution [Steinberg et al., 1992a]. Using this

technique, we have demonstrated that single photons propagate through glass at the
group velocity [Steinberg et al., 1992b], and have measured the tunneling time of single
photons through a one-dimensional photonic bandgap structure? [Steinberg et al.,
1993]. We found that on average, the tunneling photon arrives sooner than it would
have if no tunnel-barrier were present, implying an effective tunnel velocity of nearly

twice the speed of light. In this last experiment, time resolutions of less than 1

8 In this sense, the output of our crystal is a limiting case of squeezed light.
9 This is nothing more than very fancy jargon for a very common object--a dielectric
mirTor.
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femtosecond were achieved.

As a final use for the photon twins, we cite the measurement of the absolute
detection efficiency of single-photon detectors [Klyshko, 1980; Rarity et al., 1987;
Kwiat et al., 1993a,b], which is the subject of Chap. 9. Because the photons are always
produced in pairs, and have a strong angular correlation, we can effectively use one of
the photons as a trigger for the detector of the conjugate photon. If we arrange our
optics such that we are certain to catch (if not detect) this conjugate photon, then the

efficiency of the detector is simply the ratio of the coincidence rate to the trigger detector

singles rate.
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Chapter 3: Single-Photon Berry’s Phase

Let us start with the extended right arm pointing straight in front of us, and
the thumb pointing upwards. BACK STRAIGHT. Now move the arm
upward toward the vertical, keeping the thumb parallel to itself at all times
[i.e., in the plane of motion]. TUMMY IN. After the arm reaches the vertical
position, move it downward along a perpendicular vertical arc, so that the arm
extends to the right. HOLD IT--FEEL THE BURN. Complete the cycle by
moving the arm in a horizontal arc, so that the arm is brought back to its
starting position pointing forwards. AND BREATHE.

Excerpted from the never-to-be-released Raymond Chiao Exercise

A~ AmAd A Lo TS s m1  TOANNY
‘v’nd\.u, and also from l\,hlaO et al., 17>vU],

31 Intreduction

Quantum interference possesses global geometrical features, which spring from the
non-Euclidean properties of Hilbert space. One such feature is Berry's phase, which can
be acquired by a quantum system whenever it evolves adiabatically and cyclically back to
its initial state [Berry, 1984]. It has manifestations which range from low energy
physics, e.g., in fiber optics [Chiao and Wu, 1986; Tomita and Chiao, 1986], to high
energy physics, e.g., in chiral anomalies of gauge field theories [Niemi and Semenoff,
1985].

In its optical manifestations, prior to the present experiment [Kwiat and Chiao,
1991), Berry's phase had appeared only at the classical level, as a phase shift of a
classical electromagnetic wave [Chiao and Wu, 1986; Tomita and Chiao, 1986; Bhandari
and Samuel, 1988; Simon et al., 1988; Chyba et al., 1988; Jiao et al., 1989; Tompkin et
al., 1990]. There has been a controversy as to whether one should view optical Berry's

phases as originating at the quantum or the classical level. [Chiao and Tomita, 1987;
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Haldane, 1987; Segert. 1957; Kugler and Shirikman, 1988; Cai et al., 1989]. Here we
point out that there can exist nonclassical manifestations of this phase when the state of
the light is nonclassical. Using an entangled state of light, we have observed on the
quantum level one form of Berry's phase, Pancharatnam’s phase, which is generated
after a cycle of polarization states [Pancharatnam, 1956]. We believe that this
experiment will settle the controversy [Chiao et al., 1993]. In Sect. 3.II we briefly
discuss Berry’s phases in optics, including the particular phase examined in our
experiment. The setup used is described in Sect. 3.I0T; our results and an inequality

demonstrating their nonclassicality, in Sect. 3.IV. Conclusions are given in Sect. 3.V.

In its simplest form, Berry’s phase is a ropological phase acquired by a system
after it is taken through some closed adiabatic cycle such that it is returned to its original
state. Most of the physical variables characterizing the system obviously return to their
original values; certain ones may not however. A good classical analog is a bicycle
wheel, of which we paint one spoke red. We initially orient the wheel so that the painted
spoke is down. If the wheel is rolled (without slipping) in a circle on the floor, then
even though the wheel may end up at the same spot on the floor, in general the painted
spoke will no longer point down. (Itis easy to see that the necessary condition to return
the spoke downward is that the circumference of the circle must be an integer multiple of
the circumference of the wheel.) The term anholonomy is used to describe this
phenomenon.

In studying the quantum adiabatic theorem, Berry [Berry, 1984] has shown that
after a cycle C in the parameter space of the hamiltonian H(R) (where R denotes some
slowly varying parameters which return to their starting values), a wavefunction ' n,R)

can acquire an extra phase ¥,(C); n is the quantum number labelling the energy
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eigenstate, ie., HR) in, R = E;(R) [n, RD. This topological phase factor! exists
in addition to the standard dynamical phase factor: exp(-i| E,dt/h). Specifically, the

Berry’s phase is

() = f A dR , G.1
c

where Agr=i<mR [ Vg [n;RD. Aharanov and Anandan have generalized Berry’s
result by removing the adiabatic restriction [Aharonov and Anandan, 1987]. The notion
of parameter space is then replaced by szate space, the projective space of rays in

Hiibert space, and R is interpreted as coordinates in this state space. A cycle of changes
in the system corresponds to a closed curve in its state space, whose geometry and
topology determine Berry’s phase [Chiao, 1990].

To date at least four distinct Berry’s phases in optics have been discussed [Chiao et
al., 1990]. The first is the “‘Chiao spin-redirection phase”, which is acquired when the
direction of light is caused to make a cycle C in k-space [Chiao and Wu, 1986]. In
particular, Y(C) = —6Q(C), where 6 = 1 is the helicity of the photon and Q(C) is the
solid angle subtended by C with respect to the center of the K-sphere (we assume that
only the direction of the light is changing, not the magnitude of its wave vector). The
phase manifests itself as follows: if linearly polarized light (which we can always
represent as a superposition of the two helicity states) is taken through a helical path

(using a coiled fiber, for example), then the angle of linear polarization will in general

1 The term “topological” is used to stress that the phase depends on the topology of the
parameter space, and on the cycle of parameter changes. It is independent, for example,
of the speed at which the changes are made. In our bicycle analogy, the final position of
the painted spoke does not depend on the speed at which the wheel was rolled. In
particular, we could stop the wheel halfway through and even roll it backwards before
finishing the cycle.
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rotate (because the two helicity components acquire opposite, but equal, phase shifts)
[Tomita and Chiao, 1986]. One can understand this result very simply at a classical
level as arising from parallel transport of the electric field vector of the light along the
fiber [Ross, 1984; Haldane, 1986].

In the second type of Berry’s phase in optics, the direction of the light is kept
fixed, but the polarization is cycled (essentially the opposite of the first phase
discussed). This phase was first investigated by Pancharatam [Pancharamam, 1956],
and hence is sometimes known as “Pancharatnam’s phase”. The relevant state space is
the Poincar€ sphere, whose surface describes all possible pure polarization states of
light. If the cycle C encloses a net area on the surface of the Poincaré sphere, then the
light will acquire a geometrical phase given by Y(C) = — Q(C)/2, where again Q(C) is the
solid angle subtended by C with respect to the center of the sphere.2 It is this Berry’s
phase that we will demonstrate below at the single-photon level.

Another type of optical Berry’s phase, for which the state space has the topology
of a hyperboloid of revolution, instead of a sphere, is the squeezed-states Berry’s phase,
discussed by Chiao and Jordan [Chiao and Jordan, 1988]. For example, if light is
squeezed in one quadrature and subsequently in an orthogonal quadrature, and then
compared with the same light squeezed in the opposite order (effectively completing a
closed cycle), a Berry’s phase will be present. Needless to say, due to severe
experimental constraints, this phase has not yet been demonstrated experimentally.

Finally, Kitano and Yabuzaki have pointed out that if one cycles light through a
sequence of partial linearly-polarized states, the light acquires a phase which is formally
identical to the above squeezed-states Berry’s phase [Kitano and Yabuzaki, 1989].

2 Note that there is a factor of two difference associated with this phase compared to
the spin-redirection phase. The underlying reason is that the polarization state space
describes an effectively spin-1/2 system, whereas the momentum space reflects the
bosonic nature of the photon.
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Using tilted glass plates as partial linear polarizers, they have experimentally
demonstrated this phase. It is an example of the extension of Berry’s phase to statistical
mechanics, since partially polarized light is a prototype of mixed states. States must
then be described using the density matrix instead of the wavefunction.

The question arises as to whether these phases are classical or quantal in nature. In
all of the cases mentioned above, we can view them either as phase shifts of a classical
electromagnetic wave or as phase shifts of the wavefunction of the photon. A
controversy has consequently developed surrounding this issue [Chiao and Wu, 1986;
Tomita and Chiao, 1986; Haldane, 1987; Segert, 1987; Kugler and Shtrikman, 1988;
Cai et al,, 1989]. However, there do exist situations in which purely quantal (i.e.,
nonclassical) Berry’s phases appear. In particular, when the light is in a nonclassical
state that does not possess any correspondence principle limit in which it tumns into a
classical wave, then we may claim that any Berry’s phase acquired is purely quantal. A
Fock (or number) state is such a nonclassical state, in contrast to a coherent state. Our
goal will be to demonstrate that a Berry’s phase can be acquired by these manifestly

quantum states.

JII.  Experimental

Fig. 3.1 shows a schematic of the experi1 ient. We used the correlated photons (at
~702.2 nm) produced via down-conversion in a 10-cm KDP crystal, excited by an
ultraviolet (uv) argon ion laser operating at A=351.1 nm, normally incident on the KDP
input face. The idler photon (upper beam) was directed to the detecior D1, which was a
cooled RCA C31034A-02 photomultiplier (see Appendix E for specifications). The
signal photon (lower beam) entered a Michelson interferometer, inside one arm of which
were sequentially placed two zero-order quarter waveplates Q1 and Q2. The fast axis of

the first waveplate Q1 was fixed at 45° to the horizontal, while the fast axis of the second
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waveplate Q2 was slowly rotated by a computer-controlled stepping motor. After
leaving the Michelson interferometer the signal beam impinged on a second beam splitter
B2. Detectors D2 and D3, essentially identical to D1, monitored the output ports of this
beam splitter. (An interference filter located in front of each detector, indicated in Fig.
3.1, transmitted light centered at 702 nm. The bandwidths of these filters are an
important parameter for the version of this experiment to be described in the next
chapter. Filters F2 and F3 were identical and possessed a broad bandwidth of 10 nm
FWHM [full-width at half-maximum]; filter F1 had either a 10-nm bandwidth or a 0.86-
nm bandwidth.) Coincidences between D1 and D2 and between D1 and D3 were
detected by feeding their outputs into constant fraction discriminators and coincidence
detectors after appropriate delay lines. We used EG&G C102B coincidence detectors
with coincidence window resolutions of 1.0 ns and 2.5 ns, respectively. Also, triple-
coincidences between D1, D2 and D3 were detected by feeding the outputs of the two
coincidence counters into a third coincidence detector (a Tektronix 11302 oscilloscope
used in a counter mode). The various count rates were stored on a computer every
second.

Our particular arrangement of quarter waveplates in the Michelson interferometer
has been shown previously to generate Pancharatnam's phase at the classical level
[Simon et al., 1988; Chyba et al., 1988]. Upon appropriate detection after the
interferometer, we observed at the quantum level the interference fringes resulting from
this phase. To calculate the phase, we use the generalized Poincaré sphere [Jiao et al.,
1989; Tompkin et al., 1990] shown in Fig. 3.2, where polarization states are referred to
space-fixed axes, and not to the direction of light propagation, as in the ordinary
Poincaré sphere. (We do so in order to avoid extraneous discontinuities upon reflection
from mirrors.) The first quarter waveplate Q1 converts horizontal linear polarization,

represented by point A on the equator of the sphere, into circular polarization,
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represented by B at the north pole. This transformation of polarizations is represented
by a geodesic arc AB. Then Q2 converts the circular polarization back to linear
polarization (C on the equator), but with an axis rotated from the horizontal by 6, the
angle between the fast axes of Q2 and QI, in real space. On the sphere, the azimuthal
angle from A to Cis 20. After reflection from the mirror, the linear polarization is
unchanged with respect to space-fixed axes, and is again represented on the generalized
Poincar€ sphere by the same point C. After reentering Q2, this is converted to circular

polarization represented by D (the south pole), completing geodesic arc BCD. Then

Figure. 3.2: Generalized Poincaré sphere, where S1, S2, and S3 are Stokes
parameters. Circuit ABCDA represents a round trip through waveplates Q1 and
Q2, where 6 is the angle between their fast axes. Berry's phase, here

Pancharatnam's phase, is 26 for this circuit.
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Q1 reconverts the circular polarization back to horizontal linear polarization, generating
geodesic arc DA. Thus a cycle in polarization states is completed, represented by the
circuit ABCDA. As stated earlier, Pancharatam's phase is minus one-half the solid
angle subtended by the circuit with respect to the center of the sphere {Simon et al.,

1988; Chyba et al., 1988; Jiao et al., 1989; Tompkin et al., 1990). For this circuit, the

phase is equal to 26.

3.1V, Results

We took data both outside and inside the white-light fringe region where the usual
interference in singles detection occurs. We report here only on data taken inside this
region, where the optical path length difference was at a fixed value much less than the
coherence length of the signal photons, determined by the filters F2 and F3. Hence.
fringes are expected both in the singles rates at detectors D2 and D3 and in the
coincidence rates.

In Fig. 3.3, we show data which confirm these predictions. Singles rates are
plotted in Fig 3.3a, while coincidences are shown in Fig. 3.3b. The coincidences
correspond to a 10-nm filter before detector D1. (The calculated coherence length of the
signal photon wavepacket (50 jtm) was much greater than the optical path length
difference at which the Michelson was set (~0 pm). The slightly nonsinusoidal
component in Fig. 3.3 can be explained by a slight wedge in Q2, in conjunction with the
fact the signal beam was incident on Q2 off center.

The function of the second beam splitter B2 was to verify that the signal beam was
composed of photons in an n=1 Fock state. In such a state, the photon, due to its
indivisibility, will be either transmitted or reflected at the beam splitter, but not both.
Thus coinciderices between D2 and D3 should never occur, except for rare accidental

occurrences of two pairs of conjugate photons within the coincidence window.
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Figure 3.3 Interference due to a Berry’s phase acquired in one arm of a Michelson

interferometer, in the white-light fringe regime. a) Fringes in the signal singles
rates. b) Fringes in the signal-idler coincidence rates, after accidentals have been
subtracted; vertical arrows indicate where the anticorrelation parameter a was
measured (see text). For classical fields, a = 0.70+0.07.
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However, if the signal beam were a classical wave, then one would expect an equal
division of the wave amplitude at the 50% beam splitter, and hence frequent occurrences
of coincidences. An inequality, which was strongly violated in our experiment, places a
lower bound on this coincidence rate for classical light (see below). This verifies the
essentially n=1 Fock state nature of the light, and confirms an earlier result of Hong and
Mandel [Hong and Mandel, 1986).

The vertical arrows in Fig. 3.3b indicate the points at which triple-coincidences

were measured. Let us define the anticorrelation parameter [Grangier et al., 1986]
a=Njp3 N1 /NjpNy3 , (3.2)

where N3 is the rate of triple-coincidences between detectors D1, D2 and D3, Nisis
the rate of double coincidences between D1 and D2, N3 is the rate of double coin-
cidences between D1 and D3, and Nj is the rate of singles detections by D1 alone. The
inequality a > 1 has been shown to hold for any classical wave theory3. A rigorous
proof is given in Appendix A. The equality a=1 holds for coherent states l o,
independent of their amplitude 0. Since in our experiment the amplitude fluctuations in
the double coincidence pulses led to a triple-coincidence detection efficiency € less than

unity, we should reduce the expected value of a accordingly*. The modified classical

3 Similar higher-order criteria for nonclassical effects in photon statistics have been
discussed by Lee [Lee, 1990].

4 Specifically, what we actually measured was Nj2.13, the number of coincident
double-coincidences. We fed the output pulses of the two coincidence counters into a
Tektronix 11302 oscilloscope, and if the sum of the two signals was greater than a
preset threshold then a count was registered. Ideally, if the pulse heights were constant,
then one could use a threshold just slightly greater than this constant, and be guaranteed
of catching all triple-coincidences without ever falsely counting a double-coincidence.
Because this was not the case, however, we were forced to use a higher threshold
(roughly equal to 1.5 times the average pulse height from either counter, which was
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inequality is @ > €. We calibrated our triple-coincidence counting system by replacing
the two-photon light source with an attenuated light bulb, and measured € = 0.70+0.07.
During the data run of Fig. 3.3b, we measured values of @ shown at the vertical arrows.
The average value of a is 0.07+0.08. This violates by seven standard deviations the
predictions based on any classical wave theory”, but is in complete agreement with the
value agys = 0.06 predicted for our quantum-mechanical light, for which the triple-
coincidences are due entirely to multiple simultaneous down-converted pairs®, aside
from background, which is negligible in this context. It is therefore incorrect to interpret
these results in terms of a stochastic ensemble of classical waves, in a semiclassical
theory of photoelectric detection [Clauser, 1974]. Classical waves with conjugate, but
random, frequencies could conceivably yield the observed interference pattern, but they

would also yield many more triple-coincidences than were observed.

greater than the maximum pulse height of either counter alone), to avoid falsely counting
larger-than-average double-coincidence pulses.

3 The uncertainties in g are rather large due to the fact that so few triple coincidences
were observed. For example, in one run (corresponding to the third arrow from the left
in Fig. 3.3b) only 1 wriple-coincidence count was registered in 7,240 sec (18 + 2 were
expected for a classical [i.e., coherent state] source). A violation by about 9 standard
deviations was observed in a slightly different version of this experiment, described in
Chap. 4, where fringes were observed (in coincidence rates) outside the white light
fringe region.

6 To calculate a we calculate the expected rate of triple coincidences (given the

measured singles rates and double-coincidence rates) using the formula:

Ni23 = W23 [(Ng2 - App)N3 + (Np3 - A13)Nawiptwy3 + NiNyN3wy,], where Wij
is the gate window width for coincidence counts between detectors D1 and Dj, and
w(12)3 is the effective gate window for coincidence counts between detector D3 and the
output of the coincidence counter measuring the rate Nj2. This formula is valid so long
as the actual detection efficiencies (here assumed to all be equal, for simplicity) are low,
as they were in this experiment (otherwise the third term, which represents triple-
coincidences arising from three separate down-converted pairs, needs to be reduced by
the factor (1 —M)A3 {where 7 is the detector efficiency] to account for the fact that we
need to not detect one member of each pair.)
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V. Di ion an nclusion

In fairness to the opposing side, we should present at least a glimpse of their
reasoning [Haldane, 1987; Segert, 1987; Kugler and Shtrikman, 1988; Cai et al., 1989].
They would claim that although the states we used are undeniably quantum-mechanical
(i.e., nonclassical), the calculation regarding the Berry’s phase is done on the fields
themselves, not the state. Although in quantum mechanics these fields are described by
operators, the same Berry’s phase would result in a classical description where they are
simply c-numbers. Therefore, the phase is classical, even though the state is quantum-
mechanical so that the number of triple-coincidences observed could not be explained by
any classical-field approach.

Our answer to such arguments is two-fold. First, one must evaluate an experiment
in terms of the entire system, not any of its parts. (We shall see that this philosophy is
absolutely crucial if one is to understand another set of experiments we have performed,
described in Chap. 5, demonstrating the phenomenon of quantum erasure.) It is
misleading to say that the phase acquired in one part of an experiment is classical, even
though the experiment as a whole does not possess any classical explanation. Asa
further example of this, we can consider the situation of a two-particle wavefunction,
defined on the configuration space of the particles, which may be thought of as the
relevant state space for the system. If this state space possesses a nontrivial topology
(e.g., the state space will be a torus if the configuration space coordinates are restricted
to two angular variables), and if these particles undergo a sequence of changes such that
they return to their original state, then the system may acquire a Berry’s phase. In
particular, consider two photons prepared in an entangled state of energy, as discussed
in the previous chapter. We will see in Chap. 8 that if each photon is directed to an
unbalanced Mach-Zehnder interferometer, with a phase-shifter (possibly a Berry’s

phase-shifter, as was used in the present experiment) in each, then interference may be
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discerned in the rate of coincidences between detectors looking at output ports of the two
interferometers, even though no fringes can be seen in any of the singles rates. That s,
the (Berry’s) phase shift manifests itself in the entire two-particle wavefunction. These
results are not only nonclassical, they are nonlocal as well.

Our second answer to doubters of quantum Berry’s phases is that there is
predicted to be one situation where the actual value of the phase depends on the state of
light. In the squeezed-states Berry’s phase, if one uses a Fock state |n)), then the
resulting Berry’s phase acquired by the light is proportional to n + 1/2 [Chiao, 1990;
Chiao and Jordan, 1988]. However, when a coherent state is taken through the same

cycle, there is no such proportionality to the intensity of the light. Clearly, if this result

is correct then one must indeed consider the quantum nature of the state when calcnlaring
a Berry’s phase.

We have observed Berry's phase for photons in essentially n=1 Fock states, in a
way which excludes with high probability any possible classical explanation. We
conclude that this and other optical phases originate fundamentally at the quantum level,
but under special circumstances, can survive the correspondence principle limit onto the
classical level [Chiao and Tomita, 1987]. In other words, we feel that even ordinary
two-slit interference is best viewed as a quantum phenomenon, which is still apparent at
the classical level. Our main logic behind judging the quantum interpretation as “more
fundamental” than the classical interpretation is that there exist situations, like that
described above, where a quantum description yields the correct predictions, even

though no classical description can. The reverse is never true.
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Chapter 4: “Collapse of the Wavefunction”

When I hear of Schédinger’s cat, I reach for my gun.
-Stephen W. Hawking

4,1, Introduction

There are a number of physicists who react nearly as violently as indicated above
when mention is made of the “collapse” of the wavefunction. The two main problems
are what causes the collapse (i.e., what really is a measurement, after all) and when
does this occur. Herein we shail make no anempt 1o soive the Iong-standing controversy
surrounding the collapse issue (see, for instance, [Wheeler and Zurek, 1983; Zurek,
1986; Peres, 1986]). Rather, we present experimental results which we feel are most
readily understood using the collapse-of-the-wavefunction approach. For all its
difficuldes, this picture can be very useful in gaining predictive insight into otherwise
subtle effects.

In this experiment we make use of the fact that the light from our down-conversion
crystal is prepared in an entangled state consisting of a pair of photons whose energies
(frequencies), although individually broad in spectrum, sum up to a sharp quantty
because they were produced from a single (nearly monochromatic) pump photon whose
energy Ep was sharp. According to the standard Copenhagen interpretation, the
meaning of this entangled state is that when a measurement of the energy of one photon
results in a sharp value E, there is a sudden collapse of the wavefunction such that
instantly at a distance, the other photon, no matter how remote, also possesses a sharp
value of energy Ep - E. We can observe this collapse phenomenon by sending one of

the photons, say the signal photon, into an unbalanced Michelson interferometer,
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operating outside the white-light regime, so that no interference is observable in the
signal singles rate. Of course, if we were to put a narrow-band filter in front of the
detector, then fringes would appear as long as the new coherence length were greater
than the path-length difference in the interferometer. The remarkable fact is that we can
instead put the narrow filter in front of the idler photon, which may be very distant;
looking in coincidence will recover the fringes!. In Sect. 4.1 we present both a
simplied and a more rigorous analysis ) of the experiment. Our setup and results are
given in Sect. 4.111, with a discussion of other interpretations of the results and

conclusions given in Sect. 4. IV.

LIL T ical Analvsi

The experiment described here is an extension of the previous one (presented in the
previous chapter; see Fig. 3.1), in which the signal photons are directed into a
Michelson interferometer, while the idlers are sent directly through a filter to detector
D1. The basic difference is that here we operate ousside the white-light fringe regime,
so that no interference fringes are observed in any of the singles rates. First we present
a simplified quantum analysis. Afterwards we will present a more comprehensive

analysis based on Glauber's correlation functions. The energy-entangled state of the

light after the Michelson interferometer is given by
IW)OUI =f dog Ae) 'ms>s lmp"ws)iv%-{l +Ci¢(ms)} , 4.1)

where ¢(w;) = AL 0/ + OBerry is the phase shift arising from the optical path-length
difference AL of the Michelson for the signal photon with frequency s, plus the

1 Obviously, placing a filter in front of the remote idler detector cannot alter the signal
singles rate, as this would permit sending superluminal messages.
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Berry's phase contribution for this photon. A(e,) is the probability amplitude for
generating a pair of signal and idler photons with frequencies g and ©p — Ws,
respectively.

The coincidence rate N7 between detectors D1 and D2 is proportional to the
probability of finding at the same time t one idler photon at detector D1 placed at ri, and
one signal photon at detector D2 placed at ry; similarly for N13. When a narrow-band
filter F1 centered at frequency Q; is placed in front of the idler detector D1, N 12 and

N3 become proportional to

[V om(ry, T2, [)12 = |<l‘1, rat | I\V) ‘outF o< 1 +coso, (4.2)

where the prime denotes the output state after a von Neumann nrojection onto the
eigenstate associated with the sharp frequency Q; upon measurement. Therefore, the
phase ¢ is determined at the sharp frequency @p — ;. In practice, the frequency width
depends on the bandwidth of the filter F1 in front of D12, so that the visibility of the
fringes seen in coincidences should depend on the width of this remore filter3. This
fringe visibility can be high, provided that the optical path-length difference of the
Michelson does not exceed the coherence length of the collapsed signal photon
wavepacket, determined by F1. If a sufficiently broadband remote filter F1 is used
instead, such that the optical path-length difference is much greater than the coherence

length of the collapsed wavepacket, then the coincidence fringes should disappear®.

2 We assume here that the irises are sufficiently large that it is the filters which limit the
bandwidth.

3 One can also view the Michelson as a type of variable filter, with a comb-shaped
spectral transmission function. This aspect is discussed in greater detail below and in
Chap. 8.

4 Note: For 1-mm irises about 1 m from the source, the maximum bandwidth of the
down-converted photons is about 40 nm, due to the phase-matching constraints.
Naturally, one cannot increase this bandwidth by using a broader bandwidth filter.
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In other words, fringes will only be detected if the collapsed wavepacket overlaps with

itself after reflection from the mirrors of the Michelson interferometer.

A more rigorous theoretical description of the experiment can be carried out within
the Glauber correlation function formalism [Glauber, 1963]. The probability of joint

detection of a signal-idler pair within the detector resolution window AT, after a total

time 7, is then given by

S

‘Tﬂ ts +£
2
P= f dt, f dt; G158 t3.t5) (4.3)

where the second-order correlation function G(2) is defined as in Eq. (2.4):

GOt 1,1 = (| 1) BD(0) V) B [ w). (4.4)

The negative- and positive-frequency parts of the electric field for the idler mode may
simply be Fourier-expanded as in Egs. 2.5¢ and 2.5d, assuming, as in Fig.3.1, that the
idler photon is directed to detector D1. The effects of filter F1 are included in the factor
). Similarly, the signal mode field operators may be expanded, but these require an

additional factor to account for the interferometer:
B ) = f doo; (@) Bes) eriosts L {1 - ciost cion) (4.52)
~(= ~ +
EVqy = (B0, 4.5b)

where T = AL/c is the optical delay time between the arms of the interferometer, and o
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is the geometrical/Berry’s phase, whose value depends on the rotation angle of the
second quarter waveplate (see Sect. 3.IIT).

In practice, in (4.3) the duration time 7 of any data point is essentially infinite
(with respect to all relevant time-scales in the problem). In addition, for our experiment
AT (= 1 ns) was much greater than T (=730 fs, for AL = 220 um) and the reciprocal
bandwidths (1/Aw; and 1/Awy) of the filters F1 and F2. Hence, we are justified in
setting the limits of integration in (4.3) to infinity. Substituting the energy-entangled

state of the down-converted light [Eq. (2.3)], we have

P= { dt, [ dt; [ do { do' A(WA*(®) { do { dw’s § doy; [ do’;
Jo Jw ] ] J J J J

X 11 (6;) M3(00%) M) Mo(') e1@i~ @Y gitog-ooig

x L(1 - e-ieste-ion)(] - ei®teiop)

BN e

x 5,i@', 0p-0’ | 8@, 2oy diw) o)) | o, @,—0)s i, (4.6)

where, for simplicity, we have assumed that the pump photon is monochromatic>. If
we assume that the probability amplitude is essentially constant (A(w) = Ap) over the
filter bandwidths Aw; and Awg, and that M2(ws) = N2g over the bandwidth Awg>> 1/t
(i.e., a spectrally broad, flat bandpass filter F2 in front of detector D2), then (4.6)

simplifies considerably:

3 This approximation is very good in our system. The coherence length of our uv
pump (not yet operating in single-line mode) was 3 cm, still much larger than the path-
length difference (220 um) in the interferometer.
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P =|AqR Mn20P J do; fn1@3)P {1 - cos (@, — ;)T + ¢g)). 4.7

We now examine the behavior of this detection probability in two limiting cases of filter
F1:

1. If my(@)P =M, S(mi - Qi} (i.e., a very narrow filter in front of detector

D1), then
P = Aol Maof’ 1o {1 - cos (0, — ;)7 + 0\ (4.8)

It is clear from (4.7) that in order to observe these fringes, it suffices to have A, <<
1/x. {If we allowed the pump to have a non-zero bandwidth in our calculation, we
would have found that the coherence length of the pump also needs to be greater than the
interferometer path-length difference to see interference. As discussed in Chap. 2, the
frequency-correlation of the down-converted photons is only as sharp as the pump
linewidth.} Note that since the filter F2 is relatively broadband (i.e. Aw, >> 1/1), there
are no fringes visible in the singles rate of detector D2, even though fringes in
coincidence may be present.

2. If ()P = m e"("’i‘ni)z/ s} » where Aw; >> 1/t (we have previously
stipulated the experimental condition Ams >> 1/t), then

P = Aol M2of id?, (4.9)

a constant, with no fringes.

4,111 _Experiment and Results

The basic setup is the same as that used in the demonstration of Berry’s phase at
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the single photon level (presented in the previous chapter; see Fig. 3.1). The only
difference is that here we operate ourside the white-light fringe regime, so that no
interference fringes are observed in any of the singles rates (see Fig. 4.1). In particular,
the coherence length of the signal photons, deiermined by the 10-nm FWHM filters F2
and F3, is only 50 um®, whereas the optical path-length difference was fixed at 220

pm.

Visibility < 0.01 4 15000

:

Singles Rate, N, (Hz)
i
{

Singles Rate, N, (Hz)

- 10000

Visibility < 0.02

- 5000 ¢

:

0 1 1 3 3 3 L 3 3 3 3 3 +—t 0
Ty Tt g Tty

o 60° 120° 180° 240° 300° 360°
Rotation Angle of 2nd Quarter Wave Plate

Figure 4.1 Far outside the white-light fringe region of the Michelson interferometer
no fringes are observable in the singles rates. Variations in the rates are most likely
due to slight beam deviations as the quarter waveplate Q2 is rotated, perhaps arising
from a slight wedge in Q2, in conjuction with the fact the signal beam was incident
on Q2 off center.

6 The visibility of the signal single-photon interference close to the white light fringe
region was measured to have a sinc-like variation with arm len gth difference (see Fig.
8.5a). We determined the coherence length from the position of the first null of this
pattern.
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In Fig. 4.2, we show data commensurate with the collapse picture. In the lower
trace we display the coincidence count rate between detectors D1 and D3, as a function
of the angle 6 between the fast axes of waveplates Q1 and Q2, when the remote filter F1
was narrow (0.86-nm FWHM bandwidth). The calculated coherence length of the
collapsed signal photon wavepacket (570 pm) was then greater than the Michelson
optical path-length difference (220 pm), and the visibility of the coincidence fringes was
thus quite high, viz., 60%+5%. For comparison, in the upper trace we display the
coincidence count rate versus 6 when a bre:d remote filter F1 (10-nm FWHM
bandwidth) was substituted for the narrow one. The coherence length of the collapsed
signal photon wavepacket was thus only 50 um, and the coincidence fringes have indeed
disappeared, as predicted.

As in the previous version of this experiment (in the white-light fringe regime), we
have measured the anticorrelation parameter a [cf. Eq. (3.2)] at several data points (the
values are indicated by the vertical arrows in Fig. 4.2). The average value of a we
measured is only 0.08+0.04, which violates by nearly 9 standard deviations the
predictions based on any classical wave theory (ac; 2 0.7+0.07), but is in perfect
agreement with the quantum-mechanical prediction of 0.08. Classical waves with
conjugate, but random, frequencies could conceivably yield the observed interference
pattern (see below), but they would also yield many more triple coincidences than were

observed.

+ IV, _Int (ati 1_Conclusi
There are several ways to approach the results:
1) Just blindly calculate using the quantum mechanical rules, avoid thinkin g about

the interpretation, and thus avoid any possible controversies. This is basically the

precept of the “strict” Copenhagen interpretation (as distinguished by Stapp from the

49.



“informal” interpretation [Stapp, 1986)), which states that the quantum formalism
“merely offers rules of calculation for the deduction of expectations pertaining to
phenomena obtained under well-defined experimental conditions™ [Bohr, 1963] -- one is
not supposed to ask “What actually happened?” We do not particularly care for this
approach, even though it is espoused by a large number of physicists. In our view it has
ever been the goal of the scientist to comprehend the underlying nature of the
phenomena he observed. While there are certainly those who will claim that any
questions regarding individual events are outside the scope of quantum theory, and that
they are just not “fair questions”, we find this attitude unhelpful. It is, in our opinion,
natural and important to try to understand what is actually happening in a given event.

2) A second option is to interpret the filtering process as essentially selecting out
photons with a particular color from a statistical ensemble describing the total bandwidth
of the source. That is, one assumes that each photon emitted from the source has a well-
defined, sharp frequency (although the frequencies of the photons in each down-
converted pair are still tightly correlated), so that the coherence length of any given
photon is very long. It is only in accepting photons of different colors, essentially
summing their respective interference patterns, that the visibility is seen to decrease. In
using a narrow filter in front of D1, and looking at the coincidence rates, we are post-
selecting out only photons within a narrow range of colors. Fringes are then naturally
observed in coincidences, without needing to resort to a nonlocal collapse.

This statistical ensemble approach is an example of a local hidden variable (LHV)
model”, about which we shall have much more to say in Chaps. 7 and 8. However,
in light of the experimental violations of Bell’s inequalities [Kwiat et al., 1993; Brendel
etal., 1992], which refute all such LHV models8, this approach is incorrect. Due to

7 Note that if we had not measured a, then the results would be equally-well
explicable by a simple correlated classical field model. Our low value of a excludes
such a description.
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the entangled nature of the state (2.3), energy (frequency) should not be viewed as a
local, definite property carried by the photon before it is actually measured. We should
point out, though, that the results of the present experiment alone are nor sufficient to
prove the non-“local-realism” implied by entangled states, i.e, one cannot violate a Bell's
inequality, contrary to what some claim [Davis, 1989; Klyshko, 1989)°. One must
employ extra means to transform the state of light into something more akin to the singlet
state of the Bohr version of the EPR paradox. This has been done in other experiments
(see Chap. 8, and [Kwiat et al., 1993; Brendel et al., 1992]).

3) The third interpretation of our results invokes the “collapse of the wavefunction™
-- the energy of the photons is not well-specified (i.e., to better than the broad
bandwidth constraints of the phase-matching conditions) until a precise measurement is
made on one of the photons of a pair. At that moment, the energy of the conjugate
photon, no matter how remote, becomes equally well-defined: the state described by
(2.3) collapses to a state with a much smaller spread in frequency!0. The collapse is
instantaneous (although our results in no way prove this) because the entangled state is
nonlocal.

4) There are two main “alternatives” to a nonlocal collapse, although they are not

widely accepted at present. One is the Everett-Wheeler many-worlds interpretation

8 Several physically-reasonable auxilliary assumptions must also be accepted. These
are discussed in Chap. 7.

% The simple reason is that one can explain all the results using the local hidden

variable model described above. Underlying this is the fact that one can write a positive-
definite Wigner function [Wigner, 1932] to describe the simultaneous time- and energy-
correlations of the photons, and Bell has shown that under these conditions no direct
violation of a Bell’s inequality is possible [Bell, 1986]; i.e., the non-positive-
definiteness of the Wigner distribution is a necessary condition for a locality paradox.
Wédkiewicz has also discussed these issues [Wédkiewicz, 1988].

10 Curiously, the effect of this collapse is actually to increase the coherence length of
either of the photons, so that if one thinks in terms of wavepacket size, the term
“collapse” may seem contradictory.
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[Everett, 1957; DeWitt, 1973], according to which interactions that force the
wavefunction to split into a multitude of components force the whole universe to split.
A single specific measurement outcome is realized in each of the resulting “branches”,
without resorting to a non-unitary collapse. The other alternative is the Bohm-deBroglie
pilot-wave picture [Bohm, 1952; Bohm and Hiley, 1984; Bohm et al., 1987 and
deBroglie, 1960]. Here there is presumed to exist both a wavefunction and a particle,
the former “guiding” the latter. This picture is a type of hidden variable theory (cf.
Chap. 7), in which the specific, detailed initial conditions are the hidden variabies.
However, the model is explicitly nonlocal--changing a setting (e.g., polarizer, filter,
etc.) in one location can instantly affect the wavefunction at distant locations. In this
sense, a “collapse” of some sort still occurs. At present, all predictions of these alternate
viewpoints are in agreement with those of the standard approach.

Throughout, we have spoken as though the measurement of the idler photon with
filter F1 has “initiated” the collapse. This method led us in Sect. 4.1I to quickly explain
the results described above. However, we could have equally-well treated the
interferometer as a sort of frequency filter (with a comb-like transmission functon),
which “measured” the frequency of the signal photons, collapsing the frequency spread
of the remote idlers. Both approaches yield the same final result.

It is the tremendous strength of our quantum mechanical formalism that either
approach gives the same result. For this reason, we think it unlikely that there will ever
be a situation where the “collapse” of the wavefunction argument will be inconsistent
with the formal mathematical calculation. Of course, as experimentalists we would be
almost happy if this were not the case, for then we could perhaps distinguish between
the at-present indistinguishable viewpoints, e.g., collapse, many-worlds, etc. In some
ways, the situation at present is similar to that shortly after the introduction of the EPR

“paradox” (discussed at length in Chap. 7): There were large philosophical differences
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in the quantum-mechanical and the hidden-variable approach to explaining correlations
of separated particles, but all real calculations seemed to yield identical predictions. This
philosophical impasse extended until Bell [Bell, 1964] proved that there were situations
in which the different viewpoints gave different experimental predictions (see Chap. 7),
opening the door for experimental refutation of one of the theories!!. A similar
opportunity to actually rule out the “collapse” picture would be welcome.

In conclusion, using photons in essentially n=1 Fock states, we have observed
nonclassical interference, the presence or absence of which depends on the value of a
remote filter (but in any event one must correlate the results of the separated detectors to
observe the interference, so it is not possible to send superluminal signals). These

results can be explained in terms of the nonlocai coilapse of the wavefunction.

1 Unfortunately, as discussed in Chap. 7, a completely unambigous test has not yet
been made, although in Chap. 10 we propose a setup for such a “loophole-free” test.
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Chapter 5: Quantum Erasers -- Theory and
Practice

But why must I treat the measuring device classically?
What will happen to me if I don’t?
-Eugene Wigner

.. Introduction
The admonition (to treat measuring devices classically) that provoked the above

response was perhaps intended to prevent the troublesome state of affairs in which a

macToscopic apparatus {as well as the experimeniers observing it, their friends, cats,
etc.) is described by a quantum superposition. However, one must exercise great care in
such matters, for it is sometimes essential that one treat a measuring apparatus
quantum-mechanically, if correct predictions are to be made. The quantum eraser
experiments described in this chaper (and the next) are just such situations.

Interference is arguably the most fundamental effect in quantum mechanics, the
Young'’s two-slit experiment being the canonical manifestation of complementarity. As
discussed by Bohr in his classic dialogue with Einstein, if one tries to determine which
slit the particle traversed (e.g., by measuring the initial and final momentum of the
recoiling slit mechanism), the uncertainty principle requires a sufficient uncertainty in the
initial transverse position of the slits that the interference is lost. No wave-like behavior
will be observed, although the “which-path” information is indicative of parricle-like
behavior. In a variant of this example, Feynman proposed to “watch” the passage of an
electron through a particular slit by placing a light source immediately after the slits and
scattering photons off the electron [Feynman et al., 1965]. Even if one does not

observe the scattered light, the electron interference will be washed out (whenever the
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light is scattered sufficiently to carry unambiguous information about which slit was
traversed).

This loss of interference is commonly interpreted as arising from uncontrollable,
irreversible interactions of the interfering system with a classical measuring apparatus
(MA), which often takes the form of the environment [Peres, 1980]. The resulting
measurement provokes an irreversible *“reduction of the state vector,” irrevocably
introducing an uncertainty in the phase information carried by the particle, thereby
eliminating the possibility of interference. In Feynman’s example, scattering light off
the electron changes its center-of-mass wave function in an uncontrollable manner,
removing the phase coherence between the two paths. While it is true that many
measurements are of this sort, there are situations where the measurement process need
not be so uncontrollable. In these cases it is more helpful to view the loss of coherence
as due to an entanglement of the system wave function with that of the MAL, which is
itself a quantum system; this is identical to the first step in von Neumnann’s
measurement theory [von Neumann, 1983], but lacks the step in which the off-diagonal
elements of the expanded density matrix are postulated to vanish. Through the
entanglement of a quantum system to a MA, previously interfering paths can become
distinguishable (assuming that the final MA states are orthogonal), such that no
interference is observed (cf. the discussion of Feynman’s rules in Chapter 1). This is
true even though one may not actually make subsequent measurements on the MA to
determine which path actually occurred, i.e., even if one does not look at the result of
the MA. Whenever welcher Weg (“which way”) information is available in principle

about which possible path occurred, the paths are distinguishable, and no interference is

1 Stern et al. have shown a general equivalence between this interpretation and one in
which the environment “scrambles” the phase of the interfering system due to an
uncertain interaction potential [Stern, 1990]. We find the second picture less helpful in
the experiments under consideration, as the relation of this potential to the experimental
system is often rather subtle. Thus we restrict ourselves here to the first interpretation.
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possible. Interference may be regained, however, if one somehow manages to “erase”
the distinguishing information, by correlating the results of measurements on the
interfering particle with the results of particular measurements on the MA. This is the
central concept of the quantum eraser [Hillery and Scully, 1983; Scully et al., 1991].
Scully ez al.[Scully et al., 1978] discussed a simple experiment to see this effect,
in which an atom is sent through a Stern-Gerlach interferometer?. Upon measurement
of the atom’s passage through one arm of the interferometer, the interference is made to
vanish. This is true even if the measuring apparatus does not change the spin state of the
atom, or affect the center-of-mass part of its wave function. Unfortunately, detailed
calculations of the proposed experiment made clear that it would not be feasible in
praciice, due 10 the experimenial difficulty of controliing the fields to the degree
necessary to observe interference, even in the absence of a welcher Weg detector
[Englert et al., 1988; Schwinger et al., 1988]. Ancther proposal using a two-slit type
interference of neutrons, with micromaser cavities as welcher Weg detectors was also
deemed very difficult [Scully and Walther, 1989]. To date, the most promising of the
proposed experiments on particles involve the interference manifested in the quantum
beat phenomenon [Scully and Walther, 1989; Zajonc, 1983). However, in addition to
also being rather difficult, though possibly feasible, these experiments suffer the
conceptual disadvantage that there are not actually spatially distinct paths as in the

double-slit versions. A somewhat different scheme with photons using optical

2 The atom is initially polarized in the +X direction, using a Stern-Gerlach apparatus
(SGA) along +X as a filter. An SGA measuring <S> along +Z acts as the first
beamsplitter. Two SGA’s (along —2) act as mirrors to deflect the spin-up atoms to the
recombining beamsplitter, another SGA along +z. Similarly, two other SGA’s (along

—2) act as mirrors to deflect the spin-down atoms to the recombining beamsplitter. In
principle, the SGA in the second half of the interferometer may be made to reverse the
effects of the SGA in the first half: the atoms after the final SGA will then be polarized in

the +X direction again. This may be checked by an analyzer (a second SGA along +X)
after the interferometer.
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paramnetric amplifiers as weicher Weg detectors was also proposed [Raymer and Yang,
1991]. However, only partial erasure is possible, and even then a practical obstacle of
lack of near-unit efficiency photon detectors must be overcome.

As described below, we have performed a comparatively simple experiment
involving the interference of photons, which demonstrates the salient features of the
quantum eraser phenomenon [Kwiat et al., 1991; Kwiat et al., 1992}3. (In Chapter 6
several proposals for pedagogically-improved schemes are discussed.) The welcher
Weg information is stored in the polarization states of the photons, which are made
distinguishable by means of a half waveplate. The erasure is performed by means of

polarizers placed before the detectors. In Sect. 5.11, we present a detailed discussion of

ihie essendal elements of a quanium eraser; our experimentai setup is described in Sect.
5.II0. The nonclassical interference effect we employ is reviewed in Sect. 5.1V,
including the necessary quantum field theory formalism. The loss of this interference is
investigated theoretically in Sect. 5.V, and experimental results are shown. A simple
derivation of the quantum eraser effect is presented in Sect. 5.VI, as are experimental
results. We show that not only is it possible to recover interference, but also to change
the form of the interference pattern. A comparison of our experiment to the various
proposals is made in Sect. 5.V, along with a discussion of its relation to some Bell’s
inequalities experiments and other two-photon experiments. The main results are
summarized in Sect. 5.VIII. Throughout we will try to explain the phenomena both at
an intuitive level using Feynman’s rules, and also at a more formal level, using the

established quantum field-theoretic approach to photodetection and correlation.

3 Two other down-conversion experiments have also been offered as demonstrations
of quantum erasure [Zajonc et al., 1991]. However, for reasons discussed in Chap. 6.
these are lacking some of the essential attributes.
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IL__Idealized Ouantum Eraser

We first describe the relevant features that comprise an ideal quantum eraser.
Such an experiment would begin with an interfering particle (or particles). Envision that
the particle has two processes or paths, which we label “a” and “b,” leading to the same
outcome (such as striking a particular point on a screen, or exiting a particular port of an
interferometer), with probability amplitudes y, and v, and a variable phase ¢ between
them. Thus the total amplitude for this particular outcome, in the absense of any

welcher Weg detectors, could be written:

W=V, +efy, . (5.1

For instance, y; might represent the value of the wave function at a particular point on a
screen after double-slits, or at one of the exit ports of a Mach-Zehnder interferometer.
The squared modulus of yg corresponds to the probability that this outcome would
occur (i.e., that the particle would appear at the particular point on the screen, or would
choose that interferometer exit port); interference arises from the cross-terms
eioy; Wy + €%y, wi . We have implicitly assumed thus far that the “a” and “b” paths
are not distinguishable (e.g., that we are using a very massive, rigid slit mechanism).
Inserting a MA into one or both paths causes the system wave function to become
entangled with the wave function of the MA, enlarging the relevant Hilbert space for the
problem. That is, yg becomes y; |MAD, and we replace y, by w,|AY and v, by
v, | BD, where the states |AD and | B) span the Hilbert space of the MA, and are by
definition orthogonal. The previous cross-terms therefore vanish, and interference is
lost. Importantly, in principle the MA need not induce any disturbance in the center-of-
mass wave function of the particle: loss of interference results from the distinguish-

ability of the final states. The above description contains the essential elements of a
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welcher Weg experiment.

In a quantum eraser we go one step further. By making a suitable measurement on
the MA, and correlating the results to the detection of the original particle(s), one can
revive the interference effect. Of course, if one post-selects only those events where
either A or B was measured, then no interference fringes will be observed. But if we
calculate the probability of obtaining the particular outcome of the initial system and
finding the MA in the symmetric state ( [AY+IBOWZ, we find

K&;ﬂ}%lmf = Ly, + ity
= Lua? + i + oy + ePyu) .2)

arevival of the original fringes. For concreteness, we now assume that processes “a”
and “b™ are equally likely to lead to the outcome we are examining, and that all phase
differences between y, and Y, are included in ¢. Then (5.2) is simply (1 + cosd)/2.
Moreover, depending on the precise measurement made on the MA, one can actually
alter the form of the interference, yielding anti-fringes (1 — cost)/2 instead of the
expected fringes. This is achieved by projecting onto the anti-symmerric state
(IA>-IBYWZ. (f we do not correlate to the MA results, then the fringes and
antifringes will cancel.) More generally, projecting along ( [AD+ exp(if) | B))ﬂ.”.— yields
(1 +cos(¢-6))/2. (As an aside, one may note from the previous expression that the
system and MA play symmetric roles, i.e., one could equally well view the system as

carrying “which-state” information about the measuring apparatus.)

S.JIL __Experimental Setup

A schematic of our apparatus is shown in Fig. 5.1. The correlated (horizontally-
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polarized) photons from our KDP crystal were brought back together by means of
mirrors, so that they impinged simultaneously on the surface of a beam splitter. (We
shall henceforce describe this arrangement as a “Hong-Ou-Mandel (HOM)
interferometer”, after the inventors [Hong et al., 1987].) With irises (2-mm diameter)
and filters (10-nm bandwidth, FWHM) at our detectors*, we select out the nearly-
degenerate signal and idler pairs at 702.2 nm. We measure singles and coincidence rates
at the output ports (using a Stanford Research Systems SR400 Gated Photon Counter).
As explained in the next section, if the beam splitter is placed such that the two photons
reach it essentially simultaneously (i.e., within their coherence times), interference will
result, in such 2 way that both photons always exit the same port of the beam splitter.
Thus a nuil in the coincidence rate appears as the path length of one of the arms is slowly
scanned, even though the singles rates remain unchanged. The width of the dip (=40
piz FWHM) is determined by the filters in front of the detectors. In practice, it was
preferable to vary the relative path length using an “optical rombone” in one arm of the
interferometer, thus avoiding the problem of lateral walk-off associated with translating
the recombining beam splitter directly. Translation of the prism was effected bya
Burleigh Inchworm piezoelectric motion system; a Heidenhain optical encoder yielded a

position resolution of 0.1 pum.

1V ng-Ou-Mandel Interferen
A simplified schematic of the Hong-Ou-Mandel interferometer is shown in Fig.
5.2a. One can explain the coincidence null at zero path-length difference usin g the
Feynman rules for calculating probabilities. The two indistinguishable processes (Fig.

5.2b) which lead to coincidence detection in the above setup are both photons bein g

4 Each detector consists of an RCA C30902S avalanche photodiode (see Appendix E
for specifications) cooled to -18°C, whose output is fed into an EG&G-Ortec #583
Constant Fraction Discriminator.
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Figure 5.2. a) Simplified set-up for a Hong-Ou-Mandel interferometer.

b) Feynman paths for coincidence detection.

reflected at the beam splitter and both photons being transmitted. For simplicity,
suppose we have a 50/50 beam splitter, and choose the amplitude transmission
coefficient t to be real. The Feynman amplitudes are thenrer andte«t, and the

probability of a coincidence detection is

‘-0, (5.3)

Pe=fer+tetf = %.V_}f + éoé

where the factors of { come from the phase shift upon reflection at a beam splitter.

When the path-length difference is greater than the coherence length of the photons (i.e.
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when the photon wave packets no longer overlap at the beam splitter), there is no such
cancellation effect and coincidence events occur one half of the time, since each photon
individually has a 50% chance of being reflected or transmitted.

More formally, we write the wave function after the beam splitter in terms of Fock

states:

|Wao = 2[[112> +i[2,0) + if01 2> - [1,1)]

%[ |21 02 + |01 2], (5.4)

where the subscripts denote the propagation modes to the two detectors, and the

£ ! > indicates zero path-length difference. As discussed in Chap. 2, the
conjugate photons actually have a relatively broadband frequency distribution, which is
determined in practice by irises and filters in front of the detectors. However, since we
operate near degeneracy, and since we are considering zero path-length difference, this
generalization is an unnecessary complication for our purposes. As in Chap. 2, the

coincidence counting rate is given by the second-order Glauber correlation function:

), )

Pc = G(Z)(tl,tz; tZ’tl) oc <\lfl ’E\(l-)(t]) E(2-)(t2) EZ (t2) E] (tl) I\I’>
o {ylaialag; Iy, (5.5)

where we have used the Fourier representation of the field operators [cf. Egs. (2.5a-d)],

but have omitted the integrals over frequency for simplicity>. We have also neglected

5 When the path-length difference is not zero, the field-operator integrals, along with
those implicit in Iy>, determine the precise form of the interference dip as a function of
path-length difference, when one integrates over the time resolution of the detectors.

See also, Appendix B2, where the time dependence is explicitly taken into consideration,
though for a somewhat different experimental arrangement.
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polarization for the moment, which is justified because the photons are both
horizontally-polarized, and our detectors are polarization independent. Clearly, the
reduced coincidence operator Pereq = 3| a3a23; gives zero when it operates on
| \&D ax=0, as given in Eq. (5.4).
When the path length difference is greater than the coherence length of the down-
converted photons (Ax»T), the “transmission-transmission” and “reflection-reflection”
coincidence possibilities are in principle distinguishable, so they do not interfere. In this

limit, we find

. (5.6)

(TS

~ -4 ~
Pe(Axote) = K11 101 Pogea. | 11 12D + B4 101 P [ 11 12> =

(The reduction by a factor of 2 reflects the fact that we are only considering coincidence
counts, not cases where both photons go to the same detector.)

This demonstrates the coincidence dip at zero path-length difference to the beam
splitter. Note that the singles rate at either detector, given by P = G(”(tj;tj)
=(yl §§')(tj) §§+)(tj)l V), does not show this dependence on path length difference. It
has been shown that as long as the visibility of the coincidence dip is greater than 50%,
no semi-classical field theory can account for the observed interference [Ou, 1990;

Franson, 1991].

S.V. Loss of Interference

In the spirit of the Feynman two-slit experiment, we ask if one can perform a
“measurement” on the photons which will yield which-way information. Of course, we
could place an APD or PMT directly in one of the input arms of the interferometer, but

then lack of coincidence is a trivial consequence. We consider instead what happens

when a half waveplate at an angle ¢/2 to the horizontal is inserted into one input arm of
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the interferometer, as depicted in Fig. 5.1 (and we adjust the trombone to compensate
for the optical path-length of the waveplate). The polarization of the photon in that arm
is then rotated by ¢, making the two Feynman paths partially distinguishable, thereby
reducing the amount of interference. The degree to which the interference is lost
depends on the angle ¢, and is calculated below. In the extreme case (0/2 = 45°) the
Polarization states of the two different photons reaching the beam splitter are orthogonal.
The two paths are now completely distinguishable and the amplitudes are squared
before being summed. The result. . . no interference. These effects are shown in Fig.
5.3a.

In terms of our earlier formalism, we have entangled the number-state basis wave

funcdon with polarization information:
[ Woaco = L[| 11 1@ | Hy B> - |1 0@ | Gi+on HD],  (5.7a)
2

where the notation Hj indicates that the photon reaching detector j is horizontally
polarized, and (H+¢)j indicates that the photon is polarized at an angle ¢ to the
horizontal. We have already omitted the kets in which both photons go to the same
detector, since we are interested here in coincidence rates. We introduce the following

simplified notation:
|Wano = 1[[1815 - |18 18] | (5.7b)

To accoun for polarization, the field operators must now be generalized to the vector
operators, 3] =&y gty g vandd; =3y € H+3;V &jv, where & and & v are
orthonormal pofarization vectors (associated with detector index j=1,2) in the horizontal

and vertical directions, respectively. The new reduced operator relevant for coincidence
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Figure 5.3 (next page) a) Profile of interference dip in coincidence rate for three
waveplate orientations. (Accidental coincidences have been subtracted, and rates far
from dip have been normalized to the same value.) Note that the interference effect
is seen to vanish when the waveplate is at 45°, i.e. when the input ports to the beam
splitter are made distinguishable. b) Visibility as a function of half waveplate angle.
The solid line is a fit to theory, with maximum visibility as the free parameter. The

experimental points do rot lie exactly on the same curve because slight fluctuations

in alignment affect the visibility.
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counting is then

5 t ot _ t 1
Porea= 322,200 = 2 A a,314; 33,320,
A1.Ap=H.V AlA2=H.V

£

=(&]-8))(a3-32)= (8 2,m + 81w 8,v) B By + abyvasy) -
Using the expansion I 1?+¢> = I 1> cos ¢ + l ljv> sin ¢, we find

Pe0) = (W1 Pezea | WDaxo = Lsin’o .

(5.8)

5.9

When the path-length difference is greater than the photon coherence length, the

calculation of the coincidence rate proceeds as before:
Polbror) = KU 1 B [ 18157

.4
H+ H| & H H
GO Popa |10 18> = L.

(5.10)

The visibility of the dip, defined as V = {P.(Ax»T.) —~ P.(Ax=0) }/P.(Ax»1.), has the

form cos? ¢. The experimental demonstration of this relationship is shown in Fig. 5.3b.

The lack of perfect visibility even at ¢ = 0 results from imperfect alignment of the

system, so that the signal and idler modes leaving the beam splitter are already somewhat

distinguishable, regardless of their polarization.

Following Scully er al.[Scully et al., 1978], one can also approach the loss of

interference in terms of the density matrix. When the photon-propagation states are

entangled with the polarization states, the density matrix of the system is enlarged. It
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still represents a pure state, however, with the quantum coherence of the entanglement
manifested in the off-diagonal matrix elements. The “collapse” to a mixed state occurs
when we trace over the polarization degrees of freedom, i.e., when we detect the final
propagation direction of the photons irrespective of their polarization. This effectively
removes the coherences between the formerly interfering states, although the full density
matrix has undergone only unitary evolution and retains the original coherences. In this
case the reduced density matrix has only diagonal elements, because the polarization
states I Hj> and I Vj) (which are essentially the “environment” for our purposes) are
orthogonal. This method of decoherence was recently discussed by Zurek, although he
focussed on an environment which was either “uncontrollable” or possessed a large
number of degrees of freedom [Zurek, 1991). In either case, the process is effectively

irreversible, which is certainly not the case in our experiment, as we shall see presently.

S.VI. Ouantum Eraser

The essence of the quantum eraser can be understood relatively easily now in
Feynman’s language of distinguishability. As we have seen, with the half waveplate at
45° (¢ = 90°) the two paths leading to coincidence detection (“reflection-reflection” and
“ransmission-transmission”) are distinguishable; they leave the light in each portina
different polarization state. For this reason, their probabilities are to be added
incoherently, and there is no interference term. What if one could erase the information
carried by the polarization, thus making the final states indistinguishable? This is
precisely what happens when one places polarizers oriented at 45° to the horizontal in
both output ports of the interferometer. (See Fig. 5.1.)

Both paths can lead to coincidence detection, and to the same final state.
Therefore, their probability amplitudes are added, thus reviving the Hong-Ou-Mandel

interference dip at equal path-length. Note that the insertion of a polarizer in only one of
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the output ports is insufficient to erase the distinguishability of the final states, because
the photon in the other port still possesses welcher Weg information. Hence, the only
effect of a single polarizer is 1o reduce the relevant singles rate and the coincidence count
rate by half.

The editing accomplished with two polarizers is not limited to erasure, as can be
motivated by the following observation. Regardless of the rest of the system, the light
in port 2 can always be broken up into its orthogonal polarization components. But we
just saw that with both P1 and P2 at 45", the interference dip reappeared (albeit
antenuated by a factor of 4). Furthermore, we argued that the coincidence profile with
polarizer P1 at 45° and P2 not in place was a flat line. Itis clear then that if P1 is placed
a1 45° and P2 is placed at -45°, instead of a dip, a peak centered at zero path-length
difference will now appear. These theoretical results are presented in Fig 5.4a and our
data in Fig 5.4b. As shown below, this is merely a specific instance of a more general
property of the two-photon state emitted by the interferometer. (It should be noted that
the possibility of producing a peak at zero path-length difference greatly aids the
alignment process for the Hong-Ou-Mandel interferometer.)

We now present a simplified analysis, limiting ourselves to the case ¢ =90°. A
more complete calculation is presented in Appendix B1. The output of the interferometer

is given by a special case of the entangled state in Eq. (5.7b):
lw@> = L[ 11> - 1Y 1] , (5.11)

where we have again dropped terms which could not lead to coincidence counts.
Detection of a photon at one port with no polarizer collapses the remote photon into a
mixed state with half polarized horizontally and half polarized vertically. However, if a

linear polarizer is placed at an angle 81 to the horizontal in output port 1, a detection
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Figure 5.4. a) Theoretical curves showing how two polarizers at appropriately
chosen angles can erase distinguishability, restoring an interference pattern. b)
Experimenta! data and scaled theoretical curves (adjusted to fit observed visibility of
91%) with polarizer 1 at 45° and polarizer 2 at various angles. Far from the dip,
there is no interference and the angle is irrelevant. At the dip, the nonlocal collapse
of the polarization of photon 2 causes us to observe sinusoidal variation as
predicted in Eq.(5.14). (Normalization is as in Fig. 5.3a.)
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event at detector 1 corresponds to a von Neumann projection in the subspace
corresponding to that port onto the state vector |91> = ( I 1¥>cos 6; + | 1Y>sin 61) .

We are left with a pure state for the conjugate photon:
<8 | ¥Daxso =% (| ¥>cos 6, + | 18Dsin ;). (5.12)

Examining output port 2 with another polarizer, we observe that the light in this mode is

polarized orthogonal to 6;; the probability amplitude is
<6, 6, |\V>Ax=o = %-((1‘; Icos 8, +<{13 |sin 8,) ( | 13Dcos 6, + I 1¥>sin 6,)

=%{sin 6, cos 6; — cos 65 sin 61) = %-sin(ez - 91) . (5.13)
Thus,
Pe(0)= <61 62| > sued = Lsin2(0; - 61) . (5.14)

Hence the interference dip can be revived, but depending on the relative angle of the
polarizers (see Fig. 5.5), it may be phase-shifted and thus reappear as a peak, or any
intermediate form. (Eq. (5.14) may be recognized as a typical prediction of quantum
theory when applied to certain tests of Bell’s inequalities (see Sect. 7.101, for instance).
This is hardly a coincidence, for the same nonlocal effect is responsible for both
phenomena. We will discuss the relationship between our quantum eraser experiment
and similar Bell’s inequalities experiments in the next section.)

On the other hand, when the path-length difference is great compared with the
coherence length of the photons, the probabilities for the two different paths leading to
coincident detection add incoherently regardless of any polarizers:

P(axrt) = [L<o, 6, [ 1] 1<6, 0, | 1Y 1
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i—{cos2 0 sin?0, +sin? 6, cos26,)

= Hsin2(82 - 0;) +sin2(0; + 0,)}. (5.15)

This varies with absolute angle, in contrast to Eq. (5.14), since horizontal and vertical

components act independently (see Fig. 5.6).

S VII D - -
The relationship between our experiment and other proposed quantumn eraser

schemes is rather subtle. For comparison, we will focus on a particular proposal by

Scully ez al.[Scully et al., 1991], in which excited atoms are made t0 interfere in a two-
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Figure 5.6. Erasure also occurs, but in a somewhat different fashion, if the two
polarizers are kept at the same angle and scanned towards 45°. With perfect
visibility, the absolute angle would affect only the count rates far from the dip
(clearly, at 0° or 90° no coincidences can ever be observed), and a total null would
be observed at the dip because the two photons in the “singlet” state of Eq.(5.11)
are always orthogonal. (The data are normalized to singles and corrected for
accidentals.)

slit type geometry. A micromaser cavity is placed in each of the interfering paths, and
prepared so that an atom passing through will decay with near certainty, leaving a
photon in the cavity. For certain initial states of the cavity fields (i.e., number states),
the extra photon from the decay constitutes welcher Weg information, and the firse-
order interference effect (fringes visible in singles detection of the atoms) is washed out.
By allowing the cavity fields to subsequently interfere at a suitably placed detector,
quantum erasure may be accomplished. However, as the authors stressed, this erasure
is fundamentally a second-order phenomenon, in that the fringes can only be seen by

correlating the photon counts with data stored elsewhere. In principle the decision of
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whether or not to erase could be postponed indefinitely, even beyond the time of
detection of the atoms.

Our experiment differs somewhat from this proposal in that the basic Hong-Ou-
Mandel interference effect is intrinsically a second-order, Qquantum mechanical effect.
That is, fringes are never visible in singles detection, and coincidence fringe visibility
above 50% defies semi-classical explanation. While this puts the pre- and post-eraser
fringes on the same footing, it has a pedagogical disadvantage in that the distinguishin g
information we add and then erase is carried by the same photons which are to interfere.
(Several proposals to avoid this deficiency are discussed in Chap. 6.) We maintain that
this difference is not as fundamental as it may first appear. Although our photons
themselves carry the information describing which trajectory they took, they do so only
via their polarization vectors. We erase the information after they have already lef: the
interferometer, and without affecting their center-of-mass wave function. In both
Scully ez al.’s proposal and the present experiment, the measurement of which-way
information consists of coupling the interfering particle’s spatial wave function to the
disjoint Hilbert space describing the welcher Weg detection system (e.g., micromaser
cavities or photon polarization space). While this does not affect the spatial wave
function, it does enlarge the Hilbert space in which it resides. It is the enlargement of
the Hilbert space through entanglement, and subsequent reduction, which is the central
feature of the QE.

It is useful to consider a slight gedanken variant of our experiment, which is in
principle identical to it. We employ polarizing beam splitters, rather than simple
polarizers, so that both polarizations may be detected. A computer then stores in one file
the times of photon detection events (regardless of polarization), and in another file the
polarizations of the detected photons. (Note that by making a polarization-insensitive

quantum nondemolition (QND) measurement before the polarizers, one could delay the
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choice of polarizer orientations until after the coincident detection measurement.)
Varying the orientation of the polarizing beam splitter then affects only the second file,
and not the first; no interference is discernible in the first file until the data is correlated
with that in the other file. As this may be performed long after the data is originally
stored, we have a “delayed-choice” version of the quantum eraser. However, this is not
really a praczical proposal (hence the usage of the adjective “gedanken” in the first
sentence), given the present status of QND results [Roch et al., 1992). In the next
chapter we propose three improved schemes, which have feasible delayed-choice
versions.

Some of the results presented here have been observed previously by other
researchers, in the context of non-local correlations and EPR experiments [Ou and
Mandel, 1988; Shih and Alley, 1988]; see also Chap. 7. Our goal was to shift some of
the focus to the phenomenon of quantum erasure, which is another striking
manifestation of quantum entanglement. The central element in most tests of Bell’s
inequalities to date is the singlet state of the correlated photons [Shimony, 1990].
Although our photons are not produced in such a state in the down-conversion process,
it effectively arises when their polarization states are entangled with their propagation
modes (i.e. lower or upper arm)®. From this perspective, the quantum eraser and the
Bell-type tests are just different approaches to investigating and understanding the

character of the entangled states. One might then argue that some of the previous Bell-

6 Strictly speaking this is not true, as is immediately apparent from the extra terms
omitted from Egs. (5.8), corresponding to both photons propagating to the same
detector. Nevertheless, since we only detect coincidence counts, the reduced wave
function is a singlet state (so long as the path-length difference is much less than the
coherence times of the conjugate photons). In fact, other experimenters have used this
exact arrangement in tests of Bell’s inequalities [Ou and Mandel, 1988; Shih and Alley,
1988]. In Chap. 7 we will discuss in detail the issues involved with discarding counts.
and the implications for a rigorous test of Bell’s inequalities.
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type tests were the first quantum eraser results. However, we believe that it is
important to demonstrate the loss of interference before reviving it, an aspect that, to our
knowledge, has not been covered in any Bell-type experiments. Furthermore, the
general goals of the two viewpoints differ. While the Bell’s inequalities experiments
seek 1o disprove the reality of local hidden variable models, the quantum eraser stresses
the loss of coherence through entanglement with the “environment”, and the possibility

of recovering that coherence in certain circumstances.

5.VIIL__Conclusi

The quantum eraser offers a new perspective on interference and loss of quantum
coherence in terms of (in)distinguishability of paths. Alternate paths are made
distinguishable by correlating them to other parts of the “environment.” Depending on
how we reduce the resulting enlarged Hilbert space, we may opt to retain welcher Weg
information and have no interference, or to reestablish indistinguishability and
interference. We may make this choice long after the original interfering system has
been detected, by correlating that data with the results of particular measurements on the
“environment” with which the system was entangled. Of course, this demands that the
coherence of the relevant environmental states be maintained.

We have seen that it is possible to demonstrate the essential features of the
qQuantum eraser using a comparatively simple arrangement involving the correlated
photons produced in spontaneous parametric down-conversion. The interference
normally present when the two photons are superposed at a beam splitter was made 10
vanish when the alternate processes leading to coincidence counts were made
distinguishable. For this purpose a half waveplate in one arm of the interferometer
served to entangle the photon spatial wave function with the polarization subspace.
Using polarizers at the output, it was then possible to restore interference, and even to
alter its form.
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One of the things the quantum eraser teaches us is that the state involved in
interference is the fozal physical state, which in addition to photon spatial wave
functions may include photon polarization, or even distant atoms with which the photons
have interacted. In all realizations of the quantum eraser, the “magic” comes about
through entangling the interfering system with some other degrees of freedom. The
eraser “meddles” with the interference only via this entanglement, regardless of whether
the extra information is stored in states of remote atoms or in the polarization
components of the photonic wave functions. The process allows the introduction of an
arbitrary phase between different components of the entangled state; in this sense, the

phenomenon is better described as quantum editing.
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Chapter 6: Three Proposed Quantum Erasers

6.1, Introduction

The fundamentals of quantumn erasure were presented in the previous chapter, as
well as the results of one experimental demonstration. There have been three such
experiments discussed in connection with the quantum eraser [Ou et al., 1990a; Zou et
al., 1991; Kwiat et al., 1992], all employing the correlated photon pairs produced in
spontaneous parametric down-conversion!. For different reasons, however, none of
these is an optimal demonstration of the phenomenon, each lacking one or more of its
desirable attributes. In fact two are actually not quantum erasers at all in the strictest
sense of the term, and the third, presented in the previous chapter, while incorporating
the basic features of erasure, is pedagogically wanting. One may then ask whether it is
possible to perform an experiment which is more complete. In this chapter we present
three new experimental schemes for producing a quantum eraser, including delayed-
choice mechanisms [Kwiat et al., 1993). As these are all modifications of one of the
earlier experiments [Zou et al., 1991], we believe them to be feasible. Our motivation
for considering and performing such experiments (aside from that alluded 10 in the
Introductory cartoon) is to emphasize as clearly as possible the non-separability inherent
in quantum mechanics, and the role of the zozal physical state in determining coherence.

In Sect. 6.I1 we summarize those features of a quantum eraser that we feel need to
be manifestly evident in an optimal demonstration. In Sect. 6.1l we discuss the three

previous experiments, concentrating on the shortcomings of each, also introducing

! As discussed in Sect. 5.1, several proposals have been made for demonstrating
quantum erasers using atoms or neutrons [Scully, et al., 1978; Englert, et al., 1988:;
Schwinger, et al., 1988; Engler, et al., 1992], but all of these are at best very difficult in
practice, and none have been carried out thus far.
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techniques which will be relevant for the proposed experiments. These are presented in
Sect. 6.IV, where we will show that each allows a truly nonlocal, delayed-choice aspect.

Conclusions are in Sect. 6.V. A detailed calculation for one of the proposals is given in

Appendix B2,

II, Experimental ir n

Any quantum eraser experiment should contain certain basic elements (e.g., it
should not be just a welcher Weg demonstration), as presented in Sect. 5.I1; however,
for an optimal demonstration (in a pedagogical sense), there are several aspects which
should be emphasized. To underscore the non-separability (nonfactorizability, in the
sense of Schrodinger, of two- (or more) particle wave functions) of quantum mechanics,
one important feature of an ideal quantum eraser is that there be a possible element of
“delayed choice”: The measurement on the MA could be made after the interfering
particle has been detected. In fact, our decision to use the MA as a welcher Weg
detector or a quantum eraser, could also be made after detection of the interfering
particle. Itis only via the subsequent correlation of the results (of measurements on the
original particle and the MA) that either interference or welcher Weg information may be
recovered. In the original delayed choice discussion by Wheeler, he pointed out that the
decision to display wave-like or particle-like aspects in a light beam may be delayed until
after the beam has been split by the appropriate optics [Wheeler, 1979). The situation
with the quantum eraser is even more striking -- the decision to measure wave-like or
particle-like behavior may be delayed until after the derection of the initial quantum (but
of course before the result of the measurement on the measuring apparatus), an

irreversible process?.

2 There is as yet no clear answer to the question of exactly when or even how the
detection becomes an irreversible event. Presumably, once the detector has coupled to
some large number of degrees of freedom, the process will be effectively irreversible.
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A second desirable feature of a true quantumn eraser is that it employ single particles
(as opposed to coherent states, for example); the reason is that the entire discussion of
“which way” information depends on the notion of the particle-like aspect of an
indivisible quantum. Finally, although nowhere in Chap. 5 did we require that the
distinguishing information be carried separately from the interfering particle, this is
clearly preferable from a pedagogical point of view. As we stated in the previous
chapter, it is the enlargement of the Hilbert space through entanglement, and subsequent
reduction, which is the central point of the quantum eraser; however, the non-
separability inherent in the process becomes more apparent when a system spatially

distinct from the initial interfering system serves as the measuring apparatus.

6.II1. Past Experiments

All three of the experiments previously discussed in the context of quantum erasure
use down-converted photon pairs [Ou et al., 1990a; Zou et al., 1991; Kwiat et al., 1992:
Zajonc et al., 1991]. The first experiment [Ou et al., 1990a] involves an interference
effect which exists only in coincidence detection. Two down-conversion crystals are
pumped by coherent cw pump beams (see Fig 6.1). The signal beams are mixed at a
beam splitter, while the idler beams are mixed at a separate beam splitter, such that after
the beam splitters there is no way of distinguishing from which crystal a given pair of
photons originated. Fringes in coincidence are observed as any of the pre-beam splitter
path lengths are varied, while no interference is seen in the singles rates. The “‘delicate’
change” which leads both to distinguishability and to erasure in that example is the

removal and reinsertion of one of the beamsplitters3 (e.g., if the idler beam

In practice, we can confidenty claim that by the time the event has attained the level of a
macroscopic pulse out of the detector, it is thermodynamically irreversible.

3 The authors correctly point out that this beamsplitter seems to have no effect on the
signal photons. Careful analysis, however, shows that the signal photons never exhibit
interference on their own, but only when detected in coincidence with the idler photons.
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Figure 6.1 Schematic of setup used in [Ou et al., 1990a).

splitter is removed the idler beamns then carry which-crystal information, and no
interference occurs). In this sense, it is deficient as a quantum eraser since it is the
structure of the interferometer itself, and not just the structure of the detection scheme,
which determines once and for all the presence or absence of interference fringes. To
put it differently, there is never interference unless a larger Hilbert space already
including the idler photons is considered; removal of the idler beam splitter does not
enlarge the Hilbert space.

The experiment of [Zou et al., 1991], while a remarkable demonstration of
complementarity in its own right, differs fundamentally from the quantum eraser
proposal, in that it is entirely a first-order (one-photon), not a second-order (two-

photon), interference effect, and no delayed choice version would be possible. Again

As the beamsplitter does directly affect these idlers, it must be considered as part of the
interferometer.
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Figure 6.2 Schematic of setup used in [Zou et al., 1991], with the possible
inclusion of additional elements to make it suitable for a quantum eraser. In the
absence of any waveplates, the identically-polarized idler photons from either
crystal are indistinguishable. Consequently, interference fringes may be observed
in the signal singles rate (at detector Dg) if any of the path-lengths in the inter-
fometer are varied. A half waveplate at A distinguishes the idler photons; the
which-crystal information may be erased with a polarizer at B. Fringes may be
recovered by correlating measurements at the two detectors, i.e., in the

coincidence rate.

the trajectories of the idler photons from each crystal overlap. A beam splitter acts to
superpose the trajectories of the signal photons. The basic interference effect arises
between these signal photons, as the path length from either of the crystals to the beam
splitter is varied slightly. If the path lengths are adjusted correctly, and the idler beams
overlap precisely, there is no way to tell, even in principle, from which crystal a photon
detected at D originated -- there results interference in the signal singles rate at Dy (and
thus trivially in the coincidence rate between Dg and D;). If the idler beam from crystal
NL1 is prevented from entering crystal NL2 (or even if the two idler beams are only
slightly misaligned), then the interference vanishes, because the presence or absence of

an idler photon at D; then “labels” the parent crystal. However, at this stage the welcher
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Weg measurement is effectively irreversible. There is no way at all in practice to
“erase” the distinguishability by any transformation on the idler state alone, and certainly
no possibility of a delayed choice, even in principle 4. Because detection events (of
the signal photons) are never compared with measurements on the “measuring
apparatus” (the idler photons, here), there is no way to recover fringes or anti-fringes.
In Chap. 5 we discussed the most recent experiment [Kwiat et al., 1992], which
also employs a nonclassical second-order interference effect, so that coincident detection
of the two photons is required, but uses only a single crystal. This experiment is
pedagogically superior as a quantum eraser to the obvious “classical” analog> (the
canonical two slit-experiment with a classical light field, a polarization-rotator in front of
one slit, and a variable polarizer/analyzer in front of the detection screen), because its use
of single-particle states permits the notion of welcher Weg information. However, it is
not pedagogically optimal because the welcher Weg information is carried by the
interfering particles themselves, not stored in some external measuring system. Asa
result, performing a delayed choice version of the experiment would be very difficult,
requiring quantum nondemolition (QND) detection of the photons before a subsequent
measurement on the polarization part of their wave function. It would be preferable if
the entanglement were to an external system, not to an internal degree of freedom of the

interfering particles.

4 One might imagine recombining the two idler beams at a second beamsplitter after

the second crystal. But this is then topologically equivalent to the first pseudo-eraser
discussed above [Ou, et al., 1990a].

5 We use the term “classical” to indicate that the effect has an explanation using a
classical field model. In such a theory there is no meaning to the concept of “which-
path” information, since a wave can follow two paths simultaneously; even the quantum
mechanical description of such an experiment has many particles, some of which follow
each route, and which are indistinguishable from one another.
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The basic setup is the same as that of the second experiment discussed above [Zou
et al., 1991]. The difference is the inclusion of the additional elements A and B (see
Fig. 6.2), which we shall discuss presently. Note that for the signal beams to interfere,
itis crucial that the idler photons be indistinguishable after crystal NL2, even though we
need not detect them to observe the interference at the signal detector Dg. In particular,
the idler photons from the two crystals must have the same polarization and color, and
must arrive at the idler detector D; at the same time (to within the two-photon correlation
time). If this were not the case, then one could in principle determine which crystal
emitted the detected signal photon by making a careful measurement at D; of the
polarization or energy or arrival time of the conjugate idler photon. We shall purposely
violate these constraints to distinguish the idler photons from NL1 and NL2, removing
the first-order interference at Dg. This scheme is superior to the previous experiment (of
Chap. 5) because the welcher Weg information is not carried by the interfering
particles, the signal photons. Correlating the counts at Dg with subsequent
measurements on the idler photons, we can implement a quantum eraser.

There are several ways to proceed. The simplest is to insert a half waveplate
between the two crystals (at A, in Fig. 6.2), rotating the polarization of the idler from
NL1 by 90°. Since the idlers are now distinguishable, the interference of the possible
signal paths disappears. Just as above [Kwiat et al., 1952], however, we can use a
polarizer before Dj (at B, in Fig. 6.2) to erase the distinguishing information, and
correlate the counts at Dg and D;. If the polarizer is aligned along either of the idler-
polarization directions, no interference will be seen in singles or coincidence. If aligned
between the two (i.e., at £45°), we will obtain either fringes or anti-fringes in
coincidence (but not in singles). An experiment closely related to this is currently in

progress in A. Zeilinger’s lab at the University of Innsbruck. The delayed-choice
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feature is that we could in principle decide on the polarizer setting, and hence whether
we would see fringes, anti-fringes, or no fringes, after the signal photon was already
detected. Experimentaily, this could be accomplished by having an optical delay before
the polarizer, and using a Pockels cell to effectively rotate the polarizer very quickly.

A second way of making the idler photons distinguishable is to increase the path
length between the two crystals, by adding a delay line of length d A (greater than the
photons’ coherence length) at position A (see Fig. 6.3). To subsequently make the idler
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Figure 6.3 Two other quantum eraser versions rely on the same basic setup as in
Fig. 6.2, but incorporate a delay line, of length dA (much greater than the
coherence length of the idler photons) between the two crystals. Erasure is
performed after crystal NL2 using an unbalanced Mach-Zehnder, whose path-
length difference djj7 is essentially equal to da. Fringes in the correlated
detection events between Dg and D; will have 50% or 100% visibility, depending
on the detector time resolution (see text). In the second version of this type,
where the visibility is always 100%, a half waveplate at A rotates the NL1 idler
polarization so that it is orthogonal to the NL2 idler polarization. In addition, the
first beam splitter (at C) of the Mach-Zehnder is a polarizing beam splitter,
oriented so that idler photons from NL1 (NL2) take the short (long) path.
Finally, a second waveplate in one of the arms (e. g., at D) makes identical the

idlers’ polarizations.
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photons indistinguishable again, we essentially need to add two delay lines after the
second crystal, the difference in whose path lengths is equal to d4. In practice, we can
achieve this using an unbalanced Mach-Zehnder interferometer before detector D;. The
choice of whether to detect fringes or anti-fringes is set by the detailed phase difference
in the Mach-Zehnder, which could in principle be chosen after the signal photons had
been detected.

We now present a simplified calculation demonstrating the above claims. (A
detailed formal calculation is given in Appendix B2.) For clarity we assume that the
down-converted photons are degenerate at frequency ®g. Let T5 = T5; — T, be the extra
time required by a signal photon from crystal 1 (to reach the beam splitter before D)
reiatve 10 a signal photon from crystal 2; similarly, let 7; be the idler photon propagation
time from crystal 1 to crystal 2, when no delay line is present. (These times are related
10 the distances labelled in the figure by T=d/c.) Further, assume that with no delay
line, fringes are observable in the signal singles rate, i.e., the difference in these two
times is much less than 1., the two-photon correlation time of the down-converted
photons. Adding an extra delay T4 (>>T¢) to T; then makes the two interfering
processes distiguishable and singles fringes are not observed. Finally, let TMZ be the
difference between the propagation times through the long and short paths in the Mach-
Zehnder. There are four possible ways for the detectors Dy and D; to register photons:
1) photons from NL1, idler takes short path in Mach-Zehnder (denoted s1i;8)2)
photons from NL1, idler takes long path (s1 i1 1) 3) photons from NL2, idler takes
short path (s; i §); and 4) photons from NL2, idler takes long path (spi1). For
arbitrary values of T, and T\pz these four possibilities are in general distinguishable.
However, if we consider Ity - Ty4! << 1, then processes spijgsandsyipy are
indistinguishable. To calculate the probability of coincidence, we sum the amplitudes of

these indistinguishable processes, take the absolute square, and add the absolute square
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of each of the distinguishable processes:
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where we have included coefficients of 172 (i~2) for transmission (reflection) at each
of the beamsplitters. (In the calculation in Appendix B2, we treat a much more general
case, in which the extra path length between the two crystals comprises the long arm of
an unbalanced Mach-Zehnder interferometer whose beam splitters may have arbitrary
reflection and transmission amplitudes. There results a very complicated set of
possibilities, with a rich set of results.) Implicit in (6.1) is the additional condition that
our detection scheme could not exclude the contributions of non-interfering counts
arising from the in-principle distinguishable S1 il,L and sy i2,S processes. This will be
the case if we have slow detectors, and the visibility of the coincidence fringes will be
limited to 50%. However, if the electronic resolution time AT of the coincidence
equipment is less than T\Mz- the visibility can be as high as 100% (see Appendix B2 for
a calculation that incorporates such time-dependent effects). We recently observed this
same sort of detector-dependent effect in connection with a Franson experiment to
violate a Bell’s inequality based on energy and time [Kwiat et al., 1993]; see also Chap.
8.

As an aside, yet another way to restore indistin guishability to the idler photons in
this delay-line configuration is simply to use a narrow-band interference filter (instead of

a Mach-Zehnder) before D;. If the resulting coherence length is greater than dy, then
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interference will be restored in the coincidence rate. Correlating the signal photons with
the idler photons transmitted through the interference filter will recover the frin ges;
correlating with the idlers reflected from the filter (assuming a non-absorbing filter) will
yield anti-fringes. This same technique was used by us in a previous experiment,
discussed in Chap. 4, to demonstrate the “collapse” of the wavefunction [Kwiat and
Chiao, 1991].

The third quantum eraser method we propose is in some sense a hybrid of the
other two. Once again, a half waveplate is inserted at position A between the two
Crystals, in addition to the optical delay line of length d4 (see Fig. 6.3). The
polarization of the idler beam from NL1 is rotated so as to be orthogonal to the
polarization of the idler beam from NL2. Next, a polarizing beam splitter is used in the
unbalanced Mach-Zehnder interferometer. The polarizing beam splitter is oriented so
that idler photons from NL1, with the extra optical delay d A» take the short Mach-
Zehnder path, while idler photons from NL2 take the long Mach-Zehnder path. Finally,
a second half waveplate inserted at position D in the long path undoes the polarization
rotation from the waveplate at A. Thus polarization no longer labels the parent crystal.
As before, if the difference in the Mach-Zehnder path lengths is equal t0 d 4, then the
parent crystal of a given idler photon is unknowable, and interference will be observed
in coincidence. The advantage of this scheme over the previous one is that the visibility
of the interference fringes can be shown to be 100%, regardless of the speed of the idler
detector, because the use of polarization permits us to force the idler photons to take the

appropriate paths in the Mach-Zehnder, eliminating the non-interfering processes.

6.V. Conclusion

The quantum eraser offers an important perspective on interference and loss of

quantum coherence in terms of (in)distinguishability of paths. The loss of wave-like
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behavior is not necessarily due to the uncertainty principle, but may be due solely to an
entanglement of the interfering system with a measuring apparatus (or the entire
“environment”). If the coherence of the measuring apparatus is maintained, then
interference may be recovered by correlating results of measurements on the original
system with results of particular measurements on the measuring apparatus. The state
involved in interference is the fotal physical state, which in addition to photon spatial
wave functions may include photon polarization, or even distant photons or atoms.
Because we may employ spatially-separate entangled systems, a delayed-choice aspect is
possible: The decision to measure which-path information or interference may be made
after the initial particle is detected.

Proposed experiments using atoms or neutrons, while intellectually engaging in
principle, are at best very difficult in practice. Fairly simple experiments are possible
using correlated down-conversion photons, and several have been performed. As
reported, however, none of these possesses all the attributes of a true quantum eraser.
This deficiency is remedied by modification of one of the setups. The simplest
extension uses polarization to provide a distinguishable label on the contributing paths; a
suitable polarization measurement on the idler photons can then serve to yield welcher
Weg information or interference fringes, after the interfering signal photons have been
detected. Instead we may make use of the simultaneity of the down-converted twin
photons by introducing a time delay into one of the idler arms. An unbalanced Mach-
Zehnder can then be used to reduce the enlarged Hilbert space by projecting onto various
linear combinations of the measuring apparatus states (here, the states of the idler
photon). If the polarization and delay-line techniques are combined, one may achieve
100% visibility even with slow detectors. All of these schemes may incorporate a

delayed-choice feature.
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Chapter 7: The Einstein-Podolsky-Rosen
“Paradox” and Bell’s Inequalities

The Bell paradox and its solution.

The paradox. By firing tachyons you can commit 2 “perfect murder”.
Suppose that A purposes killing B, without risking prosecution. When he
happens to see B together with a “witness” C, he aims his tachyon pistol at
the head of B, until B and C (realizing the danger) start running away with
speed, say, u. Then, A chooses to fire tachyonic projectiles T having a speed
V such that uV > c2. In the A rest frame, tachyons T reach B soon and are
absorbed by B’s head, making him die. Due to the fact that uV > c2...
however, the witness C--when questioned by the police--will have to declare
that actually he only saw anti-tachyons T come out of B’s head and be finally
absorbed by A’s pistol. The same would be confirmed by B himself, were he
still able to give testimony.

-E. Recami, Riv. Nuovo Cim. 8, 71 (1986)

A vast time bubble has been projected into the future to the precise moment of
the end of the universe. This is, of course, impossible.
-D. Adams, The Hitchhiker’s Guide to the Galaxy

7.I. Introduction

In this chapter, we discuss the famous gedanken experiment of Einstein,
Podolsky, and Rosen, and the subsequent work of Bell and others. The chapter “intro-
quotes” were chosen for the following reasons. First, the quote regarding the “Bell-
paradox” (which, surprisingly, has very little at all to do with either the EPR-paradox or

Bell’s inequalities), hints at the general problems with nonlocality, and is fairly
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indicative of the confusion surrounding this general topic. The second quote, from The
Hirchhiker's Guide to the Galaxy by Douglas Adams, is very appropriate, for it points
out the seeming impossibility of having nonlocal influences, which, if they could be
used to signal superluminally, would then open up possibilities for time travel and other
paradoxical phenomena. Nevertheless, we will see that nonlocality is in some sense a
cornerstone of quantum mechanics, one which obeys a tenuous, yet peaceful
coexistence with the tenets of special relativity.

After presenting two versions of EPR’s argument and two derivations of Bell’s
inequalities, we will introduce the various “loopholes” that have plagued all experimental
tests to date. Next, we will discuss briefly how one might interpret an experimental

violation of a Bell’s inequality. Finally, the basics of quantum cryptography are

presented, as the only practical application to date of this entire topic of Bell’s

inequalities.

7.JI. _The EPR-“Paradox”

To begin, Einstein, Podolsky, and Rosen did nor consider their gedanken
experiment to be paradoxical. They viewed it as indicative of the inherent
incompleteness of quantum mechanics. We will present two versions of the argument
here: the first is the original of EPR, dealing with a position-momentum entangled state
[Einstein et al., 1935]; the second is a somewhat simpler version by Bohm, using a
spin-spin correlated state [Bohm, 1983]. Our motivation for including the first version,
aside from historical completeness (certainly rot an overwhelming consideration in this
thesis), is that some of the most recent Bell’s-inequality experiments have used an
entanglement in energy and time, and are therefore quite similar to the originally
envisioned scheme [Chap. 8; Brendel et al., 1992; Kwiat et al., 1993].

The three central elements that constitute either version of the EPR argument are 1)
a belief in some of the quantum-mechanical predictions concerning two separated
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particles, 2) a very reasonable definition of an “element of reality” [namely, that “if,
without in any way disturbing a system, we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity”}, and 3) a belief that Nature is
local (i.e., there are no spook-like actions at a distance, spukhafte Fernwirkungen). In
the original EPR version [Einstein et al., 1935], the system under consideration is a pair
of particles described by the wavefunction 8(x; - x5 - a). This is an eigenstate of the
operator (x] - x5) [with eigenvalue a], and of the operator (p1 + py) [with eigenvalue 0].
In other words, the sum of the particles’ momenta is well-defined, as is the difference
in their positions. Therefore, if we measure the momentum of one particle, we can
predict with certainty the momentum of the other, even though it may be sufficiently far
away that no signal could be transferred between them. Momentum must therefore be an
element of reality. And if we measure the position of one, then we can predict with
certainty the position of the (possibly distant) other particle. Hence, position is also an
element of reality. But QM does not allow a precise specification of both the position
and the momentum of a particle. This was not a paradox to EPR; rather, they concluded
that QM must be incomplete.

In the modified argument by Bohm (and modified slightly further here), we
consider two photons (travelling off back to back) which are described by the entan gled

polarization singlet-state:
lv> = Hllm, va) - [vi,B)) (7.1)

where the letters denote horizontal (H) or vertical (V) polarization, and the subscripts
denote which photon. (7.1) is symmetric, in that measurement of any polarization

component for one of the particles will yield a count with 50% probability. Moreover,
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according to QM, the polarization state of either particle alone is not specified.
Nevertheless, if we measure the polarization component of particle 1 along some
direction, we can predict with certainty the value of a measurement of the same
polarization component for particle 2, seemingly without disturbing it (since it may be
far away). Therefore, according to EPR’s intuitive definition, we ascribe an element of
reality to that component of polarization. The same logic applies for all polarization
components, implying that the polarization is well-defined along all component
directions simultaneously. Of course, a quantum mechanical state cannot specify that
much information, and is consequently an incomplete description, according to the EPR
argument.

To put the argument slightly differently, there are basically two ways to explain the
strong correlations of two entangled particles. First, one can believe that QM is “the
whole story” and that although the particles do not possess well-defined properties
before measurement, upon measurement there is a nonlocal influence between the
particles (the “collapse”, discussed in Chap. 4). The second, and more intuitive
explanation (which was implied by EPR, though not explicitly stated as such) is that the
particles leave the source with definite, correlated properties; these properties would be
determined by some local theory, more complete than QM, by incorporating variables
that were “hidden”.

At the level of two entangled particles, a local hidden variable (LHV) theory to
explain correlations is trivial! -- an explicit example is given in Sect. 7.VI. Therefore,

if one limits the discussion to situations of perfect correlations or anti-correlations (e,

1 Recent work has shown that it is not possible in some systems involving three or
more entangled particles to explain even perfect correlations with a local description
[Greenberger, et al., 1989; Mermin, 1990]. In particular, Greenberger, Horne, and
Zeilinger (GHZ) have shown an experimental difference between QM and local realism
without the need for inequalities (assuming perfect apparatus). It is my belief that if the
GHZ argument had been shown to EPR, the latter would have been forced 1o recant.
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using analyzers which measure only the same or orthogonal components), the
predictions of an LHV theory and QM are identical, and the theories are
indistinguishable. Choice of one over the other is a philosophical decision, not a
physical one. This is how things remained from the introduction of the EPR argument
untl 1964. It was then that John Bell [Bell, 1964; Bell, 1987] brilliantly discovered that
QM gives different stazisticcl predictions than does any theory based on local realism,
for situations of non-perfect correlations (i.e., analyzers at intermediate angles). In
particular, the LHV theories predict that certain combinations of coincidence rates (and
possibly singles rates) satisfy an inequality, which quantum mechanical predictions

sometimes violate2.

’ o, .

The derivation of a Bell’s inequality that follows is based on that given by
Shimony [Shimony, 1990]. It is my personal “favorite” because it is particularly easy to
understand the underlying assumptions, the mathematical proof of the inequality, and the
role of detector efficiency. We begin with an ensemble of correlated pairs. (See Fig.
7.1.) The particles are described by the state A, which belongs to a space A of complete

states3; the distribution function for the states A over A is given by p(A). We make no

2 Hardy has also presented a clever gedanken experiment using electron-positron
annihilation to achieve a contradiction with local realism without the need for inequalites
[Hardy, 1992a}, and has recently proposed an optical analog which may allow a feasible
experimental implementation [Hardy, 1993). Violations of Bell’s inequalities with
macroscopic (but non-classical) states of light have been discussed by Munro and Reid
[Munro and Reid, 1993] and Franson [Franson, 1993].

3 We make no restrictions on A at this point; it may have discrete and/or continuous
parts, and may even include the quantum mechanical description V. Recall that EPR
claimed that QM was incomplete, because it could not specify the results of
measurements on non-commuting observables. The state A is presumed to be a more
complete specification of the physical state, such that it allows one to define the
probabiiities of all possible measurements on the particles. If these probabilities only
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Figure 7.1 Simplified schematic of general setup used to derive Bell’s inequalities.

restrictions on the form of p(A), other than that it be non-negative and normalized:

f dA p(A) = 1. (7.2)
A

One member of each pair is directed to analyzer 1 on the right, with a parameter setting
@ the other member is directed to analyzer 2 on the left, with a parameter setting B. For
example, the parameters may correspond to orientation angles of polarizers, or to phase
settings in an interferometer. The possible outcomes of analyzers 1 and 2 are am, (m=
1,2,.)and b, (n=1, 2, ..), respectively, where we assume these values to lie in the
interval [-1, +1]. Forinstance, +1 might correspond to a detection in the ordinary-
channel of a polarizing beam splitter, -1 to the extraordinary-channel, and 0 to
nondetection of the particle. Alternately, +1 might correspond to the two output ports of
an interferometer. We now assume that when A and o and 3 are specified, the

following probabilities are well-defined (and positive?):

assume the values 0 and 1, the LHV is “deterministic”.

4 It has been pointed out [M. O. Scully, private communication] that negative
probabilities may well be a way “out” of the disturbing conclusions of a violation of
Bell’s inequalities, in that one need not abandon the intuitive notion of local realism, if
one is willing to accept the notion of negative probability. While we do not dispute this
claim, we find it unhelpful, since we have no understanding at all of what “negative
probabilities” would mean.
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pmii, o, B)

p(nlA, o, B)

pmIA o, B, n)

p(m,nlA, a B)

the probability that the outcome apy, is obtained, given the

state A, and the parameter settings o and .

the probability that the outcome by, is obtained, given the

state A, and the parameter settings o and 3.

the probability that the outcome a, is obtained (for
analyzer 1), given the state A, the parameter settings ¢ and

B, and the outcome by, (for analyzer 2)

the probability that the outcome by, is obtained (for
analyzer 2), given the state A, the parameter settings ¢ and

B, and the outcome apy, (for analyzer 1)

the joint probability of the outcomes ap,, and b, given the

state A and the parameter settings o and B

From standard (Bayesian) probability theory, it follows that

pm,niA, o B)=pnlA o B, mpmlA, B

=p(miA, o B, n)pnlA afB). (7.3)

Until now, the only physics that has gone into our description is the assumption of

an underlying “realism”, described by the complete state .. We now incorporate the

assumptions of locality. There are two separate independence conditions® which

5 Two essentially identical conditions have been used by Jarrett [Jarrett, 1984].
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constitute what is generally known as the “Bell locality condition™:
Parameter Independence: p(m A, &, B)=p(miA, ) and p(n A, B)=p(nlA,B)

Qutcome Independence: p(m |4, a, B, n) =p(m 1A, e, B)
and p(niA, o, B, m)=p(nlA a, B)

(We shall in Sect. 7.VI discuss the content of these conditions.) The conditions may be

combined with the Bayesian relation (7.3) to yield the locality condition:
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The salient feature of (7.4a) is that the joint probability for the m,n-outcome factorizes:
we shall see below that this is not the case for QM.

The next step in the Bell’s inequality derivation is to define expectation values in

terms of the measurement outcomnes and probabilities:

E(h )=, pmIA, o) ag (the expectation value of the
m

outcome of analyzer 1)

EQ,B) = 2 p(n A, B) b, (the expectation value of the
n
outcome of analyzer 2)
EQR, a,B)= Z p(m,nlA, e, B)ayb, (the expectation value of the
m,n

product of the outcomes of

analyzers 1 and 2)
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Combining these and (7.4a), one finds
E(%, a, B) = E(, @) EQ4, ). (7.4b)
Next we prove the following simple but very useful lemma:

Ifx},y1,x2, and y2 all lie in the interval (-1, 1], then S = xJy] + x]y2 + X2y] —

x2y2 lies in the interval [-2, 2].

Proof: Since S is linear in each of its arguments, it must take on its extreme values when
the arguments themselves are extreme, i.e., when (x],y],x2,y2) = (%1, #1, #1, *1).

Clearly, under these conditions, S must be an integer between < and 4. But we can also

rewrite S as (x] + x2) (y] + y2) =2 x2 y2. Since (x] + x3) and (y] + y2) can only
equal 0 or 2, and 2 x3 y» can only equal #2, the value of S can only be £2 or %6 at the

extrema of the arguments. Therefore the extreme values of S are #2. Q. E. D.

To finish our task, we associate x; with E(A, o) and y; with EA, B;), which

obviously satisfy the condition E(A, «¢;), E(A, B;) € [-1, 1]. Then the lemma becomes:
-2 SE(ha;,B1) + EQ,1,B)) + E, 02, B1) ~ EQL, ap,B,) < 2. (7.5)

Finally, by integrating this result over the space A, weighting by p(A), and defining the

ensemble expectation value as
E(a.B)= f dAp(M)EQ,a,B), (7.6)
A

we arrive at a Bell’s inequality:

100.



IS| <2, (1.72)

where

S= E(a],Bl) + E(al,Bz) + E(az,Bl) - E(QZ,BZ) , (7.7b)

and we have used the normalization condition (7.2) to write the right-hand side of
(7.7a).

In arriving at the inequality, we have implicity included one extra assumption, that
the parameter settings o and 8 do not affect the emission properties of the source. We
assurned this when we used the same distribution p(A) to integrate over each of the
terms of (7.5). In any true test of Bell’s inequalities, one must experimentally ensure
that the source and analyzers are sufficiently separated that this assumption of “p-
independence” is valid (assuming no information transfer faster than ¢). In practice, if
the analyzers are on opposite sides of the source 9, this separation will also guarantee

that there is no causal link between the detectors.

The remarkable fact, of course, is that for certain states, QM predicts a value of S
in violation of (7.7a). In particular, for the singlet-like polarization state (7.1), the
probability of joint detections (assuming for the moment an ideal, lossless system) at the

ordinary-channels of the two analyzers is (see Appendix D3):

.2 -
poo(a,B)=w . (7.8a)

Similarly, the probability of joint detections at the extraordinary-channels is also

6 I is sufficient that the source and analyzers lie on the points of an equilateral
triangle.
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22 _
Pee(a.B) =w . (7.8b)

Finally the probability of joint detections at different channels is

26—
Poe(@.B) = Peo(a,) = X £ 780

Combining these various coincidence results, the correlation function E(o,B) has the
value —cos 2(B — &). A violation of (7.7a) may then be achieved by choosing the
parameter settings as shown in Fig. 7.27 (e.g., @y = 0°, ap = 45°, B; = 22.5°, and

B5 =-22.5%), for which $ has the value —2.83 (= —2¥2). In fact, it has been shown thar
+2¥2 are the extreme values of S, according to QM [Su and Wédkiewicz, 1990]. Note
that the above coincidence rates all assumed a fringe visibility of 100%. If, for

experimental reasons, the visibility V is less than this, then the maximum value of S will
)

B

o \22.5"»%.

|
: Ba

Figure 7.2 One set of polarizer angles which will yield an optimal violation of
the Bell’s inequality (7.7).

7 From the symmetric nature of the singlet-state (7.2), any set of angles with the same
relative spacing will also produce a maximum violation.
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be accordingly reduced: S;,,,(V) = V2#Z. Therefore, in order to violate the Bell’s
inequality (7.7a), one must have V 271%. This is a necessary, but not sufficient
condition; it is also required that the fringes behave sinusoidally (in Sect. 7.VI we will
examine a model which yields 100%-visibility zriangular coincidence fringes.)

In the above coincidence probabilites (7.8), we omitted the effects of non-unity
detection efficiency. Specifically, if each detector® has an efficiency of n, then the
probabilities are reduced by ‘nz, as is E(a,B). Therefore, the maximum value of S is
N22YZ, so to achieve a violation of S <0, we need 1% > INZ, or > 84%. Witha
different Bell’s inequality, and a much more complicated argument, Mermin has shown
that the requisite efficiency threshold is ~83% [=2 (Y2 — 1)] [Mermin, 1986). More
recenty, Eberhard has shown that the minimum efficiency may be as low as ~67%. in

the limit of no background [Eberhard, 1993]. We will discuss the last two results

below.

7.IV. Bell’s Inequalities, 3 1a Eberhard

We now present a different derivation of another Bell’s inequality. This derivation
is loosely based on an argument most recently used by Eberhard [Eberhard, 1993]; see
also Sections 3.7 and 3.8 of [Clauser and Shimony, 1978). In order to make the
argument more clear, we shall initially make two simplifying assumptions: that the
system under consideration is lossless, and that the underlying LHV theory is
deterministic. (These assumptions can be relaxed after we understand the basic
argumentation.) We have in mind again a system similar to that shown in Fig. 7.1; we
will assume that there are only two possible measurement outcomes from an

analyzer®, corresponding to detection in the ordinary-channel (0) and detection in the

8 For simplicity, we “lump” all losses of our correlated particles into the effective
efficiency of the detectors. In experiments performed with gamma-ray photons
(produced from positronium annihilation, for instance) the actal detector efficiencies are
very high, but available polarizers are very poor [Clauser and Shimony, 1978].
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extraordinary-channel (e) (the possibility of non-detection will be included later). In
particular, we consider four different experimental setups, defined by two values of the
parameter a and two values of the parameter . By our notion of (deterministic) reality,
every particle leaving the source must know what it will do at the analyzer for both
choices of parameter setting (although it needn’t know what the other particle of the pair
will do). Ifind it helpful to imagine that each particle is given an “instruction list” at the
source, detailing which channel of the analyzer it will take for one setting of the
parameter, and which it will take for the other. Each pair of particles can then be
characterized by a four-instruciion list, which completely determines what each particle
would do for the two settings of its parameter!0. For example, the general list is

1. If &=}, then particle 1 take the ?;-channel;

2. If a =y, then particle 1 take the ?5-channel;

3. If B = B, then particle 2 take the ?3-channel;

4.1f B =B,, then particle 2 take the ?4-channel,
where ?; (i = 1 - 4) is either the 0- or the e-channel. We use the shorthand notation
“717273%4” (e.g., “eeoe”, “e0ce™, eic.) to represent a given list. There are a total of 16
= 24) different lists. Locality is implicit in that the outcome of particle 1 depends only
on the parameter o, and the outcome of particle 2 depends only on the parameter .

Next we consider a large number of pairs, each with its own instruction list. We

9 We choose the particular example of polarization correlations; identical arguments
apply for an interferometric system, where the two outcomes correspond to the two
output ports of an interferometer.

10 Note: All reference to a deterministic model may be removed if one uses the
terminology “what the particle did” instead of “what the particle would do”. For
simplicity, we will keep to the latter usage. In the former case, there are controversies
involving assumptions of contrafactual definiteness (see the discussion in [Clauser and
Shimony, 1978], for example); we will not discuss this controversy further here, except
to say that there are other, non-controversial, ways to derive this Bell’s inequality.
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seek to prove the following relation:
Noo(02, B2) + noe(@s, B2) +ne (0, By) — nooley, By) 20, (1.92)

where ng (@2, B2) is the number of pairs with the instructon set “?0%0” (i.e., those
pairs whose 2nd and 4th instructions are for “o-channel” outcomes; the 1st and 3rd
instuctions can be anything); nye(a;, B>) is the number with the instruction set “0?%"
Neo(Q2, By) is the number with the instruction set “?e07”; and ny (1, By) is the number

with the instruction set “0%0?”. We can demonstrate (7.9a) explicitly by expanding each

of the constituent terms as follows:

No0(®2, B2) = 17670 = Noooo + Noaeo + Meooo + Neoeo (7.10a)

Noe(01, B2) = Ng7e = Noooe + Nooee + Moeoe + Mocee (7.10b)

Neo(®2, B1) = Mreo? = Noeoo + Noeoe + Mecoo + Meeoe (7.10c)

(7.10d)

No0(01, B1) = Ng26? = Ngooo + Noooe + Noeoo + Noeoe

One can immediately check that all the terms of (7.10d) are contained within (7.10a-c),
proving (7.9a). If one includes the third outcome possibility that a given particle may be
undetected (u), then (7.9a) becomes

Noo(02, B2) + nge(@;, Bo) + ngy(ay, Bo)
+neo(2, B) + nyol0z, By) ~ ngolay, B1) 20 , (7.9b)
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as shown in [Eberhard, 1993]. This inequality can be connected to real counting rates if

one makes the identifications
ng(@y) = n§(ay, Ba) = ngo(etg, Bp) + npe(ary, Ba) + ngy(aty, By) (7.11a)
nB(Bp) = nB(ey, By) = noo(as, By) + neols, By) + nyoaa, By).  (7.11b)

where the first equalities in (7.11a,b) are due to the locality condition. Making these

substitutions in (7.9b), we finally have

Noo(®1, B1) + noo(et1, B2) + ngo(0z, By) = ngo(ea, Ba) < n(ory) + nQ(B,) ,(7.12)

a Bell’s inequality first derived by Clauser and Horne [Clauser and Homne, 1974]. One
salient feature is that it contains actual numbers of counts (or equivalently, counting
rates), instead of probabilities. Therefore, we do not need to concern ourselves with
pairs we do not detect. Of course, inefficiencies which cause us to detect only one
member of a pair will be detrimental -- if the detection efficiency is small, then the
coincidence-terms on the left-hand side of (7.12) will always be much smaller than the
singles-terms on the right-hand side, and no violation of the Bell’s inequality will be
possible.

From the previous section [cf. Egs. (7.8)], the quantum-mechanical predictions for

the coincidence counts, assumning particles correlated in a singlet-state (7.1), are given

by

sin? B-o)

> , (7.13a)

Noo(et,B) = nzNo
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(N is the total number of emitted pairs; it will cancel out) while the singles counts

(assuming no background) are easily calculated to be

ng(e) =nf(B)=7 %Q : (7.13¢)

Inequality (7.12) then becomes

n2 {sin2 (B; - ;) + sin? (B — &) + sin? (B) — o) — sin? (By — @)} €21 (7.14)

The maximum value of the term in {}’s is 1 + ¥2 (achieved, for example, using o =
0°, &y =135%, B = 67.5°, and B, =-67.5") 50 ihai an efficiency greater than 2/(1 + v2)
= 83% is needed to observe a direct violation of this Bell’s inequality.

It has been shown that by using a non-maximally entangled state (i.e., one where
the magnitudes of the probability amplitudes of the contributing terms are not equal), one
may reduce the detector requirement to ~67% [Eberhard, 1993]. The basic idea is that
by making one term of (7.1) have a greater amplitude than the other, one effectively

polarizes the source. For example, if one uses the state

[y> =1/—11_?(|H1, Vo) -£lv, HyY), (7.15)
+

where fis a real number < 1, then photon #1, travelling to the a-analyzer, possesses a
net horizontal polarization, while #2, travelling to the B-analyzer, appears somewhat
vertically-polarized. By choosing @1 nearly vertical, and 31 nearly horizontal, one may
reduce the contributions of the singles rates n%(cx;) and ng( By) to the right-hand side of
(7.12). Nevertheless, by correctly choosing @ and B, one may still violate (7.12),

even forn as low as 67%. We shall return to these issues in Sect. 10.IV.
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7.V, Loopholes

Whiie experimental tests of Bell’s inequalities have been extended to new systems,
some relying on energy-time or phase-momentum entanglement [Brendel et al., 1992;
Kwiat et al., 1993c; Franson, 1989; Rarity and Tapster, 1990). to date no true violation
of Bell’s inequalities has been observed. All experiments thus far have required
supplementary assumptions (in addition to that of local realism), which although
seemingly reasonable, severely reduce the true impact such an experiment might yield.
These additional assumptions constitute several loopholes, which can be divided into
three general categories: the angular correlation loophole, the detection loophole, and the
space-like separation loophole. We propose in Chapter 10 a setup which should permit
for the first ime (simultaneous) closure of the first two of these loopholes; we will also

discuss briefly how current technologies should allow an extension to close the third as

well.

The angular correlation loophole was investigated by Clauser and Home [Clauser
and Horne, 1974], and in detail by Santos [Santos, 1991; Santos, 1992). They showed
that because of the cosine-squared angular correlation of the directions of photons
emitted in an atomic cascade (of the type used in nearly all of the early Bell’s-inequalities
experiments [Clauser and Shimony, 1978; Aspect et al., 1982a,b]), there was an
inherent polarization decorrelation, due to the transversality condition. More explicitly,
since the photons do not necessarily fly off back-to-back in this three-body decay
process, one must detect the photons emitted into a large solid angle in order to have a
sufficienty high detection efficiency (see discussion below). But with this source the
very polarization correlation which could result in a violation of Bell’s inequalities is
reduced for non-collinear photons, so that it is strictly impossible to disprove local

realism by using a cascade source.
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In order to essentially remove the angular-correlaton problem, experimenters have
switched from cascade sources to those using correlated photons produced in the
process of spontaneous parametric down-conversion [Brendel et al., 1992; Kwiat et al.,
1993c; Shih and Aliey, 1988; Ou and Mandel, 1988; Rarity et al., 1987]. As discussed
in Chapter 2, these photons can have an angular correlation of better than 1 mrad,
although in general they need not be collinear !!. The simplest of the down-conversion
Bell’s-inequality experiments [Shih and Alley, 1988; Ou and Mandel, 1988] used the
same setup discussed in Chapter 5 as a quantum eraser (see Fig. 5.1) -- non-collinear
correlated photons were directed through equal path lengths to opposite sides of a 50-50
beam splitter, aligned so that the transmitted mode of one photon coincided with the
reflected mode of the conjugate photon, and vice versa. A half waveplate prior to the
beam splitter was used to rotate the polarization of one of the photons (which were
initally horizontally-polarized) by 90°. The output state of this “source” (including the

down-conversion crystal, waveplate and beam splitter) was then
|\p> =%[|H>3 +1i IH>4][1 |V>3+ IV>4]
= 1[1B>31vDa - [VD3lHDa +i1VDslHD3+i [VDalHY4], (1.16)

where the subscripts 3 and 4 denote the two output port modes of the beam splitter, and
|15 (| V) denotes a single photon in mode j, horizontally (vertically) polarized.

Coincidence rates between detectors looking at the two output ports were recorded, as a
function of the orientation of polarizers at the detectors. In only measuring coincidence

rates, the experimenters were able to effectively create a singlet-like state by discarding

11 1n contrast to the cascade situation, the polarizations remain well-defined even for
non-collinear down-converted pairs. One consequence is that extra means must be used
to prepare a polarization-entangled state. (Due to energy conservation, the photons are
automatically produced in an erergy-entangled state. See also Chapter 8.)
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the last two terms of (7.16). However, it should be stressed that because of these
discarded terms, the detection efficiency is inherently limited to 50%, and no
indisputable test of Bell’s inequalities is possible!2. Similar problems arise in the
Beli's-inequality experiments based on energy-time entanglement!3 (see Chapter 8) and

phase-momentum entanglement [Rarity and Tapster, 1990a] 4.

Low detection efficiencies have hindered experiments on Bell’s inequalites from
the outset. The detection loophole basically deals with the fact that with non-unity
efficiency detectors (as before, we include all losses of our interfering particles in the
effective efficiency of the detectors), only a fraction of the emitted correlated pairs is
detected. If the efficiency is sufficiently low, then it is possible for the subensemble of
detected pairs to give results in agreement with quantum mechanics, even though the
entire ensemble satisfies Bell’s inequalities.

Due to the non-existence of adequate detectors, experiments have so far employed
an additional assumption, equivalent to the fair-sampling assumption that the fraction of
detected pairs is representative of the entire ensemble, or to the no-enhancement

assumption that insertion of a polarizer will not increase the probability of detection

12 Hardy has pointed out that one could use the full state (7.16) if one’s detectors
could reliably distinguish between one- and two-photon states (e. g., if a two-photon
detection resulted in a pulse twice as high as a single-photon detection), thereby allowing
one to account for the cases in which both photons went the same way [private
communication]. Although there is some indication that such detectors may be
feasible/available [Petroff et al., 1987; Kwiat et al., 1993a,b], we feel that the non-
collinearity of the beams will lead to reduced visibility, unless one uses small pre-
detector irises. These, however, reduce the effective collection efficiency.

By, these tests as well, half of the counts are discarded (electronically) to eliminate a
non-interfering background [Brendel, et al., 1992; Kwiat, et al., 1993c].

14 Although in this scheme there is in principle no necessity of discarding half of the
counts, in practice the small irises needed for high-visibility fringes severely reduce the
effective detection efficiency.
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[Clauser and Horne, 1974]. For example, to connect the probabilities [that go into the
correlation functions E(0;,65), as in Sect. 7.1I] to experimentally-observed rates in a
scheme using two-channel analyzers (cf. the second Aspect experiment [Aspect et al.,

1982a)), ideally one would define
01,9,)
px_](el’GZ) —J(l—z (7.172)

where p; (6;,87) is the probability that the two particles in a given correlated pair will be
detected at the “i-th” and “j-th” channels [extraordinary (e) and ordinary (0) channels] in
each of the respective analyzers; R;j(81,8,) is the experimentally-observed rate of
coincidences; and Ry, is the total rate of emitred pairs. But since the detection
efficiencies are often small, the maximum value of p; §(61,82) as defined above would
be close to zero, as would the value of S: No violation of |S| < 2 would be possible. To
avoid this problem, an extra assumption is included so that one may relate the probability

of coincidence counts to the number of pairs detected at any of the channels:

R;i(01.62)
Ro0(81,82) + Rpe(61,62) + Re(61,82) + Ree(81,65)

, (7.17b)

pij(01,82) =

where the subscipts “0” and “e” denote the two channels of each analyzer. Essentally,
one assumes that the pairs detected are representative (i.e., a “fair sample™) of the entire
ensemble. A more precise way to state the extra assumption mandated by (7.17b) is as

follows:

For every photon in the state A, the sum of the detection probabilites
in the “ordinary™ and in the “extraordinary” beams emerging from a
two-way polarizer does not depend on the polarizer’s orientation.

[Garuccio and Rapisards, 1981}
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However, it should be noted that physicists have invented local, realistic models
which can explain all of the observed results—-these models necessarily violate the fair-
sampling or no-enhancement type assumptions [Clauser and Home, 1974; Santos,
1992]. In order to experimentally close this loophole, one must have detectors with
sufficiently high single-photon detection efficiencies. As discussed above, it was
formerly believed that ~83% (= 2Y2 — 2) was the lower efficiency limit, but Eberhard
has reduced the detector requirement to ~67%, in the limit of no background [Eberhard,
1993]15, Recently, we have measured the absolute single-photon detection efficiency
of several detectors [Kwiat et al., 1993a; Kwiat et al., 1993b], and observed corrected
efficiencies as high as 75%. (See a full description in Chapter 9.) However, there were
additional losses (not corrected for in the above result) which should in principle be
avoidable, leading us to believe that efficiencies in excess of 9% may be feasible;
efforts toward this end are currently in progress. Combined with our proposal for a
down-conversion source in which there is no need to reject half the counts (presented in
Chapter 10), this may permit closure of the detection and the angular correlation

loopholes simultaneously.

The final loophole concerns the space-like separation of the different parts of the
experiment. Clearly, no claims about nonlocality can be made if the pre-detector
analyzers are varied so slowly that a signal traveling at the speed of light could carry the
analyzer-setting information back to the source or to the other analyzer before a pair was

produced or detected!6. To close this loophole, the analyzers’ settings should be

15 Taking a completely different approach, Braunstein and Mann [Braunstein and
Mann, 1993] have also reduced the required efficiency by considering states of more
than two correlated particles, a generalization of the three-particle example of
Greenberger, Horne, and Zeilinger [Greenberger et al., 1989]. As the number of
particles in the entangled state becomes large, the efficiency requirement can be reduced
t0 71%, also in the absence of noise.
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changed after the correlated pair has left the source. (We assume here that the
separation of the detectors is as least as great as the source-detector separation.)!’
Ideally, one would desire that the backward light cones of the detection apparatuses and
the particle source not overlap, lest it be argued that the apparatus settings share some
common cause. Practically, “this is, of course, impossible”, and the best one could
achieve would be to base the analyzer settings on random signals from astronomical
objects outside each other’s light cones (e.g., quasars on opposite sides of the
universe)ls. Only one Bell-type experiment, that of Aspect et al. [Aspect et al.,
1982b], has made any attempt at all to address this locality condition, but even in that
experiment the loophole remains. Although the experiment used rapidly-varying
analyzers, the variation was not random, and it has been argued that the time of the
polarization switching was not sufficient to disprove a causal connection between the
analyzer and the source [Franson, 1985; Zeilinger, 1986]. Moreover, the inequality
used by Aspect included coincidence rates when the polarizers were removed. This

removal was certainly not performed with any alacrity.

16 Nevertheless, researchers continue to make claims about nonlocality, even though
no experiment has satisfied the requirement. The basic assumption is that no
information other than that carried by the entangled particles is being shared between
detectors (i.e., there is no hidden mechanism to produce correlations in the outputs of
the detectors). Although correct according to quantum mechanics, the assumption is
almost circular: In order to “prove” that Nature is nonlocal--that there are influences at a
distance--one assumes that there is n0 influence between the detectors!

17 Actually, this leaves a factor of two safety margin; the real constraint is that the
information of analyzer setting should not reach the source before the particles are
emitted.

18 This compromise would rule out all local theories short of “superdeterminism,”
which amounts to the claim that there is no nonlocality since all events are
predetermined, but they are predetermined to precisely mimic a nonlocal theory. Such a
metaphysical viewpoint is clearly outside the scope of science
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LV1. Interpretation

The philosophical interpretation of experiments violating Bell’s inequalities is a
topic about which (far too) many papers have been written!? (see, for instance, almost
any issue of Foundations of Physics, or Physics Essays). However, we would be
remiss if we completely omitted all discussion of the implications of such a violation,
particularly because physical intuition about nonlocally-entangled states is elusive.
There are two basic approaches to understanding Bell's inequality-violating results:
First, one may consider what sorts of LHV models are disproved by them?9; second,

one may examine the common assumptions that comprise any LHV theory. We

address each of these general approaches.

1. 7 YV

As mentioned carlicr, one can easily concoct a local hidden variable (LHV) model
to explain correlated behavior of separated particles (assumning they were not always
separated, of course). For example, the simplest such source would produce pairs of
particles with definite, orthogonal linear polarizations. To simulate an unpolarized
appearance (i.e., the singles rate at any detector is independent of the angle of the
polarization analyzer), we allow different pairs in the ensemble to have random (but
definite) axes of polarization. We can describe such a source quantum-mechanically by

using a mixture of product states, rather than a pure superposition state as in (7.2):

21
p=f % (A1, &+ 7/2)2> gy A+ 1/2), | (7.18)
0

19 The opinions expressed herein are solely my own.

20 It has been shown that one can derive a Bell’s inequality without reference to hidden
variables [Stapp, 1971; Stapp, 1991] at all. In some sense, the second derivation above
(Sect. 7.IV) is of this type, since nowhere did we need to assume any sort of underlying
model. All we assumed was that the measurements would have had a particular outcome
for two parameter settings (even though only one can occur in reality); this is essentially
an assumption of “counterfactual definiteness”. See, for instance, Sect. 3.8 of [Clauser
and Shimony, 1978].
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This describes an ensemble of particle pairs; the members of each pair are orthogonally
linearly-polarized; the polarization angle A (with respect to horizontal polarizatdon) is
uniformly distributed from 0 to 2x over different members of the ensemble. One can
easily calculate the result expected from an analyzer (at an angle 8 with respect to the
horizontal) looking at photon 1. We describe the polarizer by a projection operator
A1) = 16,><0; |. Expanding [A;> and |6, into the horizontal-vertical basis, the
probability is then given by

2
P1(6) = Tr pA,(6) =f %(cos A CH;p | +sind vy ) <+ 7/2), |
0

x (cos 6 |H;> +sin 8 [ V;>)(cos 6 CH; | +sin 0 <v, )

x(cosl |H1> +sin A |V1>) I(7t+7t/2)2>

2r
=f %(cos A cos © + sin A sin 9)2
0

2
=] dr.o2h-6)=
fo o cos* (A —-9) (7.19)

1
3

There is no angular dependence to the singles rate. Similarly, one can look at the
probability Py 5(8;, 6;) of coincidences between two analyzers, one with a polarizer at

8- the other with a polarizer at 8,. The calculation proceeds as above, with the result

2n
P;2(61,65) =] g‘%cos2 (A —8y) cosZ (A +§- 0,) (7.20a)
0
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=1 -2 20128 (7.20b)
This displays 50%-visibility sinusoidal fringes (recall that the visibility must be less than
71% in any LHV model). From (7.20a), we see that the coincidence probability is just
the product of the individual probabilities (as given by Malus’ law) to pass either
polarizer, averaged over A [cf. Eq. (7.4a)]. InFig. 7.3a, we indicate for particular
choices of 61 and 6, the singles probabilities (as predicted by standard QM) as
functions of . When these curves are integrated over A, a constant value of 1/2 results
[cf. Eq. (7.19)]. To get the coincidence probability as a function of 81 and 6,, we
essentially convolve the two singles probabilities; the resulting fringes [Eq. (7.20b)]
have 50%-visibility (see Fig. 7.3b).

In a modification to this LHV model, we could instead postulate that the

probability for a A-polarized photon to pass a polarizer (at angle 6) is as follows:

P(®IA)= 1 ifcos?2(@-1)>1/2
= 0 ifcos?(@-A) <12 . (7.21)

Plots of (7.21) for particular choices of 0, and 6, are shown in Fig. 7.4a. As before,
integrating over A yields a constant; the source appears unpolarized. Convoluting the
two plots of Fig. 7.4a gives the coincidence probability as a function of 8 and 65 (see
Fig. 7.4b). We see that it displays 100%-visibility zriangular fringes. On the same
graph we have included the result for a singlet-state source. The two plots agree at their
extrema [i.e., for the cases of perfect correlation (81 — 65 =0, 1) and anti-correlation
(81 — 65 = 7/2, 3n/2)], and when 6, - 6, =n/4, 3n/4, etc. The largest discrepancy

occurs when 87 — 6, = /8, 3n/8, etc. Itis not then surprising that these are the relative
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angles used to demonstrate violations of Bell’s inequalities (cf. Fig. 7.2).2! The
interpretation of such a violation would be that our simple LHYV theory is untenable: The
photons do not leave the source with definite polarizations. We will see in Chapter 8
that similar statements can be made for Bell’s inequality experiments based on other
sorts of entanglement, e.g., energy and time entanglement. Of course, the strength of
Bell’s inequalities is that they apply to a whole class of theories. We have offered just
two simpie examples, to help develop an intuition about the interpretation.

The second way of understanding the implications of a violation of Bell’s
inequalities is to examine the general assumptions that went into the derivation. Again,
much has been written about this (see, for instance [Selleri, 1988]), so we will only
highlight the argument. As discussed in Sect. 7.101, there are only a few assumptions
necessary to derive a Bell’s inequality. These are the Bell-locality condition, which
consists of Parameter Independence (measurement results do not depend on the
parameter setting of the distant analyzer) and Outcome Independence (measurement
results for one particle do not depend on the results for the distant particle); the p-
independence assumption (the source output does not depend on the parameter settings);
and a notion that the results of measurements are governed by the complete state A (see
also footnote 3 in this Chapter, discussing the assumption of non-negative probabilities).
We discuss the last of these first.

In the earliest derivations of Bell’s inequalities, the underlying LHV theories were
taken to be deterministic. This corresponds to probabilites p(m | A, o, B) (and similar
ones from Sect. 7.II) possessing only the values 0 or 1. Our second explicit LHV
model, defined by (7.21), is an example of a deterministic theory. From a violation of

these restricted Bell’s inequalities, one might claim that the incorrect supposition in the

21y, fact, calculation of either of the Bell’s inequalities discussed earlier [i.e., (7.7a)
and (7.12)], using the predictions of the deterministic LHV model at these angles will
yield the limiting case, i.e., the equality-limits of (7.7a) and (7.12).
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derivation was that of determinism; i.e., the photons described by a singlet-state do not
“know” their polarization. Indeed, in the case of deterministic hidden variable theories,
a “rangible” action-at-a-distance seems implied by a violation of Bell’s inequalities: the
possessed value of some attribute belonging to one member of a pair of spatially
separated systems is instantaneously affected by varying the physical arrangement of an
apparatus interacting with the other member. Here, “a direct conflict with special
relatvity seems difficult to avoid” [Redhead, 1986). The Bohm-deBRroglie guiding-
wave model, discussed in Sect. 4.IV, is a hidden variable theory that can reproduce the
quantum predictions because it is explicitly nonlocal.

However, the Bell’s inequalities have been generalized to include non-deterministic
sources, so that even if our LHV model is “relaxed” so that the photons are not assumed
1o possess definite polarizations, but are instead described by some sort of stochastic
probability distribution, we still cannot explain the correlations implied by a violation.
In other words, a violation implies some sort of nonlocality. It may be that the source
somehow responds to the parameter settings (p-dependence). However, if the settings
are changed randomly after the particles have left the source (i.c., if the space-like
separation loophole is closed), this influence must be nonlocal?2. The other possibility
is that one (or both) of Parameter Independence and Outcome Independence is false.

Since they are at the heart of the entire argument, it behooves us to look more
closely at the two independence conditions, and what QM has to say about them. The
first, Parameter Independence (also known as “Jarrett-locality” [Jarrett, 1984]), states
that the results on either side of the experiment do not depend on the parameter setting at
the other side. Clearly, QM satisfies this condition; if it did not (and QM were the
correct description of Nature) then it would be possible to send superluminal signals.

For instance, the sender at analyzer 1 could send an instantaneous signal to the distance

22 This sort of nonlocal influence is, of course, not predicted by QM.
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receiver of particle 2 by appropriately adjusting the setting &, causing the distribution of
the measurement outcomes by, to change (e.g., causing all counts to appear at the
ordinary-channel of 2’s analyzer). The Outcome Independence condition (also known
as “Jarrett-completeness” [Jarrett, 1984)) siates that the results on one side do not
depend on the results on the other side?3. This condition is, in fact, violated by QM.
Determination of the polarization/spin of one particle in an entangled state nonlocally
determines the polarization/spin of the other particle. Nevertheless, there is no way to
use the nonlocal correlation to send signals superluminally, for the results at each
analyzer individually are completely random. It is only by bringing the data records
together (a procedure which must be done at a speed less than or equal to ¢) that the
correlations can be detected. (As we shall discuss next, some researchers have proposed
to capitalize on the inherent randomness of the process in various quantum cryptographic
schemes.)

In summary then, I would say that the interpretation of an experimental violation of
a Bell’s inequality is that Nature is nonlocal: The outcomes of measurements in
spatially-separated regions of space depend on one another, and this dependence is not
due to a “common cause”. Moreover, if one wants outcomes in one location not to
depend on apparatus settings in the other (which could imply a serious breach with the
tenets of special relativity), he must relinquish an appealing, intuitive notion that an

unmeasured observable nevertheless possesses an “element of reality”.

I.VII. Quantum Cryptography

Although it is absolutely true that the EPR schemes cannot be used to send any

signals superluminally, nevertheless, it has been proposed to utilize them for a different

23 The condition of Jarrent-completeness identifies the hidden-variable description of
the source as the common cause for the possessed values of correlated attributes such as
spin- or polarization-components.
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kind of communication, namely, cryptography. In the “one-time pad” scheme of
classical cryptography [Brassard, 1988], it is supposed that two collaborators wish to
share a secret “key”, a random number (or string of binary digits) with which they may
encode and decode a message. Such a key may provide an absolutely unbreakable code,
provided that it is unknown to any potential eavesdropper. The problem arises in key
distribution: any classical distribution scheme is subject to non-invasive eavesdropping,
e.g., using a fiber-coupler to tap the line, without disturbing the transmitted classical
signal. In the quantum cryptography proposals and demonstrations made to date, the
security is guaranteed by using single-photon states [Ekert, 1991; Bennett et al., 1992:
Ekert et al,, 1992], some of the schemes employing particles prepared in an EPR-
entangled state?®. Both collaborators receive one member of each correlated pair, and
measure the polarization (equivalently, some schemes use phase) in a random basis.
After repeating the process many times, the two then discuss publicly which bases were
used for each measurement, but not the actual measurement results. The cases where
different bases were chosen are not used for conveying the key, and may be discarded
(or perhaps examined to detect the presence of an eavesdropper [Barnett and Phoenix,
1993]), along with instances where one party detected no photon. In cases where the
same bases were used, however, the participants will now have correlated information.
From this, a random, shared key can be generated.

As long as single photons are used, any attempt at eavesdropping will necessarily

introduce errors due to the uncertainty principle2S. For if the eavesdropper uses the

24 Aliernately, the sender can send photons in a state of random, but definite,
polarization (or phase). For this scheme, very weak coherent-state pulses, with an
average photon number << 1, can also be used [Bennett, 1992].

25 Note that if classical pulses are used instead, as from an attenuated laser, they must
be sufficiently weak that the average photon number per pulse is less than one, so that
the probability of two photons in a pulse is much less than one; otherwise, an
eavesdropper could make a measurement on one of the photons, sending on the other,
undisturbed photon.

122.



wrong basis to measure the polarization (phase) of a photon before sending it on to the
real recipient, the very act of measuring will disturb the original state. Because of the
“no-cloning” theorem [Wootters and Zurek, 1982], there is no way to copy the original
quantum siate and make measurements on the duplicate. By publically comparing of a
subset of their correlated data (and subsequently discarding it), the collaborators may

verify the security of their communication.
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Chapter 8: The Franson Experiment

Cartoon, previous page: One mental image in performing these experiments
is that as experimentalists in quantum optics, we are trying to “coax” Mother
Nature into confessing Her nonlocality. The imagery is perhaps reversed,
however, since it seems that most of the time it was the physicists who were

under duress.

There is obviously no such limitation--I can measure the energy and look at
my watch; then I know both energy and time!
-L. D. Landau, regarding the energy-time uncertainty principle

8.I. Introduction

In the previous chapter we introduced the EPR “paradox™ and the Bell’s
inequalities which may be used to experimentally distinguish between theories based on
the intuitive (but probably wrong) notion of local realism. Many experiments have been
performed which, with certain reasonable auxiliary assumptions (discussed in Sect.
7.5), violated the Bell’s inequalities derived for local hidden variable (LHV) theories, in
support of quantum mechanics [Aspect et al., 1981; Aspect et al., 1982a,b; Clauser and
Shimony, 1978; Selleri, 1988; Shih and Alley, 1988; Ou and Mandel, 1988). The
ramifications are unsettling; thus it is important to verify quantum mechanics in as many
different realms as possible.

Nearly all experimental tests of the inequalities to date have involved the
superposition of polarization (spin) states, along the lines of the Bohm version of the
EPR paradox [Aspect et al., 1982a-c; Clauser and Shimony, 1978; Shih and Alley,
1988; Ou and Mandel, 1988]. A noteworthy exception is the recent experiment by

Rarity and Tapster [Rarity and Tapster, 1990] based on “phase and momentum™. The

125.



experimental proposal by Franson [Franson, 1989 conceming a Bell inequality for non-
polarization variables has received a fair amount of attention since its appearance several
years ago [Kwiat et al., 1990; Ou et al., 1990b; Rarity et al., 1990; Ekert, 1991; Brendel
et al., 1991; Rarity and Tapster, 1992; Rubin and Shih, 1992; Brendel et al., 1992; Shih
etal.,, 1993; Kwiat et al., 1993a; Kwiat et al., 1993b]. The “Franson experiment” relies
on the entanglement of a continuous variable, energy, and is thus closely related to the
original EPR paradox. (We will contend that the present experiment is in some ways the
“offspring” of both versions of the paradox.) Instead of polarizers or Stern-Gerlach

analyzers, spatially separated Mach-Zehnder-like interferometers are used to investigate

the nonlocal correlations.

s M . Ere R RO, F s J Rppuy
resent a simplified theory for the underlying 2-photon

Sect. 8 T we pre

M"l vy

interference effect, as well as outline a more rigorous treatment. A first-version of the
experiment, utilizing a dual-beam Michelson interferometer, is described in Sect. 8.I1I;
the improved version with two Mach-Zehnder interferometers is given in Sect. 8.1V,
along with a discussion of the effects of photon bandwidth and gate-window width.
After showing in Sect. 8.V that we have violated a Bell’s inequality based on energy and
time entanglement, we will discuss the implications of this violation. Future directions

of the Franson experiment are presented in Sect. 8.VI.

8.IL.__ Theory

We have already seen that the down-converted photon pairs produced in parametric
down-conversion possess strong frequency-correlations, due to energy conservation,
®p = g + ;. The emitted photons may thus be described by an energy-entangled state
[cf. Eq. (2.3)]. We select out pairs such that @ and ; are centered at (op/2 Previous
experiments [Hong et al., 1987; Steinberg et al., 1993b] have demonstrated that the
photons also have very strong temporal correlations, so that if one photon is detected at
time t, its conjugate will be detected within the two-photon correlation time Ttpc, much
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less than 1 ps. This is of the same order as the single-photon coherence time T, usually
determined in practice by filters before the detectors. Note that we now have a situation
very similar to that originally proposed by EPR (see Sect. 7.II; [Einstein et al., 1935]).
They described a system of two particles in a simultaneous eigenstate of the operators
kq+kj and x;-x5. If we make the transformations k — w/c and x — c t, we essentially
have this state. The signal and idler energies sum to a constant, and the difference in
their times of emission is nearly zero. Bell has shown, however, that since there is a
positive-definite Wigner function which can describe these properties, no direct
violation of a Bell inequality is possible for these observables [Bell, 1986; see also
Wodkiewicz, 1988]. Consequently, in order to investigate an inequality based on
energy and time, it is necessary to produce a state more akin to the spin singlet state of
the Bohm version of the EPR paradox. We shall see shortly how this arises in the
present experiment.

We first give a simplified analysis of this experiment based on Feynman’s notion
of interference of indistinguishable processes. Let each conjugate photon enter a
modified Mach-Zehnder interferometer (MZ); see Fig. 8.1. Each interferometer (j=1,2)
has a short path of length Sj and a long path of length Lj. If the optical imbalance ALJ =
Lj —Sj is less than the coherence length ¢t of the incident photon, then fringes will be

visible in singles rates as the long arms are moved slightly. We now restrict our

L, L
¢ Ll Tlp

Figure 8.1 Simplified schematic of basic Franson experiment.
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discussion to the case where ALJ >>¢1,, in which there are no singles fringes. Fringes
can nevertheless be observed in the rate of coincident detections between the two
detectors. It becomes helpful to regard each MZ as consisting of two optical delay lines,
“short™ and “long”, in parallel. Then for any incident photon pair, there are four
processes (short-short, long-long, short-long, and long-short) leading to pair detection,
where the first label refers to interferometer 1, and the second to interferometer 2. In the
short-long and long-short processes, the two photons exit their respective MZ’s havin g
acquired a relative time-lag large with respect to Tipc: These processes, which account
for one-half of the emitted photon pairs, are therefore in-principle distinguishable from
each other as well as from the short-short’s and long-long’s. According to the Feynman
rules for interference, they thus constitute a non-interfering background. We shall see
that whether the electronic resolution AT is sufficient in practice to discriminate against
the short-long and long-short counts will be crucial in determining the outcome.

If the difference between the path-length differences (AL = AL — AL») is greater
than CTips then the long-long’s are also distinguishable from the short-short’s, and no
interference will result. We thus further restrict our discussion to the case AL << Chpc:
Then the long-long and short-short coincidence processes are indistinguishable from
each other, because the absolute time of emission of the pair from the crystal is
undetermined (for a cw pump)!. To calculate the probability of coincidences we need
the probability amplitudes for the four coincidence processes. The phase accumulated in
traveling a short path is2 ejS = Sj/c, while for a long path it is SjL = Lyj/c. The

amplitudes for the various coincidences are then

! Note that we are making an assumption here. The fact that this assumption predicts
interferences which are in fact observed implies that the assumption is correct. See Sect.
8.V.

2 Although we are only including dynamical phases here, one could equally well
include geometrical phases, i.e., Berry’s phases (see Chap. 3).
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where we have assumed a reflection (transmission) amplitude of i/N2 (1/¥2) for the
beamsplitters, and have assumed the particular output ports as shown in Fig. 8.1. The
probabilities for short—long or long-short coincidences are just the absolute squares of

the amplitudes of these in-principle distinguishable possibilities:
PSL-IASLF-—"IALSIZ =P . (8.2a)

The long-long’s and short-short’s are indistinguishable, so their amplitudes must be

summed first, then absolute squared:
Pss or LL =| Ags + A
=%lei(e§ +63) , i} + 9§)F
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-é— {1 + cos[cz—“E (ALg + AL) + d>} , (8.2b)
where we have used energy conservation/entanglement to write ©; = mplz +0,0y=
cop/Z — . Because we have assumed AL << ¢ Tpe (ie., AL;-Al;is arranged o be
small relative to the inverse bandwidths of ; and ), the phase ® = AL/c is
negligible. (As stated earlier, the fringes will wash out if this condition is not met.) The
total probability for coincidence depends on the coincident gate time AT. For AT >

ALj/c, short-long’s and long—short’s contribute and we have

Pyot, wide window = % {2 + COS[¢1 + M) . (8.3)

These fringes have only 50% visibility, and have been observed experimentally (see
Sect. 8.II0) in slightly different, but equivalent geometries [Kwiat et al., 1990; Ou et al.,
1990b; Brendel et al., 1991].

For AT < AL;/c, the background of short-long and long-short coincidences is

excluded and we are left with the rate of “true” coincidences:

Prot, narrow window = %‘ {1 + C°5[¢l + ¢2}} . 8.4)

This enhancement of the visibility by a factor of two has now been seen by several
groups [Brendel et al., 1991; Shih et al,, 1993; Kwiat et al., 1993c]. The 100%-
visibility of (8.4) stems from the strong correlations between conjugate photons, and

allows one to violate an appropriate Bell’s inequality.

Equivalently, one could have calculated the coincidence probability by using the
Schrodinger picture, and evolving the input state [Eq. (2.3)]. The output state after the

interferometers is
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'W>ouz=4l[|\lls>1 lwsd2+ w1 lwida = lwsd; lwdo = lwpd w2 8.5)

where we have omitted for simplicity the integral over frequency. For a wide

coincidence gate window, all terms remain, and (8.5) can be rewritten

I\lf>om=};“\vs>1 ~ lydr [ lwsda - hyda) - (8.6a)

The fact that the kets factorize leads to 50% visibility3. On the other hand, for a

narrow coincidence window that last two terms of Eq. (8.5) will not contribute, and we

have
lw ou =L lwsd1 lysda + lwidy b, ] (8.6b)

This state is similar to the familiar singlet state standardly used as a source for violations
of Bell’s inequalities.

As alluded to earlier, one cannot produce a violation of Bell’s inequalities just
using the entangled output of the down-conversion crystal and making measurements
directly of the energy and time, for this state is describable with a non-negative Wigner
distribution. How is it that we can ever use such a source to demonstrate a nonclassical
effect, since a positive-definite Wigner function is equivalent to a classical probability
distribution? The answer is that the Wigner distribution is not truly an LHV model,
since it includes all the QM correlations. When measurements are made involving the
coherent superposition of the field at different times, as in our Franson interferometers,

it is possible to bring out the irreducible nonlocality. In this case the Wigner distribution

3 Recall that the factorization condition is essentially the definition of the Bell-locality
constraint, Eq. (7.4a).
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acquires negative values.

The above simple calculations are sufficient if one only wishes to investigate
specific limiting cases. However, to fully predict the functional form of the wransition
regions between the easy-to-understand limiting cases, a more complete theory is
needed. We outline such a rigorous calculation here. The truly “interested” reader is
directed to any of a2 number of lengthy papers for further details [Rarity and Tapster,
1992; Rubin and Shih, 1992; Shih et al., 1993; Campos et al., 1990]. Also, in Chap. 4
and Appendix B2 similar general calculations are given for slightly different down-

conversion experiments. We start with the state out of the crystal [cf. Eq. (2.3)]

r

|y = J day, Ag(ey) J do, A@y) |agds |, - og; 8.7)

(where we have included an integral over the @p to allow for a non-monochromatic
pump), and calculate the second-order Glauber correlation function relating the field

amplitudes for the signal and idler modes after the interferometers at the times i, andt,

respectively:
GO, 1) = (| EO) BP0 EPW B w | w) (8.8)
where
B = f da, M3(0) (o) efosis 1. (1-eiosaly), (8.92)
£V = (EPw), (8.9b)
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B = f do; M () 3(0,) 719t .-{12— {1 -eiw;ialo} (8.9¢)

and

B m = [E ] (8.5d)

We have sent the signal photon into interferometer 1, and the idler into interferometer 2.
The probability of joint detection of a signal-idler pair within the detector resolution

window AT, after a total time 7, is then given as in Eq. (4.7):

TR ts +AT
P = [ Ar. { d!i G(z)lt ter ) 8.10

.y \*S9s1y ¢1ryes/
Joo e

-t

—~
o

In general, the resulting J0-integral expression is intractable. However, if one
assumes gaussian transmission spectra for the filters [represented by the T(®)’s], then it
may be evaluated numerically. In Fig. 8.2 we present the results of such a numerical
evaluation. The values of the various parameters were chosen to display the full
character of the Franson experiment. We see that there are four main regions. For path-
length differences (in time units) less than the coherence time of the down-converted
photons, fringes will be observed in both singles rates, and hence trivially in the
coincidence rate, which is essentially the product of the singles in this “white-light”
regime. For path-length differences greater than the photons’ coherence times, but less
than the electronic resolution time, there will be no singles fringes, and coincidence
fringes will be limited to 50%-visibility due to the presence of short-long and long-short
coincidences. When the electronic resolution time becomes less than the path-length
difference, coincidence visibility can reach 100% (assuming, as always, that the

difference in the path length differences is less than the photons’ coherence time).
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Figure 8.2 Numerical calculation of the coincidence fringe visibility in a Franson
experiment, as a function of the path-length difference in either interferometer (the
difference in path-length differences is set to be much less than the coherence length
of the down-converted light). The various lengths and time-scales have been
chosen to simultaneously display all three regimes of operation, and do not
correspond to actual experimental parameters. In particular, for this calculation the
pump frequency p = 5 x 106/ns; the pump bandwidth (which determines the
width of the entire profile) Awp =0.1/ns; the bandwidth of the down-converted
light (which determines the width of the initial 100%-visibility region, and the rise-
time to the second 100%-visibility region) Aw = 10/ns; and the electronic gate
window width (which determines the extent of the 50%-visibilility region) AT =

4 ns. Note that because the gate window is centered on the lon g-long and short-
short coincidences, the transition from 50% to 100%-visibility occurs at 2 ns.
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Finally, no fringes will be possible if the path lengths are much greater than the pwnp

coherence tme.

Il i-Beam Micheison Experimen

The original proposal by Franson involved an atomic cascade light source and two
spatially separated Mach-Zehnder interferometers. Our experiments employed the
parametric fluorescence light source; our first attempt used a single dual-beam Michelson
interferometer, as shown in Fig. 8.3. The signal and idler beams were made parallel to
each other by means of mirrors M1 and M2, and injected side-by-side into a single
Michelson interferometer. They are thus both affected by the same path-length
difference AL = AL = 2AL*. Upon leaving the output port of the interferometer,
photons in the two parallel beams passed through filters F1 and F2 and were detected by
photomultipliers D1 and D2, while the travelling mirror of the Michelson was slowly
scanned by a stepping motor. We calibrated the system by counting He-Ne laser
fringes, and determined that one step of the stepping motor corresponded to an average
motion of 6.101 £0.027 nm of the travelling mirror. Each detector consisted of an
RCA C31034A-02 photomultiplier tube, which was cooled to approximately -30° C.
The signals from the photomultipliers were amplified and directed into a Stanford
Research Systems SR 400 Gated Photon Counter. The electronic delay between the
signals was adjusted to maximize the coincidence count rate for a 5-ns-wide gate
window.

When the Michelson imbalance was very small, fringes were observed in the
singles rates, and trivially in the coincidence rate (which in this regime is essentially their

product); see Fig. 8.4. Because the coincidence rate factorizes, violation of a Bell’s

4 We define AL as the actual arm-length difference in the Michelson; the optical path-
length difference is wice this.
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Figure 8.3 Experimental setup used in dual-beam Michelson version of the
Franson experiment. See text for details.
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inequality is clearly impossible. The visibility of the signal (or idler) single-photon
interference close to the white-light fringe was measured to have a sinc-like variation
with arm length difference (see Fig. 8.5a), with a maximum value of 93.0 + 1.0%.
From the position of the first null of this pattern, we determined the coherence lengths of
the down-converted light : Alg= Alj = 50 um, which are consistent with the 10-nm
bandwidths of filters F1 and F2 centered at 702 nm (see Fig. 8.5b).

When the Michelson imbalance is greater than the coherence lengths (Alg, Al;), no
singles-fringes are observed, although fringes may still be observed in coincidence. The
results are shown in Fig. 8.6, where the singles count rate (upper trace) and the
coincidence count rate R (lower trace) are ploried against the arm length difference AL.
These data points were taken starting with 2AL = 240 um, as determined by counting
the steps of the stepping motor starting from the position of the white light fringe. The
visibility of the fringes in the singles count rate is very low (<5x10-3) in this region.
However, the visibility of the fringes in the coincidence count rate is quite high:

46.0% £ 2.2% (with 90% confidence). When we account for imperfect alignment of the
Michelson arms (the 93%-visibility at zero path-imbalance, from Fig. 8.5a), the
corrected coincidence visibility is 52.6% + 3.0%. This agrees, within the experimental
error, with the predicted value of 50%, which was used in the calculation of the solid
sinusoidal curve shown in Fig. 8.6. The travelling mirror moved a distance of

176.1 £ 1.0 nm from one coincidence-rate maximum to the next, which also agrees,
within the experimental error, with the predicted value, viz.,, lpn = 175.6 nm between
adjacent interference maxima. Note that because both down-converted photons
experience the same optical delay (and because their frequencies sum to the pump
frequency), we observe fringes determined by the pump wavelength, even though the

ultraviolet pump never enters the interferometer.
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Figure 8.5 Sinc-like visibility of singles fringes, as a function of the optical path-
length difference in the dual-beam Michelson. a) Experimental results with a 10-nm
FHWM filter before the detector. b) Theoretical prediction based solely on the
Fourier transform of the filter’s spectral transmission data.
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We therefore conclude that we have indeed observed a two-photon interference in
the dual-beam Michelson interferometer [Kwiat et al., 1990] (Similar 50%-visibility
results were reported by other groups as well {Ou et al., 1990b; Rarity and Tapster,
1992]). However, since the observed visibility is not significantly greater than 50%, we
cannot claim that this is a nonclassical effect!. There exists a classical-field
explanation in which the rates Rg, R; of singles detection, and R of coincidence
detection are ensemble averages in a stochastic classical field theory. In this theory, the
wavenumbers kg and k; are classical random variables which are subjected, however, to

the constraint that kg + kj = kp, where kp is a nonrandom variabie>. Then
Ryoc (I +cos kALY =1,
Rjox{1+cos kALY =1,

and

R¢ o {(1 + cos kgAL)(1 + cos k;AL)>

=<1 + cos ksAL + cos kiAL + Lcos (kg—kjAL + 2c0s (kg+k)AL)

! There has been some confusion and controversy as to whether 50%-visibility is
indeed a classical result. On the one hand, Mandel and Co. produced a mathematical
proof (which few people understood) that no classical model could reproduce 50%-
visibility Franson fringes. On the other hand, we suggested an explicit model, presented
here, which did yield 50%. The resolution to these seemingly contradictory results
came from Franson [Franson, 1991]; remarkably, both results are correct, when taken
in the proper context. If one only considers the results of a Franson experiment, then a
50%-visibility model is possible. If, however, one incorporates the tight time-
correlation results of ozher experiments, then no classical model can yield more than a
few percent visibility.

2 For example, one might envision a source of radio waves, with correlated side-
bands.
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=1+12-coskpAL, (8.11)

where {cos ksAL>=<cos kjAL>={cos (ks~k;)AL>=0, but {cos (ks+k;)AL>=cos
kpAL. Thus this classicz: theory also predicts a 50% visibility. As in the Hanbury-
Brown-Twiss effect, our interference effect in its present form possesses a classical
explanation. However, unlike the Hanbury-Brown-Twiss case, it is possible to improve
the experiment, so that if the visibility exceeds 50%, then a classical explanation is no

longer possible. We have done this in the experiment discussed below.

3

\% -

As seen in the previous section, initiai attempts to perform the Franson experiment
were limited by slow detectors and relatively small interferometers [Kwiat et al., 1990;
Ou et al., 1990b; Rarity and Tapster, 1992]. The resulting extra background reduced the
fringe visibility so that it was not possible in a single experiment to rule out classical
field models, let alone all local realistic theories>. Brendel et al. were the first to
succeed in removing the unwanted background [Brendel et al., 1991], reporting a
visibility of 87%. However, their arrangement employed a single-beam Michelson
interferometer, and no conclusions regarding locality could be made. Since this initial
experiment, they have performed a similar two-interferometer experiment [Brendel et al.,
1992].

A schematic of our experimental setup is shown in Fig. 8.7a. A 40-cm focal-
length cylindrical lens was used to collimate the degenerate (A = 702 nm) down-

converted beams in the vertical direction. After the lens the conjugate beams traverse

3 Two recent papers [Rubin and Shih, 1992; Shih, et al., 1993] even seem to imply

that at large path-length differences, high visibility would still be unattainable, due to the
finite size of the Gown-converting crystal. This is incorrect, however, as the present
experiment explicitly demonstrates [Kwiat et al., 1993].
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Figure 8.7a Schematic of experimental setup used in separated Mach-Zehnder
version of the Franson experiment. See text for details. The axis of the quarter
waveplate (QWP) could be reliably switched between horizontal and vertical.

similar optics, so we will describe only the path of beam 1. All optics had a nominal
flatness of A/10. Bending mirror M1 directs the beam into an unbalanced MZ, formed
by two 50/50 beam splitters (B1] and B21) and a translatable right-angle prism. The
beam splitters were specified to have R=45%/T=45% for p-polarization, and were
wedged (A8 = 0.5°) to eliminate unwanted interfering paths. The prism was mounted
on a dual-stage translation element, consisting of a standard optical translation stage for
“coarse” adjustment, and a Burleigh Inchworm piezoelectric system, nominally capable

of 4-nm single steps®. The position of the prism was monitored via 2 Heidenhain

4 We actually observe an average step size of 6 nm, and individual steps which vary
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opiical encoder, with a 0.1-pum resolution. The optical path-length difference in each
interferometer was approximately 63 cm, much smaller than the pump coherence
length5 (C‘L'pump > 6m), but much larger than the coherence length (¢t = 50um) of
the down-converted 1ight6. Following a filter and an adjustable iris. the beam was
focussed onto detector D1, a customized silicon avalanche photodiode counting module
(EG&G SPCM-200-PQ; see Appendix E for specifications). (We have measured the
detection efficiency to be ~75% at A=702 nm [see Chap. 9], but at present the filter and
iris limit the effective efficiency to less than 1%.) We measured the time resolution
(10%-90% region) of the devices to be 1.1ns. Detector D2 was another SPCM, while

detector D2’ (used in later versions of this experiment) was a standard passively-

e acmiaas Sasswaraa 4

quenched silicon APD (EG&G C30002; see Appendix E for specifications). The
outputs of the detectors were fed into a time-to-amplitude converter with 100-ps
resolution. This was operated with a ime window of 1.46 ns, thereby eliminating
nearly all contribution from the long-short and short-long coincidences, which were
displaced by +2.1 ns relative to the short-short and long-long (due to the 63-cm path-
length differences). The time profile and gate window are displayed in Fig. 8.8.
Typical results (see Fig. 8.9a) displayed sinusoidal coincidence fringes with a
visibility V=80.4+0.6%, while no fringes were discernible in the singles rates. The

less-than-unity visibility even with the short gate window is due to some combination of

over a 3 um cycle from about 2 nm to 8 nm.

3 For this experiment the argon-ion pump laser was operating in single-line mode.

6 One of the primary difficulties of the arrangement in Fig. 8.7a is that one must

ensure that the difference of the path-length differences is much less than ~50 pm, the
photons’ coherence length, as discussed in Sect. 8.I1. In the previous experiment with a
dual-beam Michelson, this condition was automatically satisfied. In general, however, it
is not a trivial task to determine two lengths to within a fraction of a percent. The
solutdon involved a clever trick by Aephraim Steinberg, in which one creates two white-
light interferometers by temporarily adding extra optical elements. See the modified
schematic of Fig. 8.7b.
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Figure 8.7b Temporary modification’ of setup to achieve equal path length

differences in two separated Mach-Zehnder interferometer (clever method due to A.
M. Steinberg). An additional mirror M3 and extra beam splitters BS | and BS>
create two additional interferometers. For example, with the trombone-prism paths
blocked, the two paths BS1-M1-B11-B21-BS3 and BS1-B12-B23-M3-BS> can be
adjusted to make a white-light Mach-Zehnder interferometer. Simiiarly, with the
short paths (B11-B2; and B13-B25) blocked instead, one can adjust one of the
trombone arms to achieve white-light interference. In this way, the difference in the
path-length differences is guaranteed to be less than a few microns.

7 This modification was made before the detector D2’ was installed.
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Figure 8.8 Coincidence timing profile, made with TAC and SCA operating in
window mode (100-ps window), showing contributions from short-long (left
peak), long-short (right peak) and long-long and short-short (central peak)
coincidences. The vertical bars indicate the electronic gate window (1.46 ns) used
to eliminate the non-interfering background of short-long and long-short

coincidences in most of the experimental runs.

the following effects:

i.) Imperfect alignment of the bending mirrors, interferometers, and irises, such
that short-short and long-long processes are not entirely indistinguishable.

ii.) Inevitable loss of visibility due to diverging input beams and large path-length
imbalance. There were generally about twice as many short-short coincidences as long-
long’s (this ratio depended critically on alignment), which should reduce the maximum

visibility to 94% 8. (In a later version, described below, we compensated for this by

8 The optimal visibility of interference between two processes if the probability of one
process is reduced by a factor of o with respect to the other is 2a1/2/(1+a); see Fig. 8.12)
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using neutral density filters in the short paths.)

iii.) Finite size of irises, accepting light from various paths which acquire slightly
different relative phases in the interferometers. As evidence for this effect, the
approximate fringe visibility improved from 63% to 75% to 80% when the irises’ sizes
were reduced sequentially from =1.5mm to =0.8mm to =0.4mm in diameter.

iv.) Time averaging over slow drifts in laser frequency (the instantaneous
linewidth of the pump should be negligible) and/or air temperature in the MZ’s. From
the fit in Fig. 8.9a one finds that the period of the fringes is = 282 nm over the 1700-
second run, differing from the expected value of 351 nm. This is consistent with the
quarter-fringe drift over 10 minutes observed in a separate stability test. As a worst-case
estimate, we treat the drift as a random walk, finding a phase diffusion coefficient of
about 5°/s1/2, and a visibility reduction of about 1.3%. In runs where the counting
times were shorter (~1s), the observed fringe spacing was 348+1nm, in much closer
agreement with the expected value.

In Fig. 8.9b we show the simultaneous coincidence results using narrow (1.1ns)
and broad (8ns) gating windows, corresponding to the exclusion and inclusion of long-
short and short-long coincidences, respectively. In the former case the visibility of the
best-fit curve is 76+1%, while in the latter it is 40+1%, in reasonable agreement with the
ratio of two predicted by theory. These results demonstrate the cutoff effect which
enables one to produce the Bohm singlet-like state of Eq. (8.6b). Comparing Eq.(8.3)
with Eq.(8.4), we also expect the average value of these curves to differ by a factor of
two. For our fringes the ratio was 2.3. This is partially explained by the fact that the
1.1-ns window actually cuts out about 10% of the long-long’s and short-shert’s, in
addition to 99% of the short-long’s and long-short’s (see Fig. 8.8). Interferometer

misalignment also contributes to this discrepancy.
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Figure 8.9 (next page) Interference fringes in a Mach-Zehnder Franson experiment.
a) Constant singles rate (left axis) and coincidence fringes (right axis, with the
accidental rate of approximately 10 (counts per 10 s) subtracted). For this run, the
irises were at their minimum size (~0.4-mm diameter). The position data is
interpolated from the Heidenhain encoder’s 0.1pum-resolution output. The solid
curve is a sinusoidal best fit, and has a visibility of 80.4 = 0.6%.

b) Gate window-size influence on coincidence-fringe visibility {same basic
conditions as in a)]. With a narrow window (1.1ns), only the interfering short-short
and long-long processes contribute (lower trace, triangles); for an ideal system,
100%-visibility is predicted. With a broad window (8.0ns), the background of non-
interfering short-long and long-short coincidences increases the count rate (upper

race, diamonds) reducing the visibility by a factor of two.
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As discussed earlier, coincidence fringes are only expected when AL < Alg, Alj,
the down-converted coherence lengths. By scanning the interferometer out further than
about 20 um, it is possible to observe this degradation (see Fig 8.10). The use of small
irises will tend to narrow the effective bandwidth, thereby broadening the envelope
slightly. When a 0.86-nm FWHM filter was substituted for one of the 10-nm filters,
the envelope was found to broaden to ~350 um. On the other hand, when both
interference filters were replaced by colored-glass cutoff filters, the width did not change
appreciably from the 10-nm case, indicating that the effective bandwidth imposed by the
0.4-mm irises is about 10 nm.

In advanced versions of the present experiment both output ports of interferometer
2 were used, to verify that the coincidence rates Nj5 and N5’ displayed complementary
fringes (and to improve the case for a Bell’s-inequality violation, by removing the need
for one of the supplementary assumptions; see discussion below). Typical results are
displayed in Fig. 8.11.

By placing a variable attenuator in one arm of interferometer 1, we were able to
investigate briefly the effect on fringe visibility. Our results, shown in Fig. 8.12, are in
fair agreement with the simple theory discussed in Chap. 1, namely, that the optimal
visibility of interference between two processes if the probability of one process is
reduced by a factor of o relative to that of the other is 20 1/2/(1+q).

Believing that the above results (e.g., Figs. 8.9a and 8.11) were limited
significantly by an inequality in the number of short-short coincidences and the number
of long-long coincidences (the former were typically as much as twice the latter,
probably due to beam divergence over the large path imbalance), we installed a neutral-
density filter (N.D. ~0.1) in the short arm of each interferometer, for a total short-short
attenuation factor of ~0.6. The resulting contributions from the four coincidence

processes were then found to be roughly equal. After realigning to compensate for the
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Figure 8.10 Envelope profile of Franson interference fringes, with 10-nm FWHM
filters before detectors. For this data the Burleigh system was moved 0.1mm every
count (1 count = 90,000/29,100 s collection time + 0.2s dwell time). At this speed
itis not possible to discern individual fringes, but the envelope is clearly displayed.
The width of the profile (~ 50 pm) is governed by the inverse-bandwidth of the
detected photons, and agrees with theoretical predictions based on the filter spectral
transmission (cf. Fig. 8.3).
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Figure 8.11 Coincidence rates N17 and N1 (i.e., using both output ports of
interferometer 2) show complementary fringes. Singles rates display no fringes.
The curves are sinusoidal fits, with visibilities indicated. Accidental rates of 0.53
s-1 (5.6 s71) have been subtracted from N12 (N12°). (Attenuators were present in

both short arms--see discussion in text.)

extra glass, and removing the cylindrical lens after the crystal (because it did not seem to
be helping), we found significantly improved results.

In particular, we performed one final run, to allow a true test of Bell’s inequalities.
As will be discussed in the next section, as long as only one of the interferometers’
phases is varied, then at best one can only infer a violation of a Bell’s inequality. Recall
from Sects. 7.III and 7.IV that two values of each parameter setting are needed. In
practice this is not so easy to achieve due to the relatively large backlash present in any

linear motion system®. The solution was to insert a zero-order quarter waveplate

9 For example, experimenta points in which the first rhree of the four required
combinations of parameters (¢1, ¢1’, 92, ¢2°) are determined pose no severe difficulty.
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Figure 8.12 Plot of coincidence fringe visibility versus relative attenuation of the
long-long processes. Solid curve is the theoretical prediction (cf. Fig. 1.1),

normalized to agree at the maximum.

(QWP) into the long arm of interferometer 2 (where interferometer 1 was used for the
actual prism-position scanning), as shown in Fig. 8.7a. The relative phase difference
between the two possible orientations of the QWP fast axis (horizontal and vertical) is
90°, which is precisely what is needed for a Bell’s inequality with our arrangement (see
below). The procedure leading to the data displayed in Fig. 8.13 is straightforward--
Interferometer 1 is (very) slowly scanned while the QWP is periodically switched from
horizontal to vertical. From these results we can violate an energy-time Bell’s

inequality.

The problem is that to determine the final combination, one of the phase variables has to
be reset to its initial value. This cannot be done reliably with typical motion systems
(recall that the phase has heretofore been adjusted by piezoelectrically translating the
trombone prism of interferometer 1).
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As discussed in Sect. 8.1, 50% is the maximum visibility possible in a classical

field approach to this sort of experiment. Our Mach-Zehnder results therefore preclude
any classical description, without the need to include results from other experiments.

Although we did not do this, it is clear that one could perform a different check of non-

classicality by measuring the anti-correlation parameter a, as described in Chap. 3.

Recall that a (= N; Nb}zz') must be greater than 1 for any classical source (see also
124N

Appendix A). In words, the number of triple coincidences for all three detectors times
the singles rate (N1) at the unpaired detector (D1) should be greater than the product of
the double coincidences (N2 and N3°) between this detector and the two paired
detectors (D2 and D2’), for any classical sourcel0. Instead, we have seen that the
indivisibility of our single photons leads to an anti-correlation between the individual
counzs at the detectors D2 and D2’, so that the number of triple coincidences is much
less that than predicted by any classical field theory. This feature of non-classicality
implied by a low value of a is very different than the feature implied by a violation of
Bell’s inequalities. The former results from the indivisibility of a single quantum, the

latter from the nonlocal correlations implicit in an entangled state. We turn now to a

10 The experimental arrangement is quite different here than in Chap. 3 for the single-
photon Berry’s phase experiment. In particular, the detectors D2 and D2’ are in the two
different output ports of interferometer 2, whereas in the earlier experiment the detectors
both looked at the same output port of an interferometer (the fact that it was a Michelson
instead of a Mach-Zehnder is not relevant here), after an extra beam splitter. Therefore,
in the earlier experiment the two coincidence razes between these detectors and the
unpaired detector behaved in a correlated fashion (i.e., the interference fringes were
exactly in phase); in contrast, here the two coincidence rates N12 and N>’ are anti-
correlated (i.e., the interference fringes are exactly out of phase). Nevertheless, the
value of a is still constrained to be at least 1 for any classical field theory. In fact, the
present experimental setup is much more like that reported by Grangier, et al. in the
article which introduced the anti-correlation parameter [Grangier et al., 1986].
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discussion of Bell’s inequalities for our experiment.

The results using the switchable quarter waveplate demonstrate that the coincidence
rates depend only on the sum of the phase angles, as predicted by quantum mechanics.
In general, however, the derivation of a teszable Bell’s inequality requires making
additional reasonable assumptions, as discussed in the previcus chapter. {In particular,
for detection efficiencies below about 83%, the assumption must be made that the
observed counts are “representative” of the entire ensemble, including those particles
which escape detection. This “detection loophole™ can never be evaded in the present
version of the Franson experiment due to the necessity of discarding half the counts,

i.e., the short-long’s and long-short’s (see, however, the proposal in the next section).

The other principal assumptions arc that the state of the particles emitted by the source is
independent of the parameter settings at the analyzers, and that any correlations in the
detector outputs arise solely from the entangled photons.} Once this is done, the
inequality can be violated when the coincidence rate varies sinusoidally!! as a function
of the difference of the “parameter settings™ at the two spatially separated analyzers, as in
the QM prediction Eq. (8.4). (Typically, these settings are polarizer orientations, but in
our experiment, one is +AL1, and the other is —-AL,.) Asdiscussed in Sect. 7.11, this
violation requires the visibility to exceed 142, or about 70.7%. The fringes we have
observed therefore imply a violation of a Bell’s inequality by up to 16 standard
deviations. When observations are only made at two or three of the four output ports,
additional assumptions must also be made about the rates at the unused ports, based on

the symmetry of the experiment. In particular, we must assume that the unobserved

coincidence rate N1+ (with a fourth detector looking at the remaining output port of

1 Recall (Sect. 7.VI) the restriction that the rate vary sinusoidally with the sum of the
two path-length differences is essential. It is fairly easy to concoct LHV models which
predict 100%-visibility triangular fringes (Fig. 7.4), or fringes proportional to the
product of separate sinusoidal functions of the two parameters (Fig. 7.3). These
models do not violate the Bell inequality.
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interferometer 1) displays complementary interference fringes to those displayed in
Ni2°, just as those of N7 and Nj7° are complementary (see Fig. 8.11).
Using the results of Fig. 8.13, we can calculate explicitly the value of S, as given

in Eq. (7.7b):
S = E(¢1,92) + E91,9%) + E(¢'1,¢2) — E(90'1,0'2), (8.12-7.7b)

where for any LHYV theory, IS} 1yl < 2. Given that our net detection efficiencies are at
best a few percent (due to small iris size), we must make a supplementary “fair
sampling” assumption to calculate the correlation coefficients E(¢;,0,). We will use the

following definiton:
N12(91, 92) = N12:(01. 92)
N12(¢1,92) + Nj2: (91, ¢2)

o~
(4]
bod
\7]
N

E(d;, ¢2) =

which is equivalent to that in Eq. (7.17b), if one assumes that the unobserved rates N>
and N1+ behave like the observed rates: N2+ (91, 07) = N12(0;, 0) and
N12(91, ¢2) = Nj2:(91, ), as predicted by quantum mechanics. The implicit
assumption in using (8.12) is similar to that discussed in Sect. 7.V:

For every photor in the state A, the sum of the detection probabilities in

the two output ports of each Mach-Zehnder does not depend on the phase

shift in the interferometer.
The fact that we observed complementary fringes in N7 and N5 (Fig. 8.11) confirms
this assumption for interferometer 2, for the coincidence events we observe'2. We
calculate (8.13) for the two points (the two waveplate orientations) at ~22.5° and for the
two points at ~67.5°. Combining the results as in (8.12), we find Sexp =2.63 £ 0.08,
which clearly violates the Bell’s inequality. For comparison, 100%-visibility sinusoidal

fringes would yield S, = 2.83.

12 The whole essence of a fair sampling assumption is that one assumes that the counts
one doesn’t observe behave like the counts one does.
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There are several possible interpretations of the Bell’s inequality for this
experiment. The initial proposal named it a test of a “position and time” inequality. The
related non-polarization-based experiment by Rarity and Tapster [Rarity and Tapster,
1990] describes a “momentum-phase” inequality. In 2 private communicaton, Caves
and Braunstein have maintained that the variables in question are simply whick port of
the final beam splitter each photon exits. We describe the present experiment in terms of
a Bell’s inequality concerning energy and time. As discussed earlier, the underlying
mechanism for the observed interference is the strong correlations of both of these
variables in the conjugate photons. An example of an LHV model inconsistent with our
results is one which ascribes to each photon some definite but unknown energy, but
aliows this energy to differ among the members of the ensemble, thus washing out any
fringes in singles detection. This is in fact a general version of the classical model given
in Sect. 8.111, for which the visibility was limited to 50%. If, instead of the standard
sinusoidal transmission-probability, we postulate that the probability P for a photon (of
well-defined, sharp frequency) to leave a particular interferometer port is given by the
standard result, rounded to the nearest integer (so that P equals only zero or one; cf. Eq.
7.21), then we saw in Sect. 7.VI that triangular coincidence fringes result. Although
they may display 100%-visibility, Bell’s inequality is satisfied, and no nonlocality is
implied.

In summary, if one accepts the reasonable supplementary assumptions (fair
sampling, no “influence” of interferometer phase settings on the source, and symmetry
considerations to account for the unobserved port), then the conclusion of the
experiment is that Nature is nonlocal. Local hidden variable models in which the time of
emission or energy of the down-converted photons are well-defined before detection
cannot reproduce the observed correlations. In colloquial terms, we can say that the

photons know neither their birthdays nor their color.
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Regarding future directions of the present experiment, we discuss only briefly two
possible extensions of the current work. Other researchers have also studied the
possibility of employing the nonlocal correlations in various communications and
cryptography schemes [Ekert, 1991; Rarity and Tapster, 1992; Brassard, 1988; Bennett,
1992; Ekertet al., 1992). In terms of a loophole-free Bell’s inequality experiment (see
Sect. 7.V), the present embodiment of the Franson experiment is insufficient, because in
order to achieve the greater than 71% visibility needed for a violation, one must perforce
discard the short-long and long-short coincidence events. This automatically reduces the
maximum detection efficiency to 50%, which is insufficient to close the detection-
loophole. In Chap. 10, we propose a means of generating a true singiet-iike
polarization-entangled state, without the need of discarding half of the counts. In Fi g.
8.14, we show how such a source could be used in conjunction with a modified
Franson scheme to perform an energy-time Bell’s inequality experiment in which there
are no short-long’s or long-short’s to discard. Basically, one relies on the polarization
correlations to force the photons to always take the same-length paths in their respective
interferometers.

As a second extension of the present work, consider the scheme depicted in Fig.
8.15, which would permit one to produce a pair of photons which were doubly-
entangled, that is, simultaneously entangled in polarization and in energy. More
precisely, the proposed setup would allow one to measure both polarization correlations
(using polarizers before the detectors) and energy correlations (using the Franson
interferometers). The polarization entanglement is established using the same technique
as discussed in Chap. 5--one of two horizontally-polarized photons incident on opposite
sides of a beam splitter is made vertically polarized. Neglecting cases in which both

photons leave the same port of the beam splitter, an effective singlet-state (cf. Eq. 7.16)
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is produced. It is not yet clear what, if any, advantages are gained with such a system,
and more study is certainly needed. However, it is our hope that such a double-

entanglement may lead to even greater violations of a Bell-type inequality.

Polarizing
HWP, beam splitters

Figure 8.14 Use of a polarization-singlet state to perform a Franson experiment in
which there is no background of short-long or long-short coincidences. The state
after HWP, is |y = (lV>1 |V>2 - |H>1 IH)zVﬁ . Polarizing beam splitters
force photons to take the same paths; i.e., either both take the long paths or both
take the short paths. Half waveplates within the interferometers effectively remove

polarization as a which-path label.
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Coincidence
counter

Figure 8.15 Possible setup to investigate combined polarization/energy-time
entanglements. The source emits correlated pairs of horizontally- (H) polarized
photons. The half waveplate HWP [which rotates the polarization to vertical (V)]
and beam splitter BS produce the polarization-entanglement!3, which we examine
using polarizers (or alternately, polarizing beam splitters) P1 and P2. The energy-
time entanglement is again investigated with a Franson-type arrangement. Ideally,
one would have detectors in all four output ports (detectors not shown are indicated

by arrows).

13 As in the other Bell’s inequality experiments that use this scheme [Ou, 1988; Shih,
1988], processes where both photons leave the same port of the beam splitter must be
discarded to produce an effective singlet state (cf. the discussion in Sect. 7.V).
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Chapter 9: High-Efficiency Single-Photon
Detectors

$.1,__Introduction

Recently there has been a growing interest in fast, high-efficiency single-photon
detectors. High efficiencies are of course desirable in all applications relying on photon
counting, such as photon correlation spectroscopy and velocimetry [Cummins and Pike,
1974; Cummins and Pike, 1977], optical time-domain reflectometry [Ripamont et al.,
1990}, and laser ranging, as well as in investigations of novel quantum-mechanical
interference phenomena at the single photon level. However, they are absolutely
necessary for practical implementation of various quantum cryptographic schemes, as
well as in proposed loophole-free experiments to demonstrate violations of Bell’s
inequalities, which until recently required detection efficiencies greater than 83% (by
considering the use of modified quantum entangled states, this limit has now been
reduced to 67% [Eberhard, 1993; see also Chaps. 7 and 10]. In a very real sense, the
value of any loophole-free test (the “proof of the pudding™) is determined by the detector
efficiency (the “tasting”).

Measuring the quantum efficiency of a detector at the single-photon level can be
problematic. Typical tests involve a relative measurement of the efficiency, comparing
to 2 “known” standard detector. In some schemes, the very weak photo-current out of a
diode is measured, and arguments are made equating current to detection events.
However, any such test is subject to uncertainties. Fortunately, as discussed in Chap.
2, the correlated photons from parametric down-conversion are ideal for makin g
measurements of the absolute detection efficiency and temporal response of single-

photon counting detectors, such as photomultipliers and avalanche photodiodes!. The

! It is important to distinguish between single-photon detectors and certain
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basic idea is as follows: Because the photons are always produced in pairs, if one is
detected at a “trigger” detector, then we can know with certainty that its conjugate is
incident upon a second detector, whose efficiency we wish to measure. The highest
single-photon detection efficiencies to date have been observed using avalanche
photodiodes in the Geiger mode; until now ihese have been limited to about 40%. We
have measured efficiencies as high as 76%, and there are indications that these may be
improved to 80% or even 90%. In particular, we describe in this chapter a series of
measurements [Kwiat et al., 1993a; Kwiat et al., 1993b] made on a pair of Sclid State
PhotoMultipliers (SSPM) from Rockwell [Petroff et al., 1987], and on a pair of Single
Photon Counting Modules (SPCM-200-PQ) from EG&G [Lightstone et al., 1989;
Lighisione and Mcintyre, 1588; see aiso the specifications in Appendix E]. The highest
adjusted efficiencies measured were 70.9+1.9% and 76.4+2.3%, with an SSPM and
SPCM, respectively. However, subsequent tests on the SSPMs revealed possible
damage in the input fibers, and there were substantial reflection losses within the
SPCMs. At present it is difficult to exactly specify the appropriate correction factors.
Nevertheless, the results are very encouraging, with efficiencies nearly twice those
previously reported.

In Sect. 9.1 we review briefly the need for high-efficiency single-photon detectors
in quantum cryptography and loophole-free Bell’s inequality experiments. Our down-
conversion source has already been described in Chap. 2; Section 9.111 discusses the use
of such a source to measure absolute quantum efficiencies. Descriptions of the
detectors, detailed experimental setup, and typical procedure are given in Sections 9.1V -
9.VI, respectively. In Section 9. VI, our efficiency results are presented; we also

attempt to list the various sources of systematic error, corrections to apply to the data,

photodetectors (e.g. Si or InGaAs PIN photodiodes) which may be very fast and display
efficiencies greater than 95% [Rarity et al., 1992], but which possess too much intrinsic
noise to be useful at the single-photon level.
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and the final corrected efficiencies. In Section 9.VII the results of several related
measurements are described, including the time-response characteristics of the detectors,
the effects of saturation, and the presence of afterpulsing in the SPCMs. Our
conclusions are presented in Section 9.IX. Two approaches to the statistical error
analysis appropriate for our results are presented in Appendix C.
ivati

As discussed in Chap. 7, quantum cryptographic schemes rely on using either
single-photon states or very weak coherent-state pulses, with an average photon number
<< 1. The discussion in Sect. 7.VII dealt only with perfect analyzers and detectors.
Polarizers with cross-talk (or imperfect interferometers, for the phase example) and
intrinsic noise within the detectors will introduce errors, and non-unity detection
efficiency will increase the number of useless events where no photon was detected.
Moreover, imperfect detectors will also require greater statistics to determine the
presence of an eavesdropper, and place higher demands on any error-correcting codes.
Clearly, high-efficiency, low-noise detectors are needed. Also, the data rate is
obviously limited by the speed of the detectors.

While the cryptographic applications need high single-photon detection efficiencies
10 be practical, there is no intrinsic level below which the schemes categorically fail; in
contrast, we have seen that certain experiments on quantum nonlocality possess a
specific efficiency cutoff -- below this cutoff no completely rigorous tests may be made.
In particular the lower limit on detector efficiencies necessary to close the detection
loophole is 67% (assuming all other aspects of the experiment to be ideal). However,
due to other limitations and non-idealities, efficiencies in excess of 90% are desired.
Our present results demonstrate that such efficiencies are already available, and suggest

that they may be made even higher.
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QIII. The Method

Because photons produced in spontaneous down-conversion are always produced
in pairs, with strong time correlation, they are ideal for absolute calibrations of photon
detectors-- the detection of one of the photons guarantees with certainty the presence of a
photon at the “conjugate” detector. The technique, first proposed by Klyshko [Klyshko,
1980], and used by Rarity et al [Rarity et al., 1987] to determine the efficiency of an
RCA (now EG&QG) silicon avalanche photodiode, is simple: Direct one photon of each
pair to a “trigger” detector, and arrange the optics in order to catch all of the “conjugate”
photons with the detector whose efficiency is to be determined (see Fig. 9.1). For some
tme interval T both the number of singles at the trigger detector and the number of
coincidence counts between the detectors are measured. If the total number of emitted
pairs is N, then the number of singles seen at the trigger detector is N, = N; N, while the
number of coincidences is Ni, = 1. M, N, where T; (M) is the detection efficiency at the
trigger (conjugate) detector2. Assuming no external losses on the path to the conjugate
detector, one can determine the efficiency 1, by simply taking the ratio N/N;-

In practice the above simple formula needs to be modified to account for the
presence of unwanted counts and the loss of desired counts. First, in addition to the
desirable correlated photons, each detector will also possess a number BG of
background counts, consisting of unwanted external light, dark counts within the
detector, and possibly electronic noise. The true number of singles N; is then the
measured quantity S, minus the background BG, (determined in a separate measurement
with the down-converted beams blocked for a duration Tgg), weighted by the ratio of
the two measurement times, 1 = T/Tpg . Similarly, N, = S, — BG.rgg, where the

subscripts refer to counts at the conjugate detector. Second, there will be spurious

2 Due to saturation effects (arising from intrinsic deadtime in the devices), the
efficiency actually depends on the incident light intensity. (See Section 9.VIIL)

However, for simplicity we use 1 to denote the efficiency in the low-light limit.
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Fig.9.1. Simplified schematic of setup to measure absolute efficiencies. One

photon of a down-converted pair is directed toward the “trigger” detector; the other
to the detector whose efficiency we wish to determine. If we are certain that all

conjugate photons arrive at the detector (i.e., no intravening losses), then the

efficiency may be obtained as a ratio of coincidence counts to trigger singles counts

(after accounting for background and accidental coincidences).

coincidence counts due to the finite duration, w, of the coincidence window. The true

number of coincidences, N, is then the measured value C minus the “accidental”

counts, A = [ScSl - T}cSc(S; - BG[rBG)]w/I' (see Appendix C). In practice, one uses as

small a coincidence window as possible (on the order of tens of nanoseconds), while

still catching all of the true coincidence counts. (Note: Some photodetectors are known

10 possess “trapping states”, so that some fraction of the incident photons produce extra

electronic signals at some undetermined time (which can be as large as seconds) after the

typical time for such a signal [Cummins and Pike, 1974]. The presence of such

afterpulses in the trigger rate reduces the measured conjugate efficiency, because they

appear as “real” trigger photons without conjugate partners. For our tri gger detector (an

SPCM) less than 0.01% of the counts were echoed in this fashion, so the effect on the
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efficiency measurements was negligible. See Section 9.VIII.)

The last major correction factor stems from loss of photons before they reach the
detector, due to unwanted reflections, scattering, or absorption. (For example, any
uncoated glass-air interface will yield about a 4% loss. These may be anti-reflection
coated to reduce this loss significantly. The detector surfaces themselves, if uncoated,
may cause sizable losses from Fresnel reflections.) Thus the net detection efficiency Ne
for each photon may be written as the product of the detector’s efficiency ndc and the
path “transmissivity” nP..

Combining all of these effects, one can now calculate the conjugate detector

efficiency in terms of other, measurable, quantities:

n=L_C=-A 9.1
ME S, — rggBG,

Nortice that the efficiency associated with the trigger photon does not appear in the above
expression. Therefore, one strives to reduce BG,; as much as possible (using narrow-
band interference filters and small irises before the trigger detector), even though this

may reduce the path transmissivity to the trigger detector.

9.1V, The Detectors

We performed measurements [Kwiat et al., 1993a,b] on four single-photon
detectors: two custom-modified Single Photon Counting Modules (SPCM-200-PQ),
from EG&G Canada, Ltd., and two Solid State PhotoMultipliers (SSPM) from
Rockwell International Corporation3. The SPCMs use thermoelectrically-cooled

3 The SSPMs were developed at Rockwell Science Center, Anaheim; the specific
devices used in the measurements reported here were prepared for UCLA as part of a
DOE-sponsored program directed by M. Atac (of Fermilab and adjoint Professor of
Physics, UCLA). We would like to thank Professor Atac for generously allowing the
use of the SSPMs.
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silicon avalanche photodiodes (APDs) in the Geiger mode, with passive quenching.
These photodiodes have a small active area [~(100 mm)2}; along with an improved
genering method in their production, this leads to a typical dark count rate of only

60 s~1. Our model was customized for 30-V biasing over the breakdown voltage of
400 V, to provide faster time response and higher efficiency. A detection event gives
rise t0 a 50-ns, 2-V pulse, followed by a dead time measured to be 0.5 ps. The SPCMs
possess an effective *k” (the ratio of hole to electron ionization coefficients, averaged
over the device structure) of only 0.002, to be contrasted with the k = 0.02 for typical
photon-counting avalanche photodiodes (e.g., RCA 30902 silicon APD). It has been
shown theoretically that the probability for a single photoelectron to cause an avalanche
depends on the value of k, with lower k’s leading to higher gains, other things (e.g..
excess voltage, depletion layer width) being equal [Lightstone et al., 1989; McIntyre,
1973]. For our SPCMs, it is estimated that the ratio of & (the field-dependent electron-
ionization coefficient, integrated over the depletion width) at the operating voltage to 8 at
the breakdown voltage is greater than 1.1, so that detector efficiencies in excess of 80%
are not unexpected [Robert McIntyre, EG&G Canada, private communication].

The SSPMs are silicon devices based on impurity-band-to-conduction-band
impact-ionization avalanches. These avalanches contain about 5 x 104 electrons
localized within areas several microns in size. Because impurity bands are involved,
much lower field strengths are required for impact ionization than in standard avalanche
photodiodes, which use valence-to-conduction-band impact ionization; the typical SSPM
bias is only 7 V. Also, because they do not operate above the avalanche breakdown
voltage, these devices are capable of distinguishing between single-, double-, etc.
photon detections (i.e., two simultaneously detected photons will produce an output
signal approximately twice as large as a single photon). SSPMs have previously been

demonstrated (using a relative efficiency measurement) to possess greater than 50%
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detection efficiency in the visible-light region, greater than 30% at 20 um, and are
predicted to have possible efficiencies greater than 90% [Petroff et al., 1987]. The dark
counts were typically 7000 s-1 for these detectors, which have an active area ~(1 mm)2.
(Note that the dark count rate per unit area is comparable to that of the SPCM.) For
optimum performance the SSPMs require cooling to 6 K.

9.V. Experimenta! Setup

A schematic of one of the experimental setups used is shown in Fig. 9.2, with
each component numbered; below we discuss each in turn, including Manufacturers and
Part No’s. in some cases. Losses associated with these components will be discussed in
Secton 9.VI. A slightly simpler setup, with no mirrors, (i.e., similar to the schematic
in Fig. 9.1) was used for some of the measurements with the SPCMs.

1. An argon-ion laser [Coherent Innova 200] produced the vertically-polarized
(polarization purity of 100:1) 351.1-nm pump beam, with a full-angle beam divergence
of 0.3 mrad, and a beam diameter at the crystal of 2 mm. A “black glass” filter and an
iris (2.2 mm) were used to removed unwanted laser fluorescence. Fixed and variable
neutral density filters were used to control the input power. The net attenuation was
typically 4 OD, so that the input to the crystal was typically 10 mW.

2. After passing through the crystal, the remaining, unscatiered uv beam was
directed by a small mirror to a beam dump.

3. A 10-cm long KDP crystal [Cleveland Crystal, custom order], cut for type I
phase-matching, was oriented with its optic axis at 50.7° with respect to the pump beam.
We measured the efficiencies using two sets of conjugate photons: 702 nm-702 nm and
633 nm-788 nm (the second wavelength is the color directed to the trigger detector).

The crystal itself was housed in a sealed aluminum container, with index-matching
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Figure 9.2 Detailed schematic of one of the setups used to measure absolute
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fluid (n = 1.29) and fused silica end windows. The crystal input face was anti-reflection
(AR) coated for the uv (single-layer of MgF», 1/4 wave at 351 nm); the output face was
broadband anti-reflection (BBAR) coated to reduce output losses over the range
400-750 nm. Note: In some of the runs these directions were accidentally reversed,
leading to an extra correction factor. See Section 9.VIL.

4. A uv cutoff filter [Schott GG-475] was used to remove any scattered uv and
discharge tube fluorescence from both down-converted beamlines. This filter was

BBAR coated to have high external transmittance (>99%) in the range 600-800 nm.

We now trace the components on the path to the trigger detector, an SPCM.

3. A small iris (1.4 mm) 1.5 m from the crystal was used to select out the trigger
photons. Due to phase-matching constraints in the down-conversion process, this iris
determines the direction of the conjugate photons. That is, it selects out a small angular
portion of the down-conversion cone.

6. A 10-nm FWHM interference filter [Melles Griot #03FIV024 for 702 nm;
Ealing #35-4373 for 790 nm (=788 nm)] was used to further select the trigger photons,
and to remove most of the remaining background light. Due to energy conservation at
the KDP source, this filter effectively determines the color (and hence, opening angle) of
the conjugate photons.

7. A BBAR-coated 35-mm-focal length achromatic lens [Edmund Scientific
#32319] was used to focus the light onto the small active area [~(100 mm)z] of the
trigger detector. The distance from the KDP crystal to the lens was ~152 cm, while the
distance from the lens to the detector was ~3.5 cm. Therefore, in the geometrical optics
limit, one expects the spot size at the detector to be ~3.5/152 x (2 mm) = 50 um, where
we have used 2 mm for the size of the trigger beam at the crystal. We have verified this

focusing technique by making transverse profiles with the SPCM. See Fig. 9.3. The
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Figure 9.3 Transverse profile of singles and coincidence counts in the focal plane
of a 35-mm lens. The 150-pum plateau (in singles) is from the detector size. (In

coincidence two detector sizes are convolved.) A spot size of ~70 um is implied.

profiles possessed a fairly flat plateau of ~150 um (the size of the detector), with sharp,
rapidly falling edges, implying a spot size of ~70 pm.

8. The trigger detector, a Single Photon Counting Module [EG&G #SPCM-200-
PQ], was aligned transversely and longitudinally (via micrometers) to maximize the
singles count rate. The silicon diode surface was AR coated with a quarter-wave layer
(at 630 nm) of SiO; the glass window of the housing was uncoated.

The output of the SPCM was inverted [EG&G #IT100], split [Mini-Circuits
#15542,ZSC-2-4 3dB splitter], and directed to a counter [Stanford Research Systems
#SR400] (yielding the singles rate at the trigger detector), and to the START input of a
Time to Amplitude Converter (TAC) [Tennelec #TC862].
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9. To minimize the background a black cardboard box (not shown in figure) was
placed over items 6-8, with a small opening to allow the trigger photons to enter. It was
then found that the background rate was essentially indistinguishable from the intrinsic

dark count rate.

We now trace the components on the path to the conjugate dete~*~- either an SSPM
(unprimed numbers) or a second SPCM (11°), depending on the .- nce of 2
removable dielectric mirror [Melles Griot #02MFG001/001; with MAXBRIte high-
reflectance coating]. The location of the SSPM was chosen in part for convenience in
optical alignment, and in part to keep the electronics associated with the SSPM far from
other sources of electrical noise, as the SSPM electronics seemed very sensitive to
external noise pickup.

10. A large iris (9.0-mm diameter) was used to accept all of the photons conjugate
to those passed by the 1.4-mm iris before the trigger detector. (Previous coincidence
profile measurements had demonstrated that with this size iris, less than 1% of the
conjugate photons were lost.)

11.” The focussing lens, the second SPCM, and electronics in the conjugate path
were identical to those in the trigger path (#7,8), except that the signal was directed into
the STOP of the TAC.

12. A 20-cm focal length plano-convex lens (2” diameter, BBAR for low
reflection in the range 600-1000 nm) [Newport #KPX199-AR.16] was used to focus the
light into an SSPM input fiber (#14 below). (The distance from the KDP crystal to the
lens was ~152 cm, while the distance from the lens to the detector was ~26 cm.
Therefore, in the geometrical optics limit, one expects the spot size at the detector to be
~20/152 x (2 mm) = 260 pm, where we have again used 2mm for the size of the trigger

beam at the crystal.) Fine adjustments in the final position of the focussed spot were

174.



made using transverse and longitudinal micrometers on the lens. Another dizslectric
mirror [Melles Griot #02MFG001/001; with MAXBRIte high-reflectance coating] was
used to direct the conjugate photons downward to the SSPM fiber. The mirror was
aligned so that the beam impinged on the fiber end at an angle of 15° from the normal, to
facilitate the use of a spherical retro-reflection mirror (#13).

13. For some of the measurements, a spherical dielectric mirror (35-mm radius of
curvature; 2” diameter) [Melles Griot #01MCGO013/001, with MAXBRIte high-
reflectance coating] was used to recapture photons which were reflected from either end
of the fiber or from the surface of the SSPM itself. A small hole (1/4”) was made 15°
off the symmetry axis to allow the beam to pass through. In practice the mirror was
positioned with its center of curvature on the top of the fiber, so that any light reflected
off the fiber end was reflected back onto the fiber. Similarly, some of the light reflected
off the detector itself travelled back up the fiber, filling the numerical aperture, and was
refocussed by the spherical mirror onto the fiber end. This led to substantial
improvements in the efficiency. See Section 9.VII.

14. We examined briefly four Solid State PhotoMultipliers (SSPM), with greater
detail on two of these. The efficiencies were similar for the four. Coupling light to the
detectors was accomplished using 19-cm-long acrylic fibers (750-pum core) [Edmund
Scientific #A2532 -> Mitsubishi ESKA SH4001], which also served as cold filters to
remove the excess of infra-red background light. They have a rated attenuation of 0.43
dB/m at 633 nm, and 0.62 dB/m at 702 nm.

For the purpose of cooling the SSPMs to 6 K, a helium dewar was suspended
from an X-Y translation stage, permitting coarse adjustments in the position of the
relevant SSPM fiber, and easy switching from one fiber to another (and hence from one
detector to another).

The output of each detector was amplified first by a fast internal charge-sensitive
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pre-amplifier to 0.4 mV per photon, then twice more to make the signal appropriate for
the following shaping circuitry [x 30 from in-house amplifier (1 to 1000MHz); x 5 from
Stanford Research Systems SR445 (DC to 300MHz)]. The typical pulse corresponding
1o a single-photon detection had an amplitude of 60 mV, a rise-time of 10 ns, and a
FWHM of 30 ns. The noise level was 35 mV.

After passing through an inverting transformer [EG&G #IT100], the pulse was
directed into a constant-fraction discriminator (CFD) [EG&G #584], with a 254-cm
external shaping-delay cable. The discriminator threshold was set at -40 mV for most of
the efficiency tests, as this was found to be sufficient for catching all the coincidence
counts. A 50-ns blocking window was used to eliminate ringing. One of the CFD
outputs was directed to a counter, yielding the singles rate at the SSPM. The other

timing output was directed into the STOP input of the TAC.

The TAC output (for both types of conjugate detectors) was then analyzed with a Single
Channel Analyzer (SCA) [Tennelec #TC450], affording better than 100 ps time

resolution. The SCA output was also directed to the counter, and data saved to a PC.

Note that by simply switching the size of the irises (#5 <-> #10) and movin g the 10-nm
filter (#6) from one SPCM path to the other, we were able to exchange which SPCM
acted as a trigger, and which efficiency we were measuring. In this way the SPCM
efficiency at 788 nm was also obtained (using a 10-nm FWHM filter at 633 nm in front

of #11°).

Q.VL_General Procedure

The exact alignment procedure varied somewhat depending on a given run, but in

general, the trigger detector, trigger iris, conjugate detector, conjugate iris and conjugate
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lens were adjusted to maximize the coincidence rate, and the rato of this rate to the
trigger-singles rate. This was done cyclically until no further improvements were
obtained.

The input pump intensity was reduced until saturation effects were no longer a
concern. In one test we confirmed that beamline background (i.e. background counts
from photons travelling along the main beamline to the trigger detector) was not an
important concern by placing a second 10-nm FWHM filter at 702 nm before the trigger
detector. (This was during the 702 nm-efficiency test, so the detector already had one
such filter before it.) The efficiency was unaltered, to within statistical uncertainty.

The counts S, S, and C were collected (in one second “bins™) for a time interval

T, sufficient to allow adequate counting statistics; the background counts were collected

for a similar interval. The accidental counts were calculated as stated in Section 9.111
(we confirmed this method in separate measurements of the coincidence rate, setting the
electronic delay between the conjugate detector and the trigger detector to 100 ns). The
collected data were analyzed for the mean and standard deviation. Using Eq. (9.1) we
then calculated the raw efficiency. The standard deviation was determined using the

following formula, which is derived in Appendix C:

An, _ |(1-n.)C  2BG,
o \/ e Gosey - (9.2)

VII, Efficiency Resul
For the SSPM tests, typical counting rates were Sc =SgspM = 128,900 51,
S;=363£251,BG, =736+ 1451, C=1552 151, and A= 0.65"! (with a
20-ns gate window). Typical rates in the SPCM tests were roughly half of this,
because of lower saturation rates, and the fact that the SPCM had a much lower dark

count rate than the SSPM (65 s-! versus 7000 s‘l). Note: The singles rates on the
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trigger and conjugate detectors are very different. This is due to the small iris and
10-nm filter in front of the former, and the large iris and no filter (other than the uv-
cutoff) before the conjugate detector.

We shall now attempt to list and account for the various systematic errors and
their correction factors, which mainly stemmed from photon losses before the
conjugate detectors. (Recall that losses of zrigger photons do not influence the
measured efficiency.) Using a photodiode and a Helium Neon laser (operating at
633 nm) aligned to coincide with the conjugate beam of photons, we measured the
transmissivity P of the path leading to the conjugate detector. The light intensity
just before the SSPM fiber (SPCM) was 91.3+1.0% (93.9+1.4%) of that just after
the crystal, due to losses in the cutoff filter, mirrors, and the focussing lens. One
would expect about 1% loss at each interface, so the measured value is not
unreasonable. A smaller correction factor was obtained with the simpler setup used
in several of the measurements with the SPCMs.

Two sources of loss before the detector remain: Reflection losses at the
crystal, and scattering or absorptive losses within the crystal. We measured these,
again using a HeNe laser and a photodiode. The reflection intensity off the output
face of the crystal container was 1.0240.12% 4. The internal transmission factor
(i.e., subtracting out the reflection losses) for the entire length of the crystal was
0.95410.020. If one assumes that the down-converted photons are produced
roughly at the center of the crystal, one finds an attenuation (internal absorption

and/or scattering loss) of 2.3+1.0%. Combining this with the reflective losses, the

total crystal correction factor is then 0.967+0.010.

4 A secondary measurement revealed that the reflection intensity off the crystal input
face (coated for low loss at 351 nm) was 3.37+0.38%. In a few of the runs, the crystal
was accidentally inserted backward; in these cases, the reflection losses are those from
the 351-nm coating. This correction is included in the figures in Table 9.1, where

appropriate.
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At 702 nm and 788 nm there was no convenient way to measure directly the
pre-detector losses. For both cases, the actual paths of the light were very similar to
that of the 633-nm light (because the opening-angles of the down-converted light
cone are similar). Therefore the only difference is the wavelength-dependence of
reflection, absorption, and scattering losses. For simplicity, we assume the same
path transmissivity NP(702 nm) = nP(788 nm) = nP(633 nm). Note that this is
probably a slight underestimate of the losses, as we expect the reflection losses to
be greater for the longer wavelengths.

The effect of using a spherical mirror (#13, Fig. 9.2) with the SSPM was tested.

The mirror was inserted and aligned to give the highest efficiency; then it was removed

and the singles and coincidence rates remeasured. The mirror was found to increase the
efficiency from 47.4+0.6% to 55.840.7% at 702 nm, and from 49.5+0.5% to
53.510.4% at 633 nm. Direct comparison of these results is difficult since varying the
wavelength corresponded to entirely realigning the system. Clearly, however, use of the
mirror gave a significant improvement.

In a few of the tests on the SSPM, the timing window accepted only the main
coincidence peak, described below, thereby excluding 11.940.5% of the coincidences.
Also, in examining the effects of SSPM bias (see Section 9.VII), it was found that the
maximum efficiency was obtained at a slightly higher bias voltage than was typically
used. When these various systematic errors are accounted for, the corrected efficiencies
are as listed in Table 9.1, where we have included the results for two SSPMs and two
SPCMs.

It is important to note that associated with each of the detectors there are other
sources of loss that may yet be reduced. Subsequent testing on the SSPM input fibers

yielded a transmission of only 70+5% (including insertion losses). The expected loss

due to normal transmission and Fresnel losses is only 10%, consistent with the
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Table 9.1. Corrected single-photon absolute detection efficiencies

of two SSPM's* and two SPCM’s.
Wavelength Corrected efficiency (%)
(nm) SSPM#1 { SSPM#2 SPCM#1 SPCMi#2
633 70.9£1.9 | 69.5£1.9 [**743+20 | 65.0%1.6
702 N.A. 66.3t1.4 |** 764423 [=* 754+1.5
788 N.A. N.A. 53.7+1.4 54.4%1.0

* The results listed include the improvements of a spherical retro-reflection
mirror on the SSPMs' efficiencies.

** These results were obtained with a slightly simpler setup than that in
Fig. 9.2, with no mirrors.

improvements observed with the spherical mirror. If any of the excess measured
transmission loss was present during the efficiency experiment, the actual SSPM
detector efficiencies will be somewhat higher. Adjusting for all of the fiber losses
would suggest device efficiencies as high as 93.7£7.2%. The problem of coupling light
into the SSPMs is nontrivial. Because these device are sensitive in the infrared (out to
~20 um), the count rate arising from black-body radition in the room is much larger than
our typical signal. Itis not sufficient to place a cutoff filter in front of the fiber, because
even though this might not transmir infrared, it will thermally radiate it. The solution

is to have some sort of filter which is cooled. The plastic fibers we used initially proved
fairly adequate for attenuating the infrared, but not the signal (at 700 nm or 633 nm).
However, we believe that the unexpected loss in these fibers was due to microscopic
damage to the fibers during the cooling. (It is possible that new “dual-clad” plastic fiber
may be more resistant to this damage.) Subsequent tests with quartz fibers revealed that
these seemed to survive the cooling fairly well, but did not sufficiently attenuate the

infrared. We are currently investigating the possibility of using a doped fiber. In
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particular, silica fibers with a high OH content have a high absorption starting at around
1.3 um. Unfortunately, there seems to be some sort of manufacturing limit to how
much OH can be forced into a fiber. The highest number we have seen is ~1500 ppm
{parts per million). A rough rule of thumb is that the infrared attenuation is about &
dB/km/ppm, implying an attenuation of 60,000 dB/km for the high-OH fiber. At
present the SSPMs employ only a short (~19 cm) length of fiber, implying a net
transmission of ~7%, which is too high.

Another possible solution is to use the fact that bending loss in fibers can be
wavelength-dependent, with longer wavelengths being more lossy. In particular, in a
single-mode optical fiber, a very sharp cutoff can be induced via microbending which
couples light out of the fundamental mode into higher-order, non-propagating modes.
Of course, a large diameter fiber can support higher-order modes, so we would need to
rely on the dependence of the indices of refraction (and consequently the critical angle
for reflection) on the wavelength of light. Depending on the functional dependence, one
may be able to substantially “leak out” the infrared while not significantly degrading the
signal. Further investigation is needed. For example, a coiled fiber might not survive
well as a cooled fiber. A final possibility being investigated is the wavelength-
dependence of the evanescent wave in the cladding. By etching the cladding to a
thickness of only several microns, and coating it with an absorptive material, strong
filtering may be obtainable.

The SPCM detector is housed in a can with a glass window, which was not anti-
reflection coated at all, implying 8% losses. The detector surface itself was BBAR
coated, so that losses of 1% may be expected here. If these interfaces all had multi-layer
coatings to essentially eliminate losses, then an SPCM detection efficiency of >82%
should be achievable. It is also likely that further overbiasing would increase the

efficiency, though other parameters such as dark counts will also be affected.
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v .. . Y
In the course of the absolute efficiency measurements, a number of other effects
were examined, including the effect of varying bias levels (for the SSPM), saturation

(both), temporal response (both), and afterpulsing (SPCM). We now discuss these.

The SSPM is designed to operate with a voltage bias of about 7 V. A brief
investigation of the effect of different bias voltages was made at 702 nm and 633 nm: the
results are plotted in Fig. 9.4. One should not attach too much significance to these
numbers as the amplifier bias and discriminator threshold were kept constant as the
device bias was varied. It is likely that optimizing one or both of these at each device-
bias level might have improved the effective efficiency. Nevertheless, for the sertings
used throughout most of our measurements, the device bias of 7.38 or 7.39 V seemed
close to optimal, though the SSPM efficiencies in Table 9.1 have been adjusted upward
slightly (by a 1.0340.01 correction factor) using the above results.

By measuring the efficiency at several different pumping rates (controlled by
changing the variable ND before the crystal), we evaluated the saturation characteristics
of the detectors (see Fig. 9.5). The SSPM fared much better than the SPCM, which
evinced a 3% efficiency reduction due to saturation effects for a singles rate of 100,000
sl Ina simplified model, the rate-dependent efficiency is given by
(S;07) = 110(1 - S¢ 81:), where 1, is the nc-sataration limit of the measured efficiency,
S is the singles rate, and dt is related to the detector deadtime (including the subsequent
electronics). Using the values from a linear fit to the saturation data, one finds StSPCM
= 0.5 ps. (A direct measurement, described below, yielded a deadtime of 1.5 ms.) A
similar calculation for the SSPM yields Stgspp = 53 ns, which is the same as the
blocking window set with the CFD.
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As discussed in Chap. 2, the correlated photons from our source are emitted with a

time correlation of better than 40 fs [Steinberg et al., 1993; Steinberg et al., 1992].
Thus, by looking at the coincidence time-profiles in our experiment, we were able to

accurately test the temporal response of the detectors at the single-photon level. Using
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Figure 9.5 Plot of uncorrected detector efficiency (at 702 nm) versus singles count

rate. SSPM had spherical mirror in place. Curves are linear fits. True efficiencies

are obtained by correcting for crystal losses (due to reflection, scattering, and

absorption), losses at intervening optics, and for the SSPM, non-optimal biasing.

the TAC and SCA, several such profiles were taken at 702 nm with the SPCMs at

various singles count rates. In particular, with the SCA in window mode, we were able

to map out the temporal profile with a 100-ps window (a typical example is shown in
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Figs. 9.6a). Our narrowest peak was 300 ps FWHM. Since this is essentially the
convolution of two SPCMs, we conclude that the time response of each is 200 ps.
(Other researchers have reported even shorter time peaks with this sort of device, using
custom electronics specifically designed to give a faster time response [Li et al., 1992].)
Increasing the counting rates led to a broader profile, mainly affecting the tails.

By using the SCA in normal mode, keeping the upper level discriminator (ULD)
fixed, and varying the lower level discriminator (LLD), we obtained an integrated time
profile (see Fig 9.6b). From this one can directly determine the time interval necessary
to catch a certain percentage range of the counts. For example, the counts in the range
35-65% fall within a 150-ps window; those in the 10-90% range fall within a 500-ps
window; and those in the 5-95% range fall within a 1000-ps window. We also
observed that the time profile of the SPCM’s broadened as the count rates were
increased, so that the 10-90% range changed from 0.5 ns to 1.5 ns when the detected
photon rates were increased from 30,000 s™! to0 140,000 s™!. While it is possible that
some of this saturation-like effect is due to the timing electronics (e.g. the TAC), one
expects more time jitter as the count rate is increased, simply due to the SPCM deadtime
(see below). More counts fall within the time interval during which the overbias voltage
has not fully recharged; the output pulses in this case have a smaller amplirude, and thus
cross the preset threshold (of the leading-edge discriminator within the SPCM internal
electronics) at a slightly different time.

Similar coincidence time-profiles were taken (also at 702 nm) using the SPCM
trigger as the START to the TAC, and an SSPM as the STOP, with a 1.0-ns SCA
window. (See Fig. 9.7a.) At two different pump intensity levels (SSPM=50,000 s-1
and 165,000 s-1, with corresponding trigger levels of 250 s-1 and 1,000 s-1), the
profiles were essentially identical. There were two peaks, a main peak (FWHM =

3.3 ns) and a smaller peak (FWHM = 4.5 ns) centered 11 ns earlier. The area under the
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Figure 9.6 (next page) Timing results for SPCMs. a). Typical time-correlation profile
with the SCA in window mode, displaying the coincidence rate between two SPCMs,
with singles rates of 70 KHz and 250 KHz, as a function of gate-window (electronic)
timing delay. Single channel analyzer window corresponded to 100 ps. Widths as low
as 300 ps were seen at lower count rates. b.) By using the SCA in normal mode,
keeping the upper level discriminator (ULD) fixed, and varying the lower level

discriminator (LLD), we obtained an integrated time profiie.
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main peak was 89.640.5% of the total. A second time-window measurement at 633 nm
yielded consistent results for the areas under the main and precursor peaks. [At one
point a fast oscilloscope (triggered on the trigger-detector output) was used to observe
the coincidence pulses. No precursors were observed, but two out of the ten coincident
pulses were delayed by ~20 ns relative to the other eight (see Fig. 9.7b). The
probability of both of these being 2ccidental coincidences is very small. However, these
“post-cursors” were not seen on a second scope trace with 14 coincidence events
displayed.] The two peaks separated by 11 ns were not seen with two SPCM:s in
coincidence, and are not expected from the model for SSPM carrier generation and
transport. The initial photo-carriers should appear within less than 1 ps, and their
ransport (ending in an avalanche) should end in less than 5 ns. The two-peak

phenomenon may be due to the associated electronic circuitry used with the SSPM.

Any single-photon detection system will have an intrinsic deadtime, which will
eventually limit the usable count rates, due to saturation. The SPCMs actually have two
deadtimes associated with them. The first is a hard cutoff of 50 ns, due to the internal
shaping circuity in the modules. The second deadtime involves the time necessary to
regain the high overbias voltage once an avalanche breakdown has been quenched. This
is achieved in the SPCMs by charging through a ballast resistor (passive quenching). In
the Geiger mode, if the bias voltage is not beyond the breakdown voltage, then no
avalanche can occur, and the net detector efficiency will be zero (assuming one is
looking for avalanche output pulses). If the bias voltage is greater than the breakdown
voltage, but not yet up to the standard operating point (30 V beyond avalanche
breakdown, in our custom-modified detectors), then avalanche breakdown pulses will
occur, but the photon detection efficiency will be reduced below its maximum value.

Moreover, the pulse amplitude will be less, causing increased time jitter in the leading
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Figure 9.7 (next page) a) Timing results for an SSPM (with an SPCM as a “trigger”
detector) a.) Time-correlaticn profile, displaying the coincidence rate between an
SSPM at a singles rate of 50 KHz, and a trigger SPCM at 250 Hz, as a function of
gate-window (electronic) timing delay. Single channel analyzer window
corresponded to 1.0 ns. The spherical mirror was not in place for these
measuremenis. b) Oscilloscope trace (triggered on the igger-detector output)
showing coincidence pulses. No precursors are present, but two out of the ten

coincident pulses are delayed by ~20 ns relatve to the other eight.
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edge discrimination. In the course of investigating the afterpulsing characteristics of
these devices (see below), we have directly measured the time constant to be 1.5 Ms,
which we can compare to the 0.5-ps value inferred from the saturation data. The
discrepancy is due to the fact that the efficiency during the deadtime is not constant, nor
does it start at zero (after the 50-ns hard cutoff, during which no pulses are produced).
For example, the efficiency near the beginning of the recharging deadtime may be two-
thirds that of the maximum efficiency; then the “effective” deadtime, to which the
saturation measurements are sensitive, will be reduced from the directly-observed
deadtme by a factor of three.

The SSPM evinced no long-time recharging deadtime, since it is not operated
above its avalanche breakdown voltage. We were unable to investigate intrinsic SSPM
deadrimes less than the 50-ns CFD blocking window, which adequately accounts for the
53-ns deadtime inferred from the saturation measurements. The SSPMs are expected to
be continuously operating detectors for counting rates less than about 3 x 107 s-1, the

saturation rate.

Itis well known that avalanche photodiodes operating in the Geiger mode produce
afterpulses. After an avalanche, an impurity in the silicon may act as a trap for one of
the carriers; when the trap is emptied at some random later time, a new avalanche can
occur, thus causing a second pulse to be detected. We measured the presence of
afterpulses by performing an auto-correlation of an SPCM with itself. The output of the
detector was fed into both the START and STOP inputs of the TAC. The START puise
was delayed so that it arrived just after the STOP pulse, to prevent the TAC from
registering a “true” coincidence pulse and immediately resetting. A multi-channel
analyzer (MCA) was used to record the profile over the ranges 2 ps, 20 ps, and 100 ys.

Even if there were no afterpulses, one would still register counts on the MCA due to
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“accidental” coincidences. The count rate from the SPCM was therefore adjusted (by
varying the input light level) to keep the accidental rate small. If the singles count rate is
S, and a count is registered at time t=0, then the chance of registering the next count
within a small interval dt at time tis P(t) dt =S e-St dt, assuming a Poisson process.
For tS << 1, P(t) = S(1 - St). For example, for the range 0-20 ps, we set S=340 s-1,
and t was always less than 20 s, so that St < 7 x 10-3, and we may even neglect the
linear term. We counted for a total time of T = 95,029 s, and with a single-channel
width of 20 us/1024, we expect S2T dt to be 218 counts/channel. The presence of
afterpulsing adds to this baseline a decaying structure, which is compatible with a falling
exponential, with a time constant of t = 4.530.2 us (see Fig. 9.8). If we integrate
analytically the fitted exponendal, we expect to find 650+30 counts. A numerical
summation of the data yields 400 counts, which is less due to the initial deadtime.
Using the larger of these results, we conservatively calculate that the fraction of

afterpulses is < 2x10-3, and therefore the effect on 1 is negligible.

2.IX. Conclusion

Our results demonstrate that suitably modified Single Photon Counting Modules
can possess very high photon detection efficiencies, and relatively fast time response. It
seems likely that by improving the anti-reflection coatings on the detector surface and the
glass window of the housing, efficiencies in excess of 80% should be realizable. By
increasing the overbias voltage even further, still higher efficiencies may be possible.
By switching to active quenching, it should also be possible to reduce the deadtime by
about an order of magnitude. This may also help the time response at higher count rates.
The primary drawback of the modules is the small active area [only ~(100 mm)2], which
mandates careful focussing of the input light. Larger-area detectors are currently under

development (as are detectors using active quenching) [Andrew MacGregor, EG&G
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Canada, private communication], but it is unknown whether these will have as high
efficiency.

The Rockwell Solid State PhotoMultipliers had a maximum corrected efficiency of
65.6+1.9% without the spherical mirror, and 70.9+1.9% with the mirror. After the
measurements and dismantling of the apparatus, the input fibers were found to have
deteriorated. If these subsequently measured losses were present during the experiment,

and degraded the efficiency, one may conclude that the true device efficiency was as
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Figure 9.8 Temporal autocorrelation profile of an SPCM, demonstrating afterpul-
sing. Solid curve is an exponential fit to the data beyond the deadtime region (about
3 ps). Singles rate was 340 s-1; total duration of measurement was 95,029 s.
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high 25 93.7£7.2%. Unfortunately, there is no way to ascertain how much of this loss
should be corrected for.) The use of the spherical mirror definitely reduced reflection
losses, increasing the efficiency by as much as 19% at 702 nm, but only 8% at 633 nm.
The presence of a 10% “precursor peak” in coincidence timing was very surprising and
is still not understood. The timing jitter we measured was probably limited by the
amplifiers, so the SSPMs themselves may be somewhat faster. The main difficulty in
using these detectors is the need to cool them to near liquid helium temperatures. Their
high sensitivity in the infra-red necessitates the use of some sort of “cold-filter” (the
fibers, in the system we used), which complicates input coupling. Before any further
high-efficiency experiments can be performed, a better method of coupling light to the
actual devices should be developed.
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Chapter 10: Proposal for a Loophole-Free
Bell’s Inequality Experiment

A somewhat different view of the Bell’s inequality affair is depicted in the
previous cartoon, to be contrasted with the cartoon preceding Chap. 8.
Here, Nature is not seen as an opponent, but rather as the ground on which
the contest is waged. The top picture expresses the status of affairs in
experiments to date. On one side is a lone Quantum Optician, on the other,
horrible Reality, made almost unbeatable by the various loopholes yet to be
closed in any experiment. Unable to actually pull the flag (the experiment)
over the line (to violate a Bell’s inequality, thereby proving that Nature is
nonlocal), the clever experimentalist “redefines” winning (what inequality
his results must violate) by introducing supplementary assumptions. The
future state of affairs is represented in the bottom version. Reality is still
formidable, but less so (due to reduced efficiency requirements), and the
Optician is assisted by high-efficiency single-photon detectors (described
last chapter) and a new 2-crystal down-conversion scheme (described
below).

10.1. Introduction

As discussed in Chap. 7, quantum mechanics (QM) yields predictions which are
inconsistent with the seemingly innocuous concepts of locality and reality. This was
first shown by Bell in 1964 [Bell, 1964; Clauser and Shimony, 1978] for the case of
two quantum-mechanically entangled particles, e.g., particles in a singlet state, which do
not possess definite polarizations even though they are always orthogonally polarized.
Since then, the theoretical results have been generalized to include entanglements of three

or more particles [Greenberger et al., 1989; Mermin, 1990], macroscopic (but non-
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classical) states of light [Munro and Reid, 1993; Franson, 1993], and even a clever
gedanken experiment using electron-positron annihilation to achieve a contradiction with
local realism without the need for inequalities [Hardy, 1992a}, and a recently proposed
optical analog which may allow a feasible experimental implementation [Hardy, 1993].
Unfortunately, none of these ingenious extensions and generalizations of the work of
Bell reduces the experimental requirements for a completely unambiguous test. In fact,
all of them seem to mandate even stronger constraints on any real experiment than the
original two-particle inequalities!. One exception is the recent discovery, introduced

in Chap. 7, that the detection efficiency requirement can be reduced by employing a state
of two particles that are not maximally-entangled, i.e., with an unequal superposition of
the two terms [Eberhard, 1993]2.

The situation for experimental tests has seen somewhat less growth: To date no
incontrovertible violation of Bell’s inequalities has been observed. As discussed in
Sect. 7.V, all experiments thus far have required supplementary assumptions, severely
reducing the true impact such an experiment might yield. We propose here a setup
which should permit for the first time (simultaneous) closure of the angular-correlation
loophole and detection loophole; we will also discuss briefly how current technologies

should allow an extension to close the space-like separation loophole as well3, The

! For example, Braunstein and Mann have shown that the detection efficiency
requirement can be reduced to 71%, but only in the limit of no background and a large
number of entangled particles [Braunstein and Mann, 1993].

2 Hardy also discusses non-maximally-entangled states, for use in a demonstration of
nonlocality without inequalities [Hardy, 1993]. However, in the absence of supple-
mentary assumptions, his scheme would require detector efficiencies greater than 98%.
3 A very different proposal has been made by Edward Fry [Fry, 1991], using
dissociated mercury dimers as the correlated particles. The advantage is that detection
efficiencies of 95% are possible by photoionizing the atoms and detecting the
photoelectrons. Although it may be that this scheme is a viable one, it has its own
practical difficulties, which may be prohibitive; it should be noted that none of the
Bell’s inequalities experiments to date have relied on entangled atoms.
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source may also find application in quantumn cryptography (see Sect. 7.VII, and [Eken,
1991; Ekert et al., 1992]), as it doubles the signal-to-noise ratio of most previous down-
conversion EPR schemes.

In Section 10.II our proposed source is described, while several potential
problems arising from various phase-matching considerations are discussed in Section
10.I11, along witk: an experimental modification to mitigate these problems. The benefits
of utilizing a non-maximal entanglement are presenied in Section 10.IV. Section 10.V
evaluates the detrimental effects of imperfect optical elements. A final analysis and
conclusion are given in Section 10.VL

In Appendix D1 we describe the relevant parameters and phase-matching
calculation for what currently seems to be the best choice for a nonlinear crystal for this
proposal, namely, BBO. The calculation to evaluate the effect of a non-plane-wave
pump on coincidence detection efficiency, as a function of collection iris size, is
presented in Appendix D2. Finally, a somewhat thorough calculation of the singles and
coincidence probabilities relevant for a Bell’s inequality, allowing for various sorts of
entangled states, as well as for non-ideal polarizing beam splitters, is presented in

Appendix D3.

10.IT, Pr r

As discussed in Sect. 7.V, even with unity-efficiency detectors, the down-
conversion schemes used until now are inadequate for a completely unambiguous test of
Bell’s inequalities, because they must perforce discard counts (although, as discussed in
footnote 12 in that section, detectors capable of reliably distinguishing between one- and
two-photon detections could in principle solve this problem). A schematic of our

proposed source is shown in Fig. 10.1a.
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Figure 10.1 (next page) Schematic of a novel arrangement in which a loophole-free
test of Bell’s inequalities is feasible. a) An ultraviolet pump photon may be
spontaneously down-converted in either of two nonlinear crystals, producing a pair of
orthogonally-polarized photons at half the frequency. One photon from each pair is
directed to each output port of a polarizing beam splitter. When the outputs of both
crystals are combined with an appropriate relative phase §, a true singlet- or triplet-like
state may be produced. By using a half waveplate to effectively exchange the
polarizations of photons originating in crystal 2, one overcomes several problems
arising from non-ideal phase-matching (see Sect. 10.III). An additional mirror is used
to direct the photons oppositely to separated analyzers. b) A typical analyzer, including
a half waveplate (HWP) to rotate by o the polarization component selected by the
analyzing beam splitter, and precision spatial filters to select only conjugate pairs of
photons. In an advanced version of the experiment, the HWP could be replaced by an
ultrafast polarization rotator (such as a Pockels or Kerr cell) to close the space-like-

separation loophole.
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Two nonlinear crysta]s4 are simultaneously pumped by a coherent pump beam to
induce spontaneous parametric down-conversion; the pumping intensity can be
independently varied at each crystal. The crystals are cut for type-II collinear degenerate
phase matching (i.e., the down-converted photons are collinear and orthogonally
polarized, with spectra at roughly twice the pump wavelength). For example, we
envisage using 1-cm long crystals of beta-barium borate (BBO), pumped by the 325-nm
line from a HeCd laser incident at 54° to the optic axis (see Appendix D1).

For clarity, we first assume a monochromatic pump beam (at frequency 2wy), and
a single-mode treatment of the down-converted photons. The state after the crystals is

lw> =v1-|AP |vac) +

«/—1—’:7(111, Vderysial1 +£1H, VIerysiar2) . (10.1)
where we have omitted higher order terms (for the very unlikely case in which more than
one pump photon down-converts; by reducing the pump intensity, the contribution of
these terms can be made as small as desired). A includes the down-conversion
efficiency into the modes we are considering, and also the pump field strength; f
represents a possible attenuation of the pump beam incident on crystal 2. The state
(10.1) describes a photon pair {one photon polarized horizontally (H), the other
vertically (V)] originating with probability amplitude A//1 +|fP in crystal 1 and with

4 Hardy has also proposed a scheme which employs two nonlinear crystals, in a
different geometry than that discussed here [Hardy, 1992b). Specifically, he proposes
directing the down-converted photons from one crystal through a second crystal, such
that one cannot determine from which crystal a pair originated. However, as he points
out, his scheme requires near-perfect alignment to function adequately (the best results
reported so far with such a scheme displayed only 30% visibility [Zou et al., 1991]: to
violate a Bell’s inequality, one needs greater than 71% visibility, assuming 100%
detection efficiency and no background.) The fact that we use photons which are (very
nearly) collinear reduces our alignment difficulties considerably.
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probability ampiitude Aﬂm in crystal 2; it does not include that part of the pump
beam which was not down-converted. [Physically, this implies that we have removed
the unconverted pump photons, as with a cutoff filter before the detectors (see Fig.
10.1b).] We now combine the modes from the two crystals at a polarizing beam splitter.
For an ideal polarizing beam splitter, incident p-polarized light (horizontal in Fig. 10.1)
is completely transmitted, while incident s-polarized light [vertical (out of the plane of
the paper) in Fig. 10.1] is completely reflected; therefore, one photon of each pair will
be directed to output port 3, while the conjugate photon is directed to output port 4. (In
Section 10.V the case of a non-ideal beam splitter is examined; a general calculation is
given in Appendix D3.) Including a phase shift & = 20,Ax/c (where Ax, the difference
varied by moving one of the mirrors slightly) between the two

non-vacuum terms of (10.1), we then have
ly> = (IVD3[HD4 +£ei8|HD3 [ VD), (10.2)

where we have omitted the (predominant, but uninteresting) vacuum term and the
prefactor A/«/T:W . For the balanced case (f = 1), and for 8 = 180°, (10.2) reduces to
the familiar singlet-like state. (The case where f# 1 is discussed in Section 10.IV;
Section 10.V examines the case 8 # 180°.) Note that this is different from Eq. (7.16),
which additionally contains non-coincidence terms that must be intentionally discarded to
prepare a singlet-like state. Consequently, our a scheme may find application in
quantumn cryptography (see Sect. 7.VII) as it has twice the signal to noise ratio of most
other EPR-based schemes.

With the above source of correlated particles, one can now perform a polarization

test of Bell’s inequalities . Polarization analysis is performed using an additional

3 Using the 2-crystal source, one could in principle perform a Franson-type
experiment, without the need to electronically discard counts that arise from the non-
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polarizing beam splitter after each output port of the interferometer, and examining one
or both channels of each analyzer with high efficiency detectors (see Fig. 10.1b).
“Rotation” of these analyzers can be effectively accomplished by using a half waveplate
before each one to rotate the polarization of the light.

The alignment of the entire setup is obviously somewhat critical. Fortunately,
there are simple tests which can be made to verify the integrity of the system. For
example, if a half waveplate (oriented with its axis at 22.5° to the horizontal) is used
after crystal 2 to rotate the polarizations by 45°, then the new state of light from that
crystal will be |W>crysta! 2= [( |Hy> lV2>)/«,12‘] [( [H> - v )/Q]

= ( I H,, H2> = I Va, V2> )/2 By blocking the light from the other crystal, one can
easily verify this state at the analyzers - either both photons go out on port 3 or both on
port 4, and there should be no coincidence counts (assuming no background noise)
between ports 3 and 4. More parameters can be checked with half waveplates after both
crystals.

If the detectors are far separated from each other and from the source, and one uses
some rapid, random means to rotate the light before the analyzers, (such as a Pockels or
Kerr cell, whose voltage is controlled by a random signal), then one can close the space-
like separation loophole. The signal could be derived, for instance, from the decay of a
radioactive substance, or even from the arrival of starlight. Note that since the down-
converted photons are emitted within tens of femtoseconds of one another (unlike the
photons in an atomic cascade), the limiting time factors will be the detector resolution
{expected to be less than 10 ns) and the switching time (which can also be on the order

of nanoseconds)5.

interfering processes where one photon travels the short path in its unbalanced Mach-
Zehnder interferometer and the other photon travels the long path. Details are givenin
Sect. 8.VI.

¢ Franson has argued that the pump coherence time might also come into play
[Franson, 1985). However, this is also of the nanosecond timescale.
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Figure 10.1c Proposed one-crystal scheme to produce EPR-state.

In Fig. 10.1c we show a possible means of producing the EPR-source using only
one down-conversion crystal. The key is to reflect the pump beam back through the
crystal. Although this scheme has the advantage that it reduces the number of optical
elements (most importantly the number of crystals) it does have a few difficulties not
present in the 2-crystal approach. First, one must use an isolator to prevent the pump
from coupling back into the laser. Next, the return path must be kept short compared to
the pump coherence length (typically 10 cm for a HeCd laser), to maintain coherence
between the processes in which the down-converted pair originated from a left-going or
a right-going pump photon. Finally, one must find very good dichroic mirrors to
separate the pump beam from the down-converted photons. One solution is to use high-

quality prisms (not shown in Fig. 10.1c).

10.I11. Non-Ideal Down- version nsideration
In practice, one must take into account several other features of the down-

conversion process. First, the down-converted photons will have a finite bandwidth, so
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that the members of each pair may have different frequencies (though energy
conservation still constrains the sum of the frequencies to be equal to the pump
frequency). We investigate the effect of this by letting the frequency of the horizontally-
polarized photons be @, + © and the frequency of the vertically-polarized photons be ®,
— . We will always assume that the output spectra of the two crystals are identical,

i.e., we do not need to further label our frequencies by the crystal number.

Furthermore, because of the strong energy correlations, the phase

3 = (0o + W) AX/C + (Wy—W)AX/C = 2m,Ax/c is independent of the spread in frequency.
Then (10.2) becomes

! [ 1 ' . . .
ly) = J A0 AW Vo023 | Hyuals + 1618 [Hy 4031V _oD4) (10.32)

Note that the frequency of the light at each port is different in the two terms. Unless the
bandwidth function A(w) describing the amplitude for down-conversion production of
the pair | Hog+o) | Voo is symmetric [ie., A(w) = A(-w)], the photon color
reaching a given detector can serve to label from which crystal a pair originated -- the
first and second terms of (10.3a) arise from photons from crystals 1 and 2, respectively.

To see this, consider the extreme case that A(w) = O(w — Q); (10.32) becomes
> = vy 03] Hpgas +fel®[Hy 10>3 Ve ods . (10.3b)
In principle, a precise frequency measurement at either detector could determine the

definite polarizations of the photons. The distinguishability of the two terms of (10.3b)

destroys their coherence even if no frequency measurement is actually made’; this

" The relationship between which-way information and interference was the subject of
Chaps. 5 and 6; see also [Scully, et al., 1991; Kwiat, et al., 1991,19931; Tan and
Walls, 1993].
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weakens the correlations, making it impossible to violate a Bell’s inequality.

This difficulty can be avoided, however, by inserting a half waveplate between
crystal 2 and the polarizing beam splitter, oriented with its optic axis at 45° to the
horizontal. This will effectively exchange the polarizations of the photons originating in
that crystal (IHcoo-a-m, V-0 crystal 2 = |Vw°+u), Hao-w crystal 2 ), 50 that (10.2)

instead becomes
ly) = f dw A©) (| Ve 0P 3 1 Hy soDs +feid] Ho -3 | Vo +oV4) » (10.4)

which shows that photon color no longer yields which-crystal information; interference
persists, and violation of a Bell’s inequality is possible.

For a plane-wave pump, the phase-matching constraints imply that with careful
spatial filtering, one can in principle collect only conjugate pairs of photons from the
crystals (i.e., essentially no unpaired photons, aside from stray light). Once we allow a
more realistic, gaussian-mode pump, then this is no longer possible. For finite-sized
collection irises, there will always exist situations where one photon is detected while the
other is not (even aside from the problem of inefficient detectors). This effect is
mitigated by collecting over a larger solid angle. (See Appendix D2.) Figure 10.2
shows a plot of inherent collection efficiency, versus the collection angle of the iris in
units of the pump beam divergence angle8. We see that in order to keep the losses less
than 2%, we must employ irises which accept light out to ~30 times the pump
divergence angle. For example, if we employed a 325-nm pump with a beam waist
radius (1/e2) of 3.5 mm, then we would need to accept all half-angles up to 1
milliradian. (In practice, this could be accomplished by use of a precision spatal filter

& The theory underlying these results essentially involved (numerically) calculating
integrals over truncated gaussians.
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Figure 10.2 There is no way to guarantee that both photons will pass through irises
of identical size (the optimal situation), due to the gaussian nature of the pump
beam, which causes a slight spread in the angular correlation of the pair. The
unavoidable losses may be reduced by using larger collection irises, however:

When the acceptance angle of the irises is more than 30 times the divergence angle

of the pump beam, losses from this effect are less than 2%. See Appendix D2.

system in each output port; see Fig. 10.1b.) If we assume that the length difference of

the two paths is the minimum required to give a & = 180° phase-shift (i.e., Ax =

A‘pump/4)’ then the correction factor to this phase shift for including a finite solid-an gle

of detection is at most 10°6. This is completely negligible compared to the wavefront

distortion from available optics, discussed in Sect. 10.V. Moreover, we will see there

that one is much better off using § = 0 for other reasons anyway, in which case there is

no correction from a finite detection solid-angle.

A third practical consideration is the effect of walk-off in the nonlinear crystals.

While the birefringence of the nonlinear crystal is essential for achieving phase-

207.



matching, it also results in a relative displacement of the two down-converted photons:
they propagate in the same direction after exiting the crystal, but are separated by a
distance d = L tanp, where L is the propagation distance inside the crystal, and p is the
inwra-crystal angle between the ordinary and extraordinary beams {Dmitriev et al., 1991].
For a typical crystal length of 1 cm, and a typical p of 4° (appropriate for BBO, pumped
at 54" to the optic axis; see Appendix D1), this separation is 0.7 mm, which can be a
significant fraction of the beam width (cf. our previous example of a 3.5-mm beam
radius). Consequently, after the polarizing beam splitter, the position of a detected
photon partially labels its origin, degrading coherence. Consider, for example,
horizontal polarization corresponding to the ordinary (undeviated) mode (i.e., in Fig.
10.1a, let the plane defined by the pump beam and the crystal optic axis be perpendicular
to the plane of the paper) and vertical polarization corresponding :o the extraordinary
mode, higher by d. After the polarizing beam splitter, the two photon modes which
travel to a given detector are therefore separated by the amount d. Just as in the situation
of asymmetric spectra discussed above, this distinguishes the two otherwise coherent
processes. Remarkably, insertion of an extra half waveplate after one of the crystals to
rotate the polarization by 90° avoids this problem, in addition to solving the finite-
bandwidth problem. Photons from either crystal exiting port 3 of the beam splitter
would be initially extraordinary-polarized; photons exiting port 4 of the beam splitter
would be initally ordinary-polarized. (Note that we could have arranged the optic axes
of the crystals to lie in the plane of the figure. The waveplate will be an efficacious
measure as long as the setup possesses mirror-symmetry about the plane perpendicular
to the figure, as defined by the input and output beam splittersg.)

Finally, even with a plane-wave pump, and a crystal cut for collinear phase-

% Actually, it is sufficient that the vectors kixnj and kyxny (where kj and n; are the
pump beam and optic axis directions, respectively, associated with crystal i) be mirror-
symmetric about this plane.
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matching at degeneracy, there is no way to prevent vector phase-matching at small
angles, for slightly different conjugate colors. In fact, a detailed calculation for BBO
(see Appendix D1) has shown that even at degeneracy, there is a vector phase-matching
solution, in addition to the collinear solution (see Figs. 10.3 and 10.4). However,
because the angles of the conjugate ordinary and extraordinary modes (with respect to
the pump beam) are nearly equal in magnitude (for small deviations from collinearity),
the net effect on the phase-shift & is completely negligible compared to the effect of
imperfect optical elements, which we discuss later. Also, as with the walkoff problem,
a half waveplate after crystal 2 can prevent the angle from distinguishing the interferin g

processes.

v i .

We have until now ignored another parameter at our disposal, namely, the relative
amplitude of the terms from the two crystals, governed in (10.2) by the factor f. As
alluded to in Sect. 7.IV, one may reduce the required detector efficiency 1 from 83% to
67% by using a non-maximally entangled state [ Ifi 1 in (10.1) - (10.4)], in the limit of
no background10 [Eberhard, 1993]. To gain some insight into this, we start with the
standard Clauser-Horne Bell’s inequality [Clauser and Home, 1974], Eq. (7.12),
rewritten here for convenience:

B<O, (10.52)
where

B = ngg(),B1) + ngg(02,B1) + g0y, B5) — ngs(0t2,B2)

- n3g(0t;) — ngg(By) (10.5b)

10 By “background”, we mean all detector counts not arising from our correlated
photons, i.e., stray light, detector dark counts, etc.
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Figure 103. A schematic representation of spontaneous down-conversion into non-
collinear modes (due to type-1I vector phase-matching) for the case of a negative
uniaxial crystal (such as BBO), in which the extraordinary index of refraction is less
than the ordinary index (angles are exaggerated for clarity). The angle between the
crystal optic axis and the pump beam is such as to allow collinear phase-matching for
equal-frequency conjugate photons. Things to note: the angle between the extra-
ordinary beam and the pump is slightly greater than the angle between the ordinary
beam and the pump. These angles decrease as the wavelength of the ordinary
(extraordinary) beam increases (decreases), as does the overall "phase-matching
circle”. a) The extraordinary beam tends to lie closer to the optic axis than does the
ordinary beam, although both solutions are possible. b) Collinear and vector phase-
matching are simultaneously possible. ¢) The extraordinary beam is always closer to

the optic axis when A, <A,
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Figure 10.4 (next page) Plots showing Type-II vector phase-matching in BBO. The
origin corresponds to the direction of the 325-nm pump beam (at 54° with respect to
the BBO optic axis), and in (b) also to the collinear phase-matching solution. The
left axis indicates the angular scale of the 4 concentric equal-angle contours. The
points correspond to the transverse components (i.e., perpendicular to the pump
vector) of the photons’ momenta -- in other words, the plots are essentially what one
would see looking into the pump beam, as shown in Fig. 10.3). The ordinary- and
extraordinary-polarized photons of a given conjugate pair lie diametrically opposed,

on either side of the origin.
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and n3g(@x)) and ngg(B,) are the singles count rate at the “s”-channels of the a—analyzer
(in cutput port 3) and B—analyzer (in output port 4), respectively (we use here a notation
appropriate for an ideal polarizing beam splitter analyzer which reflects all s-polarized
light and transmits all p-polarized light). The ng’s are coincidence rates between the s-
channels of the two analyzers. The parameters oy and Bj are essentially the angles of the
analyzers (though in practice, they might be the angles of half waveplates used to rotate
the polarization of the incident light). Because the singles rates vary as 1} (e.g.,

n3s =N p3s, Where ps is the singles rate for unity-efficiency), while the coincidence
rates vary as 02 [i.e., ngs(0;, By) = N2pss(;, By), where P is the coincidence rate for

unity-efficiency], we must have

.n > P3s(a1) + P4s(l3l) (10.6)
Pss(@1,B1) + Pss(02,B1) + pss(@1,B2) — pss(2,B2)

in order to violate (10.5a). A straightforward calculation (see Appendix D3) shows that,
in the case of perfect polarizing beam splitters, p3g(a;) = 1A cos? oy +|fPsin? o). I
|f] is close to 1, then the singles rate is essentially a constant, independent of ayps
however, if we make f small (by attenuating the pump before crystal 2), then choosing
o close to 90° will substartially reduce the contribution of p3¢(c;) to (10.6)!1. A
similar argument applies for p4s(B1), which is reduced for B1 close to 0°. Nevertheless.
under these conditions, it is still possible to find values of 0 and B, such that B >0,
even for 1] as low as 67%. The tradeoff is that the actual magnitude of B is reduced

accordingly, however. For example, with f = 0.311, the maximum value of B is only

11 Note that p3p(or) varies as sin o + |fcos? e, so any attempt to simply average the
signals from the p- and s-channels, for example by adding (10.6) to a similar inequality
for the s-channel counts, as in the CHSH inequality [Clauser, et al., 1969], will remove
the benefit of unbalancing the entanglement.
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0.074, to be contrasted with the maximum value of 0.207 when f = 1. For this reason,
background levels must be kept low for the method to be effective. We hope that
background levels of 1% may be achievable.

A secondary effect of background counts is to place a lower limit on the number of
“accidental” coincidences. Since these arise from non-correlated photons (or dark
counts), they will reduce any violation of (10.5a). Accidental coincidence events result
when only one member of a given conjugate pair is detected, simultaneously (within the
coincidence resolution time) with another count (from a photon from a different pair or a
stray-light photon or a dark count), or from simultaneous detection of two background
counts. The former process is proportional to the rate of correlated-pair production, so
in the absence of background, one can in principle make the accidental coincident rate as
small as desired by reducing the pumping intensity to the two crystals (in practice, one
eventually runs into another limitation: the system will thermally drift over long times).
In the presence of a background rate B, however, the minimum accidental coincidence

rate will be B2AT, where AT is the coincidence resolution time.

10.V. Imperfect Optical Elements

Thus far we have neglected the effects of imperfect analyzers, and an imperfect
recombining beam splitter!2. A general treatment is difficult (see Appendix D3);

however, two special cases can be easily discussed. With no background, a maximally-

12 It is reasonable to expect that we can obtain polarizing beam splitters with extinction
ratios of 500:1; cf. Tom Bylack, at Prisms Unlimited [(714) (848-6007], who claims
IRSI2 = 0.995, |Tp|2 = 0.98-0.995 is a readily achievable specification. However, one
must be certain 1o specify that (in the case of the recombining beam splitter) both input
ports are to be used. Because of the gluing process, in general one input port will be
better than the other--for one input port, the incident beam must propagate through the
cement, bounce off the coated surface, and propagate through the cement again. Also,
as below, wavefront distortion for the interferometer beam splitter must be minimal (i.e.,

better than A/20).
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entangled (f = 1) singlet-like (3 = 0° or 180°) state, and perfect beam splitters in the

interferometer, the net detection efficiency must satisfy the following relation:

2
R.2 +|RJ? »/II—R"F;'RS'-Z-) i{>2, (10.7)
11(] oL IR(?) (Rplz'*lelz +1>

where R is the reflection amplitude for s-polarized light (ideally, |R(| = 1), and Rp is the
reflection amplitude for p-polarized light (ideally, [Rpl =0). (We have implicitly
assumed 2 lossless beam splitter here.) This resuit is in agreement with that derived by
Clauser and Horne [Clauser and Shimony, 1978; Clauser and Horne, 1974], and yields
the well-known 83% “limit” for perfect analyzers.

Next we consider the case of perfect analyzers but an imperfect recombining
polarizing beam splitter (in the interferometer); specifically, we consider a lossless
splitter whose reflection and transmission amplitudes are related by |ry = |tp] and [rp] = |1
(i.e., the non-idealities for the two polarizations are equal). As before, we keep f=1
and no background. We find that our results depend crucially on whether 8 = 0° or
180°. In the former case, both the singles rates and the coincidence rates are
independent of |rg| =|t]; consequently, the value of B is also. In other words, even a
non-polarizing 50-50 beam splitter could be used as the recombiner. The reason is that
under these conditions there is quantum interference which prevents the two photons
from exiting the same port of the beam splitter!3; see Appendix D3. However, for the
8 = 180" (wiplet-like) case, the coincidence rates, and therefore the value of B, depend
strongly on|rg| =|t|. This increases the required detection efficiency to achieve a

violation (B > 0):

13 This is, in some sense, the complementary effect to the Hong-Ou-Mandel inter-
ference [Hong et al., 1987; Steinberg et al., 1993), in which the two-photons from a
down-conversion crystal always take the same port of a 50-50 beam splitter (cf. Sect.
5.11IL)
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2 (10.8)

n>
(142 (e - jr

is required to close the detection loophole. A plot of the right-hand side of (10.8) is
shown in Fig. 10.5, along with the minimum required efficiencies for 8 = 0° and for f =
0.608. It is immediately apparent that one is much better off choosing = 0° (the
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Figure 10.5 When & = 180°, the value of B [Eq. (10.5b)] is strongly dependent on
the recombining polarizing beam splitter, placing strong constraints on the effic-
iency required to achieve a violation of B 0. Unless the amount of “cross-talk”
[i.e, the percentage of p-polarized light that exits the s-channel (equal to |rp|2), and
the percentage of s-polarized light that exits the p-channel (equal to|tJ?)] is less than
4%, it is not possible to violate the Bell’s inequality at z}1. (We also assume a loss-
less beam splitter, and that the cross-talk between polarization modes is symmetric,
ie., |rp|2 = |t5|2. A general calculation is given in Appendix D3.) However, if & =
0°, the value of B is independent of |rp|2 = Itsl2 for £ = 1, and not a strong function
for f= 1. Hence, the requirements on detection efficiency are not nearly so severe.
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efficiency’s dependence on |rg| = [t ] is less for f ~ 1, as is required at higher background
levels [Eberhard, 1993]). Of course, any phase shift equal to an integer multiple of 360°
is equivalent. However, to mitigate effects from unequal path lengths, one should strive
to operate in a white-light configuration, with exacily equal optical path lengths in the
two arms.

If instead of assuming that the cross-talk of the recombining beam splitter is equal
for the two polarizations, we assume that the beam splitter is ideal for one polarization
(e-g., |tp| = 1), then the functional dependence of B or eta on |rg| does not depend on 8.
See Fig. 10.6. The quantum interference effect that causes 8 = 0° to be superior to § =

180" depends on the beam splitter cross-talk being equal for both s- and p-polarization.
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Figure 10.6 We assume for these plots a lossless beam splitter and that ltpl =1.
The values of B and eta are independent of whether 3 equals 0° or 180°, if only one
channel of the recombining polarizing beam splitter is lossy (i.e, the beam splitter
works perfectly for the other polarization). Apparently, the strong benefits of using
a triplet-like state over a singlet-like state exist only if the the cross-talk between

polarization modes is symmetric, i.e., |rp|2 = ItSI2 (cf. Fig. 10.5).
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Ideally, one would like completely flat, homogeneous, optical elements to avoid
wavefront distortion inside the interferometer. The effect of such distortion is to change
the value of the relative phase shift 8 for parts of the beam. The total detected rates will
then be averaged over a range of 8-values (note that there will aiso be an averaging over
d if there is an uncorrected temporal drift of the optical path lengths). To estimate the
effect of this, we have calculated the value of B, as function of 8. Typical results are
shown in Fig. 10.7. We see that the value is not a strong function of the phase deviation
from & = 0°. Therefore, it should suffice to specify a A/20 flatness for the optics within
the interferometer (a feasible requirement over a clear aperture of 1 cm), allowing a

phase shift § =0 10"

7 A ---- f=1
~ — - —1=0608

f=0311

Value of B, Eq. (10.5b)
[
N
]
%
/
[ ]

-30°
/,l '0.05 T ) \

0.1 4

Relative phase shift in interferometer

Figure 10.7 The dependence of B [Eq. (10.5b)] on 3, for various values of f
(assuming M = 1, no background, and perfect polarizing beam splitters).
Wavefront distortion arising from imperfect optics implies that the true value of B
will be a sort of weighted average over a range of angles. Due to the weak
dependence at small deviations from the ideal phase shift 8 = 0, this should not

pose a serious problem if the deviations can be kept less than +10°.
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19.V1 nclusion

For A/20-flamess optics, a background level of 1%, and custom-selected
polarizing beam splitters (with an extinction ratio of at least 500:1), numerical calculation
predicts that a violation should be possible choosing 8 = 0, &t} = 99°, atp = 58°, B =
9°, B2 =-32°, and f = 0.55, as long as the net detection efficiency is greater than 82.6%.
Naturally, all optics would be anti-reflection coated to minimize reflection losses;
including a 0.25% loss for each interface, and the 2% loss from the gaussian nature of
the beam, this means that the bare detector efficiency needs to be at least 88.6%, which
may be achievable in light of our recent measurements (Chap. 9, and [Kwiat et al.,
1993a,b]). Of course, for a safety margin, one would like it to be even higher, if
possible,

In conclusion, we have investigated a novel source of EPR-correlated particles,
which makes use of a two-crystal interferometer. If one employs type-II phase-
matching and a polarizing beam splitter to combine the outputs of the two crystals, a true
singlet-like or triplet-like state may be produced without the need of discarding counts.
Using a half waveplate in one of the interferometer arms to exchange the roles of the
ordinary and extraordinary polarizations removes difficulties arising from finite
bandwidth, walk-off, and vector phase-matching considerations. With the setup
described herein it should be possible to produce an indisputable violation of a Bell’s
inequality. We have examined the effects of background, imperfect polarizing beam
splitters, and phase-distorting optics. A loophole-free experiment still seems feasible,

although detectors need to be improved somewhat.
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Chapter 11: Conclusion

Nothing is forgotten; nothing is ever forgotten.
--Robin Hood, The Adventures of Robin Hood (1980’s Television

Series)

Our present journey through Quantum Wonderland is now essentially over. All
that remains is to look back over the path we have travelled (cf. the parable that
introduced Chap. 1), and see what we have learned. We shall first reminisce about
some of the specific “places™ visited, and then try to make some overall comments.

The phenomenon of Berry’s phase has been demonstrated at a single-photon level,
in a way which excludes with very high probability any possible classical explanation.
We conclude that this phase originates fundamentally at the quantum level, as do all
phases (e.g., the dynamical phase). Under special circumstances, these phases can
survive the correspondence principle limit onto the classical level. In other cases,
however, this is not the case. One such example is the Franson interference experiment
(Chap. 8), in which the phase is “jointly shared” by two separated, but entangled,
particles, i.e., the interference depends only on the sum of the phases accumnulated by
the constituent particles. There is no correspondence principle limit for this particular
situation of a two-particle wavefunction defined on the configuration space of the
particles. Based on these examples, classical interference is in some sense a “special
case” of the more fundamental quantum-mechanical interference.

Related to the notion that we should treat our interfering systems quantum
mechanically is the conclusion that in some experiments we must also treat our

measuring apparatus quantum mechanically, as stressed by the quantum eraser
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experiments. Only by doing so can we understand the revival of interference, which
relies on the fact that the coherence of the initial particle is passed along to the measuring
apparatus. If this coherence can be maintained, then one can at some later time (in
principle long after the initial particle is detected) decide “posthumously” (i.e., after this
detection, but before the measuring apparatus is measured) whether to gain which-path
information or interference, by correlating the results of particular measurements on the
measuring apparatus with the seemingly random detection record of the initial particle.

As we discussed in Chap. 5, the quantum eraser is just another means of gaining
insight into the nature of entangled states. In the study of Bell’s inequalities, entangled
states are the means of gaining insight about Nature itself. In observing a violation of a
Bell’s inequality based on energy and time correlations (accepting for the moment the
supplementary assumptions) we can conclude that Nature is nonlocal, and that the
energy ard time of emission of our down-converted photons are not “elements of
reality”. Of course, one need not abandon the objective reality of the energy and time if
one is willing to accept that the outcomes in one location depend on the parameter
settings in the other. Our personal preference is to avoid this parameter-dependence at
the expense of well-defined properties.

The correlations observed in tests of Bell’s inequalties are nonlocal--a
measurement on one of the entangled particles causes the wavefunction of the other
particle to “collapse™ to a particular value. Using a system nearly identical to the Berry’s
phase setup we also saw a series of results also readily interpretable in terms of the
collapse postulate. The status of the “collapse of the wavefunction” is somewhat similar
to the status of local hidden variable theories between 1935 (EPR) and 1964 (Bell):
There are no apparent situations where one can distinguish experimentally between this
“intuitive” model and the other main contenders, the Bohm-deBroglie guiding-wave

picture and Everett’s many worlds picture. Although I think it unlikely that there will
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ever be such a situation where these very different approaches, if applied correctly, will
yield different predictions, such a circumstance would be welcome. Just as the work of
Bell opened the door for experimental refutation of local hidden variable models (not yet
accomplished unambiguously, aithough in Chap. 10 we proposed a novel scheme for
such a “loophole-free” test), a similar opportunity to actually rule out the “collapse”

picture or the “many-worlds” picture or the “pilot-wave” picture would be desirable.

It seems most appropriate to end with a general discussion of the nonclassicality in
our results, given that that is (half of) the title of this work. Specifically, we have seen
two very different types of non-classicality in the experiments; fortuitously, the photon
pairs produced in spontaneous parametric down-conversion permit investigation of both
of these nonclassical aspects. The first, demonstrated in the single-photon Berry’s
phase and Collapse experiments, arises from the indivisibility of a single quantum.

This leads to an anti-correlation in the counts at detectors looking at the two output ports
of a beam splitter, and consequently a near-zero value of the anti-correlation parameter
a, which classically must be greater than or equal to 1 because any classical wave will
split evenly at a 50-50 beam splitter.

This same notion of an indivisible quantum was also quite important in
demonstrating the phenomenon of quantum erasure, where we wished to emphasize that
even after an initial particle was detected, one could choose between observing
interference or gaining which-path information by making a suitable measurement on a
measuring apparatus with which it was entangled. The interpretation does not carry
through if a classical wave is used: The notion of which-path information is

meaningless since a classical wave can follow two paths simultaneously!. Of course,

1 As we pointed out, it is also important, even with indivisible quanta, that we use
single-particle states; otherwise one must contend with the situation in which some of
the particles follow each route, and are indistinguishable from one another.
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in many situations one hears similar statements. e.g., that a single photon actually Tavels
through two slits at the same time. The key difference is that the quantum “particle” can
exhibit both particle-like and wave-like behavior (though not both simultaneously,
according to the principle of complementary), whereas a classical object can exhibit only
one or the other.

The second non-classicality arises from the nonlocal nature of quantum-mechanical
entangled states. This aspect was stressed in the Collapse of the Wavefunction
experiment and the Bell’s inequality experiment for energy and time. From violations of
appropriate Bell’s inequalities, we can conclude that no “local realistic” theory, of which
classical-field models are a subset, can explain the correlations in Nature. Local hidden
variable models based solely on standard classical theory are not even optimal, in the
sense that other LHV variations could come closer to mimicking quantum mechanics.
Specifically, we have seen that the modified version of a classical local hidden variable
model, in which a particle exits a given port (of an interferometer or a polarizing beam
splitter) if and only if the probability (calculated for a classical wave) is greater than
50%, yields 100%-visibility triangular coincidence fringes, and satisifes the Bell’s
equaliry. Curiously, the feature of this model which causes it to behave more quantum
mechanically than does the classical wave model is the assumption of particle
indivisibility, which is the physical interpretation of our modified probability at a beam
splitter. Putdifferently, the maximum visibility in a Franson-type experiment is 50% for
a classical wave. Incorporating the property of indivisibility produces the maximum
correlations allowed in any theory constrained by local realism. Nevertheless, the
correlations predicted by quantum mechanics are greater still. And Nature seems to be
siding with quantum mechanics (the theory), even though it seems to have no great

compassion for quantum mechanics (the people).
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Appendix A: Triple Coincidence Inequality

The following formal calculation is presented courtesy of Dr. Ivan Deutsch. We feel it is
important to include it here, though, since it is a main result used in one of our

experiments (see Chap. 3), but is not published elsewhere, even in Dr. Deutsch’s own

dissertation [Deutsch, 1992].
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Herein we demonstrate that there is an inequality (involving the various count rates
at three detectors) which is obeyed by classical fields (defined below), but not
necessarily by manifestly quantum states of light. Our motivation is that we want to
claim that particular results of experiments using the correlated photons from
spontaneous parametric down-conversion do not possess any classical explanation.

(See Chapter 3.) The basic system we are considering is shown in Fig. A1. Three
detectors D1, D2, and D3 detect light from some source S. A beam splitter allows D1
and D2 to look at the same mode, while D3 looks at a second mode. A coincidence

detection system permits measurement of the standard coincidence rates Nj3 (between
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detectors D1 and D3) and N 23 (between detectors D2 and D3), the rate of wiple
coincidences N 23 (between all three detectors), as well as the singles rate Njat D3.

We seek to prove that for classical fields
N3Nj232 Nj3Na3, (A1)

where, formally, the various N’s are given in terms of correlation functions as

Njizein = G(X{,X2,. . . Xp3 X12X25. - . Xp)

= <E(')(x;)E(')(x2)- .. E(")(xn) E(+)(xi)5(+)(x?/" .. E("')(xn)}
=Tr(Pﬁel dE(—)(xl)E(-)(XZ). .. E(-)(xn) E(+)(x1)E(+)(x2)' .. E(+)(xn)) . (A2)

In words, the number of triple coincidences for all three detectors times the singles rate
at the unpaired detector should be greater than the product of the double coincidences
between this detector and the two paired detectors, for any classical source.! The
inequality (A.1) was presented without proof by Grangier et al. [Grangier et al., 1986];
we now provide a formal proof.

We begin by assuming that D1 and D2 are placed equal distances from the beam
splitter, so that they are affected by the field strength at the same position, here denoted
Xj. Similarly, D3 is affected by the field strength at the position xg. Now, if the field is

classical in nature, the state is given by a density matrix that can be expressed in the “P-

10f course, the inequality does not hold for the photon pairs produced in down-
conversion, since a given idler photon (mode associated with x;) can be detected at only

one of D1 and D2; triple coincidences can only occur if more than one pair of photons is
involved; by reducing the pumping intensity one can arbitrarily decrease the likelihood

of this.
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representation”. For a single-mode field this is written
p= f d%a P(o) lad<al , (A3)

where P is positive definite. Then any normally-ordered expectation value of a’anda

can be written

{@)"a™) =Tr{p a")"am) = f d%a P@) (@)a™ = (@)™, (A.4)

where the “bar”-notation denotes integration weighted by the P-distribution.

For a multimode field we can write
p= j d% pe] | (g)><igy! (A.5)

where | {£)) is a multimode coherent state (E®)(x) | (£} = E(x) | {€}D ) and the P-

function is now a functional depending on the classical field . Then

(E(-)(xl)' .. E(—)(xn) E(+)(xn+ D E(+)(xm)>

=f PEPEIE (xp)- - - & (k) Egs 1)+ - - Elxgy)

SE D E () By 1) - - Epp) - (A.6)

In particular,
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N3 =G0 (xg x9 = CEOIEPx9D =[eexg|” . (A72)

Ni3 = No3 = GP(x;,xg x;,%9)

= CEO) EO(x9 EPxgEM x> = e xplexol® (A.7b)
and

N123 = G xix1,%g5 XX, %9)

= CEO ) EO(x) ED(x) EM(x EP(x) Exp) D =m . (A70)

Thus, we seek to prove:

(el P N el ) 2 (EcPlecol) - A%

To do accomplish this, we will use a version of the Schwartz-inequality, which we

now present. Consider E = f dr P(r) f(r) g(r) , where P is some positive-definite

function. Then

fg= f dr (VP £(0) (YP() gr)) = f dr hy(m) hy(r) , (A.9a)

where h;(r) = YP(r) f(r) and hy(r) = YP(r) g(r). Since hy and hy are real functions,
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fg = (1}, hy), the standard inner-product for functions. Similarly, we can caiculate

Lf i) ) = f ar (PG 59) (YB® £06) = (hy, o) (A9b)
&= f dr P(r) g%(r) = f dr (YP@) gm)(YP@) g®) = (hy, hy) (A9¢)

We then use (A.9) and the standard Schwartz inequality, (hy, hy)(hy, hy) 2h;, hzlz, 1)
find

{?}{E}z {72, (A.10)

which holds for averages of functions over a positive-definite probability function. The

proof of (A.8), and thus of (A.1), is completed by using (A.10), and letting
2
£=[e [ Te ol and g = [& (o).
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Appendix B1: General Calculation for
Polarization Quantum Eraser

We now present a fairly formal, general calculation of both the singles and
coincidence rates expected from the setup shown in Fig. 5.1. As a preliminary to the
general calculation of the quantum eraser effect, with arbitrary orientations of the half
waveplate, polarizer P1, and polarizer P2, we write the effective projection operator for
a polarizer at an angle 6 to the horizontal, placed along the path corresponding to the

propagation mode index j:
poLi(®) = | i
=( ll?) cos 8 + |1}’> sine)((lm cos B + (ljyl sin 6) , (B1.1)

where we are considering only the effect on single-photon states. It will be useful to

consider the effect of this operator on a state of arbitrary polarization:
s 15 = | 1% o] 159
=( l 1}") cos O + l 1}’) sine)((l?l cos6 + (1},' sin 6,( l 1}*) cosd + l ljv> sin¢)
= l 1?) [cos 8(cos 8 cos ¢ + sin 6 sin §)]
v . . .
‘ |1j> [ sin B(cos 6 cos ¢ + sin O sin ¢)] . (B1.2)

For example, we can then examine the rate of singles detection for a single-photon state,
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horizontally polarized, passed through a polarizer:

P, = GO = (W EO £Vl y)
=(1H l ﬁpo].j(e) (3; Ay + 3y av) ﬁle(e) l 1H)
=cos* 0 +cos2 0 sin?6 = cos20 , (B1.3)

which is the result expected from Malus’s law.
We now show that using a single polarizer, before detector D1 for instance, is not
enough to revive the interference dip. Using the reduced coincidence detection operator

from Eq. (5.9), and the entangled state of the photons from (5.8b), we have
P.(0) = (y l Ppo11(61) P c.red Ppo1,1(61) l WD ax=0
= % [(1¥ 157 -1 f l] | 1801y (10 | G am+alyay
x(83n 8o + by o) | 101y (184 | %“ 159y — | 0 1]

sin2 ¢ (cos @ + 2cos2 O sin? @ + sin? 8)=Lsin2¢ . (B1.4)

1
4

=1
4
We see immediately that for ¢ = 90°, when the two paths are maximally distinguishable
there is no null in coincidence for any orientation of a single polarizer at the output.

We turn now to the general case with two polarizers set at arbitrary angles 8; and

0.
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P(0) = (¥ | Ppo1.1(81) Ppor2(02)Pc.rea Ppot,2(02)Ppor,1(81) | WD axco
= Lag o] —caio g |J{] deny e [)(] a2y (a2 |)
x (3] 1 31 + 8Ly By .v) Bh By + 8w B )
x (| 15702y Cafivez ) | atony oo I)%[ | ey - | ey @Ls)

Using Eq. (B1.2), one can expand out l VD ax=0 = ’ﬁpo,.z(ez)ﬁpo,.l(el) | WD Ax=0-
After simplifying algebra one finds:

|9 axco = | 15 1¥>cos 0,cos 6, sin (6, — 0,) sin 6
+ ! 1Y 1¥)sin 6,sin 8, sin (8, — 6, ) sin ¢
+ | 1% 1¥Dcos 8;sin 6, sin (6, - 6, ) sin 0
+ I 1Y 15 sin 6,cos 6, sin (6, — 8,)sin ¢ . (B1.6)
It then follows that
Pe(0) = (WPc.red. | WD axeo = sin? 9 sin2 (6, - 6,) (B1.7)

which is the more general case of Eq. (5.15).
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Appendix B2: General Calculation for
Quantum Eraser Proposal

Figure B2.1 Schematic for general calculation given below. The two beam
splitters of the inter-crystal Mach-Zehnder are assumed to have the same reflection
coefficients and the same transmission coefficients. The beam splitters in the
Mach-Zehnder before detector D; are both assumed to be 50-50.

We now present a fairly formal, general calculation of both the singles and
coincidence rates expected from the setup shown in Fig.B2.1. Both beam splitters of
the inter-crystal Mach-Zehnder will be assumed to have the same reflection and
ransmission amplitudes (r and t, respectively); the beam splitters of the post-crystal
Mach-Zehnder are assumed from the outset to be the 50-50 variety. Associated with the
short idler path between the crystals (transmission at both inter-crystal beam splitters) is
the delay t;, while the longer path (reflection at both beam splitters) has the delay 7; +
TA- In the calculations that follow, we assume a monochromatic pump beam at
frequency @p =20, and use a single spatial-mode treatment for each of the down-
converted photons: the signal (idler) modes from crystal 1 and crystal 2 are labelled 51

(1) and s5 (i5), respectively. Futhermore, we assume that the modes of the idler
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photons from the two nonlinear crystals are spatially indistinguishable (i} =iz =1).

Then we may write the wave function after the two crystals as
ly> = f day A(ml)‘{% [ | oty @01 D 3 €100 (12 ity01)TA 4 2)

+ logroy, 05005, 5 + [ @g+wy, 035 ; €@oronT (1 eil@swpa 4 n)] . (B2.D)

where we have omitted the vacuum term ( for the predominant, but uninteresting, case in
which neither crystal down-converts), and higher order terms (for the very unlikely case
in which more than one pump photon down-converts). The state (B2.1) describes a
signal-idler photon pair, satisfying energy conservaticn (enforced by the effectively
infinite interaction time), and originating with equal probability in crystal 1 (first and
third kets) or crystal 2 (second ket). (Note that we must include the process described
by the third ket, in which the photons originate in crystal 1, but the idler photon is lost
out the unused port of the inter-crystal interferometer. Although this term does not
contribute to coincidences, it will be shown to affect the signal singles rate.) A(w), the
probability amplitude, which includes the down-conversion efficiency as well as the
pump field strength, is determined ultimately by phase-matching constraints, but is
limited in practice by filters and irises before the detectors.

The operator Es("’)(t) for the positive-frequency part of electic field at the signal

detector Dg may be expanded in terms of single-mode photon annihilation operators,

Eg’.)(t) =f doyg €705t el ag (0g) + L3 () , (B2.2)
b (ﬁ 1 VZ %2 )
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where we have omitted normalization constants, and assumed beam splitter (before Dy)
transmission and reflection coefficients of 142 and i¥Z, respectively.

ds = ds, —ds, = CT; is the additional distance travelled by the signal field originating in
crystal 1 relative to that originating in crystal 2. According to the standard Glauber
theory for photodetection [Glauber, 1963], the probability per unit time of detecting a
count with a unity-efficiency detector, Dy, during a duration T (assumed to be much

longer than any other time scale in the problem, but short enough so we can neglect

multiple pairs of photons) is proportional to
T2
Rg=1 f dtPs(®) , Ps@) = <y |EQPOESP® [v) . (B2.3)
TR

Using (B2.1) and (B2.2) in (B2.3) gives

T/2

Rs=% dt f dw' A‘(m',)‘%
-T2

x [sl,i<(°o'*'(°'l, w0 | &0’ (r+2 erit@o-0'))Ta 4 1v2)

+ 510 +0'}, 050" |+ 5, i K@ +0'y, 0] QoD (phpx rilworw'y)Ta + r*t*)]

% f da's f dog cim'ste-im'sté_ (_i e-i0sTs gl<m's)+a§2<m's>)(i eldsTs Ag () + Asy(es))
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x f do, A(ml)_{—%[ |ogtey, wp-0 ), ; €@ (12 eitwo-ota 4+ 2)

+ | gy, oo spi + |0+, 0D ;i@ @) [ il@o-01)TA 4 n)] . (B2.4)

The canonical commutation relations yield the delta functions 8(0)'5 - (o + m'l)} and
&y - (w, + y)), while the integral over t enforces an effective delta function
d(w's - ws). Combining these gives the additional constraint, 3(w'] - 1), and (B2.4)

reduces to a single integral:
[ s AR o) I T oitog0r; (%2 g-ilog-op)t4 4 2} ije ot )% 4
L J

% [ei(mo-wl)ti (12 eil@o-01)Ta 4 2)jei(@o+or)Ts 4 1]
+ [e'i(wo“”l)ti r*t*( e i(@o-01)TA 4 l)(-i)c'i(wo"'ml)ts
x el(@o-01)T i ei(Wo-01)TA 4 1) ei("’o"“”l)‘s] }

=K f doo; JAcwp [ (P2ei@o0)TA 4 pe2)(r26i(@o-01)TA 4 12) 4 1
+ir2el@o(TA+Ti+T5) 101 (TA+T;-Tg) 4 {2 10(Ti+Ty) @it (Tj-T,)

= ir*2erio(TA+T+T) gi0) (TA+Ti-Tg) _ jpk2e-i00(Ti+T,) ei®1(T;-Ts)
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+IR(1 +1 +ci(wo“"l)fA+e‘i(0°-0)1)1:A)] . (B2.5)

Here and below, K represents numerical constants, incidental to the calculation. As it
stands, (B2.5) is completely general with regards to the various path lengths. We now
choose settings which are of physical interest. In particular, we let T, and 1; differ by no
more than some incremental amount At : T; = Tg + At. Furthermore, we assume

Ta >>1/0, where 6 is the characteristic bandwidth set by the filter function A(w). The

result is that terms of the form ¢'®1%A will vanish after integration over @y, and (B2.5)

simplifies to
Rg =K j dooy |AGpR [ + [t + 1 + (Piel@ors a0 e-io8T 4 ¢ ¢ ) + 2e?] (B2.6)

If At is much greater than the coherence time of the signal photons, no fringes will be

seen after integration. Henceforth, we assume a balanced setup, so that T; = 75 (i.e.,

At << 1/6 ), and (B2.6) becomes

Rg = [1 + lrr‘ + ItI“ + 2|r|21t|2 - 2|tlzsin [mo(Zts +AT) + 2arg(t)”

x K f dayy |A(p)? . (B2.7)

This rate of singles detections at D displays fringes with a visibility given by

9 9 s -
L+ 2ee + [+ (2 + 12f
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where we have used assumed lossless beam splitters, so that lrl2 +|t2=1. For
concreteness, we now assume a real transmission amplitude for the beam splinters in the
inter-crystal Mach-Zehnder interferometer. There are several cases of interest:

Dt=1,r=0 Rg o< 2 — 2sin w21, + At) (B2.9a)
These are the 100%-visibility fringes from the original experimental setup of Mandel,
which is expected since we essentially do not have an inter-crystal Mach-Zehnder if the
beam splitters transmit everything.

2)t=0,r=i Rg e 2. (B2.9b)
There are no fringes in this case, because all the photons from crystal 1 take the extra
delay line (the long path through the Mach-Zehnder), and we have assumed 14 >>1/0.
Physically, this implies that one could in principle determine the parent crystal of a given
down-converted pair by making precise timing measurements. In other words, the
inclusion of the extra delay T, serves to distinguish the previously interfering signal
photons, yielding welcher Weg information by the timing of the idler photons;
consequently, no interference is observed.

3)t=1NZ,r=iNZ  Rg=2-sin 021+ A1) (B2.9¢)
These fringes are limited to 50% visibility due to the background of non-interfering
processes in which idler photons from crystal 1 take the long arm of the Mach-Zehnder.

We now examine the effect of adding an unbalanced Mach-Zehnder interferometer
(with path-length imbalance dy, = cy) before the idler detector D;. The transmission
and reflection amplitudes of its beam splitters are assumed to have the typical values

1AW2 and iWZ, respectively. The idler field at D; may be expressed as follows:

EP) = f doy; e 10t %2-(1 - eloitMz) 3(ay) (B2.10)
0
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Clearly, the presence of this post-crystal Mach-Zehnder will not alter the above
calculation of signal singles, since it did not depend on Ei("‘)(t). The probability of
coincidences, i.e., correlations between detectors D; and Dy, can show a revival of

interference, however. The appropriate fourth-order correlation function is given by

Pe(ty, 1) = <y L EQ) EQt) EPtp) ) [yd . In practice, one must include the
coincidence time resolution of the detection system, set, for instance, by an electronic
gate window of width AT. Also, due to the possibility of the extra idler delay T A
between the crystals, we need to allow for an adjustable timing of the coincidence gate;
this could be achieved by an electronic delay line of duration T, after detector D;. The

probability of a coincidence detection within a duration T is then

TR 4+t +AT/2
Rc= % f dr f dty Pe(ty, )
R t

1+T,-AT/2

T/2 y+t +AT/2
=1 f dy f dt, | do'; A% (') VJI_
-T2 ll+‘[c-AT/2

x [51.i {0,+0'y, 0y-0'y | ei(@o-0')T; (142 g-il0e-00'))Tp 4 %2)

+5,,i {0 +0"}, 0g-00'y |+ 50 0o +@'}, 0 ei(@o-0'DT; (phpk e-ile05-@)Ts 4 r*t*)]
x f do's ] dog el®@'sl 105l -;—(-i el0'sTs Ezl(m’s) +3§2(o)'s)) (i eiosts ag (@) + ﬁsz(cos))

X f do'; f do; i@’ e'imitZ% (1- e‘im'iTMZ)iiT((o'g) (1- eioitmz) 3i(ey)
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" I dey A(‘Dl)./'lf [ |l ogray, @y D, €00 )T (r2 eitwo-wp)TA + 2)

+ | og+o;, 00> it | wg+o;, 0>, ;€@ (rt ei@or@n)ta + rt)] . (B2.11)
Because 3;(;) | 0 +;, 0D; =0, these states do not contribute, unlike in the

previous singles calculation, where they provided a background; this is physically

intuitively obvious -- these terms do not contribute to coincidence counts. Furthermore,

bra-ket orthogonality relations (s = W,+0; , ©'] = V-] , Og = W+, , and

W; = W,—) can be used to remove four of the integrals:

T/2 4 +T. +AT/2
= I,I(Tf dtlf dt2 d(!.)'l f d(&)]
-T2 ll +Tc -AT/2

% A‘((D']) A(ﬁ)]) ei(‘DO""“"l)‘l e-i((:.)o'l-(x)l)ll Ci ((Oo-(o'l)tz e-i((x)o-(l)l)lz
% [—i e-i(®y-0'))T; (r*2e-i(mo-co'l)tA + 1*2) e H{@o+0')Tg 4 1]
x [i eil®o-0p)7; (r2¢it@o-0y)t4 & 12) ei@o+01)Ts 4 1]

x (1- ei@o- )Mz (1 - eilwo-01)MZ) | (B2.12)

Next we evaluate the time integrals, first the integral over ty:
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4+ +AT/2
f dr, el (@o+0' 1)1 o-1(0+®1)Y @i (Ws-0")) 1 o 1(0y-0))t;
t

i +Te -AT/2

1 +7.+AT/2
- ei((.l.)'l-(.l)])ll f d[z e-i((l)'l-b)l)lz
llﬂc -AT/Z ’

_sin((@; - m"l)ATIZ) (10T (B2.13)
((Dl - ])/2

Since the above expression no longer depends on t;, integration over t; simply gives T.

- 1]
make a change of variables to 8© = ©'; — ©; and

TS
d
3
b
N
&
£
(47
3
=
{2
8

Q = 0'1 + ). Also, we again make the substitution T; = Ts + AT (i.e., a balanced initial

setup). Finally, for concreteness we choose a definite form for our filter function:

_@y?
A¥()) = A(0)) =1/_2‘_zl:"?e 22 - (B2.14)

With the above variable substitution, this yieids

2
A*(©') A(ey) = -2—715 e'(%)z e‘(%? : (B2.15)

Modulo overall constants, which we subsume into K, the coincidence probability is then

(after considerable algebra)

_Qz +8w? .
dw
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x { eis“’A"[jﬂd e10TA 4 [ 4+ 212 10T A el BO+Q)TA2 4 (24261 0,Tp ei(Bm—Q)rA/z]
+ 1 +iei@oQre+AT) i(Be-Q)AT/2 (20i00T4 (i(Sw-2)To2 4 2)
~ jeri®(2Ts+AT) o-i(B0+Q)At/2 (r*Ze-icoot,; ei@0+Q) T2 | 12) }
x [1 +ei00Tyy _ 0o Tyz HQ + 80) Tz /2 _ £i 0, Ty o-i(Q2 - am)zm/z] _(B2.16)

After integrating over Q using the general result
f do e-((2/2cr)2 +iXQ _ ZO-(EC-(O’X)Z , (B2.17)

many of the terms (22 out of 36) are proportional to exp[-(6 T A)2] or exp[-(c
TMmz 2], and are thus negligible. (Again we assume here the case of interest that
TA >> 1/, so that there are no signal singles fringes, and also Tyyz >> 1/6.)

Consequently, (B2.16) reduces to
-8w? sin GWAT/2) .
RC =K d(&x)) [ (20.)2 Teqsmtc

x [ eldw (AT+14) |r[4+ eiSmAtllri +1+ e-(cA‘c/Z)z(irZCimo(Zts-rAt) eidwAT/2 | c.c.)

+ eid0 (AT+Tp+TM2) H4+ eiSm(At+zMz)'tr4
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+ el00Tv7 4 c-(cAt/Z)zciSmtyl(itZCiwo(215+At) eidwat2 c.c.)

- e-(c(‘tA-‘tMy)ﬂ)z ei00(TA+TMD2 (rzt*Zeimo(tA-th) + c.c.)
—ir2 e-(c(Ar + ‘I:A-':Mz)/z)2 el®o(275 + AT + T4 -TMZ) (IO (AT +T4 + T2

+i r*2 e-(o(-A-c +1T A-th)ﬂ)z e-iw°(2t5+A‘t+‘tA-‘tm) e~iM(A1-tA-tMﬂ ] (B2.18)

_8w?
=K j @) e (g2 SLORAT2) (5;’; AT/2)

X { €180 (TA-T ¥+ 80T (| 4 1 - 2Jesin [0, +AT)+2arg))
+ €80 (TA+TMZTS) [+ eiBCtMz T + 1 - 2JiPsin [, 21+ AT)+ 2arg(1)])
- eloGanpnf el80TA+TMzZ-2T2 12142 2cos [coo(tA-‘th)-*-Zarg(r)-Zarg(t)J

+ eloCanf eidota+iyz-2112 I 2sin [, (21 + AT+ To—Tyg)+2arg(r)) } )
(B2.19)

where in going from (B2.18) to (B2.19) we have once again assumed AT << 1/6, so
that efidwaT - 1

There are two regimes to consider, depending on the value of ,tA— ™Z l ; each has
two main cases, depending on the time resolution AT. First we consider the situation in
which the Mach-Zehnders’ path imbalances are quite different; quantitatively,
|1:A— ™Z | >>1/c . Then the last two terms in (B2.19) are negligible. If the resolution
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time is greater than any of the path lengths (AT >> T4, Tz ), the sinc-function behaves

like a delta function, and we are left with

Re e 2+ 2jrf*+ 2/t - 4efsin [, Qro+ AT+2arg(D) , (B2.20)

2
with a visibility of V= L . A plot of this visibility is shown in Fig. B2.2,
I+ e+ |

along with a plot of the singles visibility (B2.8). As with the previous calculation of the
singles rate at D, we can consider three special cases for beam splitters comprising the
inter-crystal Mach-Zehnder:

Dt=1,r=0 Ro e 4 —4sin ;[21,+A1] (B2.21a)
The 100%-visibility coincidence fringes are expected, since in this case the singles rate
at Dy also displayed 100%-visibility fringes.

2)t=0,r=1 Rcec 4 (B2.21b)
In this case, all of the idlers from crystal 1 have an extra delay, and no interference is
observed. Again, this is expected since the timing of the idlers in principle now yields
welcher Weg information (even though our coincidence time resolution cannot
distinguish the contributing processes), and our second Mach-Zehnder (after crystal 2) is
not adjusted to erase this information (recall that in this regime ltA— ™Z l >>1/0).

3)t=1A2,r=iNZ  Rcec 3 -2sin wy[21,+AT] (B2.21¢)
These 67%-visibility fringes are a slight improvement over the 50%-visibility fringes
observed in the singles rate at Dy alone [cf. Eq. (B2.9c)). The improvement arises
because half of the idler photons which took the long path in the inter-crystal Mach-
Zehnder (and hence have in principle distinguishable timing) exit the port of that
interferometer which doesn’t lead to crystal 2; hence they are not counted in a

coincidence measurement between Ds and D;.
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Sdll in the regime ItA— thl >>1/o, if the coincidence resolution time AT is less
than T4 and Ty (but still satisfying AT >> 1/6), then integration over 8w will wash out
terms with factors of the form eis““, unless T << 1/0 (i.e., unless the time is much less
than the coherence time of the photons). We see from (B2.19) that the results will
depend on the specific value 7, of the electronic time delay, and on the values of the
beam splitter reflection and transmission amplitudes:

Dt=1,r=0 R = 2 -2sin o [21,+AT) (B2.22a)
There are two timing arrangements which will yield the 100%-visibility coincidences
indicated above. Specifically, we may choose Te = 0 (coincidences between signal
photons and idlers which travel the short arm of the post-crystal Mach-Zehnder) or Te =
TMmz (coincidences between signal photons and idlers which travel the long arm of the
post-crystal Mach-Zehnder). [Note that we have indicated that the relative value of the
rate is one half that given by (B2.21a); the longer coincidence window in that case
included both of the timing arrangements which work here.] Other values of Te Will
yield no fringes.

2D)t=0,r=i Ree 1 (B2.22b)
In this case, for no value of Te is interference observed. The situation is essentially the
same as that leading to (B2.21b), except that here our coincidence resolution is sufficient
to determine in practice the parent crystal of the photons.

)t=1AZ,r=iNZ Rce 45- sin Wo[2T+At] (B2.22c)
Depending on the choice of electronic delay, we can keep at most one of the first four
terms in the curly bracket of (B2.19). A maximum visibility of 80% is obtained for Te =
0 or o = T\jz. For these cases, the use of the post-crystal Mach-Zehnder partially
erases the distinguishability which limited the singles visibility to 50% (see (B2.9¢)).

Henceforth, we restrict ourselves to the second regime: TA = TMz + ATyz, With
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Aty <<1/0. As before, a large value of AT (greater than T4 ) causes an effective delta-

function, 8(8w). Under these conditions, (B2.19) simplifies to the following:
R o 2+ 2P+ 2|¢* — 4|tPsin[y (2t + A1)+ 2arg (1))
- 2rtPcos [co0 Atygz +2arg(r) -Zarg(t)]
+21rf sin [0, 2T+ AT+ Aty )+ 2arg)] (B2.23)

Again we consider the three particular choices forr and t:

Dt=1,r=0 Re e 4 -4sin 0y[21,+AT] (B2.24a)

2)t=0,r=1 Re e 4 - 2sin p[21,+AT+ATMz ] (B2.24b)
The use of the post-crystal Mach-Zehnder has erased the distiguishability afforded by the
extra de'ay experienced by the idler photons originating in crystal 1; however, due to
insufficient time resolution to exclude the two non-interfering processes (in which an
idler from crystal 1 takes the long path in the Mach-Zehnder, or an idler from crystal 2
takes the short path), the visibility is limited to 50%.

Nt=1N2,r=iN2
Re o 3 2sin 0gl2%+At]+ Lcos o [Atyz] - sin o 215+ At+Atyz)  (B2.240)

This has a maximum visibility of 85.7% (6/7), achieved for Atz =0(G.e., Ts = T\MD)-
For the case Aty @, = 7/2, the visibility is less: 74.4% (= [1+2Y3)/6).

Finally, we consider the case where the post-crystal Mach-Zehnder is properly set
to provide maximum erasure (i.e., Ta = Ty + ATpz, With ATy <<1/0), and the

coincidence timing is sufficient to resolve the distances 7, and Tygz (le. AT <.ty ). As
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before, the results will now depend on the specific value Te Of the electronic time delay,
and on the values of the beam splitier reflection and transmission amplitudes:

Dt=1r=0 Reee 2 - 2sin wp[215+AT] (B2.25a)
Exactly as under the conditions leading to (B2.222), there are two timing arrangements
which will yield the 100%-visibility coincidences indicated above. Specifically, we may
choose 1, =0 (coincidences between signal photons and idlers which travel the short
arm of the post-crystal Mach-Zehnder) or 1, = T)z (coincidences between signal
photons and idlers which travel the long arm of the post-crystal Mach-Zehnder). Other
values of T, will yield no fringes.

2)t=0,r=1
‘te =0, TA+TMZ RC o< 1 (B2.25b)
Te =TMZ Re o< 2 - 2sin wp[215+AT+ATy 7] (B2.25b)

Our system is now acting as a perfect quantum eraser (when Te = TMZ)» as discussed
earlier. Although no interference fringes are seen in singles under these conditions (see
Eq. (B2.9b)), we have a complete revival by correlating with the idler detector.
Moreover, by correctly choosing Atyz, we can choose to observe fringes or anti-
fringes. If this choice were made using a high-speed phase-shifter, then one would have
a delayed choice version. We see explicitly that the high time resolution allows us to
discard the background of non-interfering counts which would have otherwise limited
the visibility to 50% (see Eq. (B2.24b). Physically, the background terms which appear
in (B2.24b) (but not in (B2.25b)) are due to contributions from the following processes:
1) photons originate in crystal 1, but the idler takes the long path in the Mach-Zehnder;
and 2) photons originate in crystal 2, but the idler takes the short path in the Mach-
Zehnder. With a sufficiently short time resolution, these non-interfering contributions

may be removed, yielding complete erasure.
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Nt=IN2 ,r=iA2

T=0,Ta+TMz Rc= }1— (B2.25¢)
1, =0: Re e i-— sin Wo[27,+AT] (B2.25¢")
Te = 'rm:

R > 2 - sin @y[215+41]+ Lcos wo[Atyz] - sin 02T +AT+ATyy] (B2.25¢™)

One can immediately check that including all of these possible timing arrangements
returns the value given by (B2.24c) for a poorer timing resolution system. For the case
ATz 0, =T/2, (B2.24¢”") reduces to Re o< %' sin ,[2T+AT] — cos W, [Ts+AT],
with a visibility of 94% (= 2Y2/3). But for ATyg7 =0 (i.e., Tp =Tpp), (B2.25¢")
recovers 100%-visibility fringes. One physical interpretation is as follows: The inter-
crystal Mach-Zehnder acts as a variable frequency filter. If the “analyzing” post-crystal
Mach-Zehnder is set the same way (i.e., T4 = Typz), then it will pass all of the light
which made it through the inter-crystal filter (i.e., half of the light from crystal 1), but
only half of the light from crystal 2. In other words, after the second Mach-Zehnder, the
amplitude of light from the two crystals is the same, and has the same spectrum.
Therefore, the indistinguishability of the parent crystal is recovered, and coincidence

fringe visibility is 100%.
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Appendix C: Error-Analysis for Absolute
Efficiency Measurements

I. Intr ion

Calculation of the uncertainty in the efficiency is not entirely trivial. Below we
present two approaches to the calculation. Both eventually yield the same result, but the
underlying reasoning is very different. The first, fairly formal, calculation (Sect. C.IT)
relies on introducing the number of “anti-coincidences” (those cases where only the
trigger detectors produces a count), and treating the number of coincidences and the
number of anit-coincidences as independent random variables, governed by Poisson
statistics. This only makes sense if one considers the total number of trigger-detector
counts as a random variable.

In the second approach (Sect. C.III), the total number of trigger-detector counts is
treated as a nonrandom, but nonfixed quantity, i.e., in any given run a definite number
of trigger counts are seen. Although this number will vary from run to run, the number
in any given run has no uncertainty. The probability of detecting the conjugate photon

is then given by a binomial distribution.

I1. Purely Poisson Approach
Each experimental run to measure the efficiency coefficient consisted of two
measurement periods:
1. The “efficiency” period, of duration T, where the coincidences C and the singles
counts S and S; (equal to the number of coincidences C plus the number of “anti-
coincidences™ o) are counted.
2. The “background” period, of duration TRG, where the source has been blocked and

the trigger background counts BG; are counted. For convenience we define
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s =T/Tgsg.
The accidental counts can be calculated from the measured quantities. There are

four types of processes which can yield an accidental coincidence, depending on
whether the wrigger count was caused by a real photon (i.e., one with a conjugate partner
that could have been detected) or background, and whether the conjugate detector count
was caused by a real photon or background. In cases where a real photon is detected, its
conjugate must fail to be detected (otherwise this would count as a true coincidence

event), so that the number of accidental counts is given by
A =[N{(1 -} + BGurgc] [Ne(t - ) + BGerac] &
=[Sl—ncN!] [Sc—T'lth]—¥‘ s (C.1a)

where w is the duration of the gate window, and we have used S, = N, + BG,rpg and
Sc¢ = N¢ + BGergg. To write (C.1a) in terms of experimentally-measured quantites, we
use the fact that S. >> N, (the effective efficiency of the trigger detector is very small,
due to the narrow-bandwidth filter and small iris before it), and again use

S, =N, + EGypa:
A =SS~ McSdS, - BGipa)] % (C.1b)

Direct measurements of the accidental rate (using an extra 100-ns electronic delay to
prevent any true coincidences) were in agreement with the values obtained from (C.1b).

The efficiency! is given by the formula

1 As discussed in Sect. 9. VI, the efficiency actually depends on the incident light
intensity, due to saturation effects (arising from intrinsic deadtime in the devices).

However, for simplicity we use 11 to denote the efficiency in the low-light limit.

250.



= _C-4A . C.2
nc Sl N IB(}BGl ( )
We consider the coincidences and anti-coincidences during the efficiency measurement,
as well as the background events to be independent Poisson processes. In practice the
uncertainty in the accidental counts was completely neglible compared with the other

uncertainties. Thus, we derive the statistical error on

C-A , (C.3)
C+ a—-rpgBG;

Ne =

where o = §; - C = ((1 =M )C ~ A)n + rggBG; results from an independent Poisson

(ane) = (G oy + (e (aay + 2 JZ(ABG.)Z

2
[C+a-r,.BG -C+4A s C-A za
(C+a "’BGBGz)z ( )0

+f(c " éfc,;';’a i JzB G - 9
g
= (C__IA?[@ =~ N)C+rso(1+735)1.7BG,] . (C.5)
An. 1
- \/(C_ l0-n)C+rici+r0)n786) (C.6)
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In practice the time intervals over which the trigger singles and background counts were

collected were similar (rgG = 1), so that Eq. (C.6) simplifies:

AR, _ (l—ﬂc)C 2BG, C.7
7, ‘\/(C—A)”(s,—BG.)Z ' «n

The values recorded in a given experimental run were the means and uncertaintes

of the trigger singles rate (S;> AS;) and the coincidence rate (C, AC), measured

simultaneously (for most runs) over some time interval T; the mean and uncertainty of

the trigger detector background rate (BGy, ABGy), measured over a time interval Tpg;
and the conjugate detector singles rate (for use in calculating the expected accidental
rate). Using the fact that all coincidence counts are predicated on detecting a trigger
count first, and that there is no uncertainty in the number of counts detected at the
trigger detector during the interval T (another interval of equal duration might give a
different result, but this does not matter), we conclude that AS never matters. However,
the uncertainty in the coincidence rate needs to be modified, because the uncertainties in
the trigger singles rate and the coincidence rate are not independent since they were
collected simultaneously. This is obviously true if the uncorrected detection efficiency
of the conjugate detector is 100%, for then any fluctuations in the trigger singles rate
show up in the coincidence rate as well. As was shown by Rarity et al. [Rarity, 1987],
in calculating the uncertainty in the efficiency, one should use the modified relative

standard deviation for the coincidence rate (and hence the numerator of Eq. (C.2):

oc. A =E’3—C:s/ﬁ . (C.8)
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We have not included the uncertainty in the accidental rate because EA-AK is negligible
compared to the other uncertainties. With the uncorrected detection efficiencies of ~50%
seen in these measurements, this indicates a reduction factor of 0.7.

There is also an uncertainty in the background rate which must be subtracted from

S, and thus an uncertainty in the denominator of Eq. (C.2):

A(SI—BGK)=)\/’”TI. +1/;IT'GI . (C.g)

There are two terms because the background and trigger singles rate were not measured

simultaneously (i.e., there was an uncertainty in the mean value of the background that
was measured, plus there was an uncertainty whether this number of background counts
actually arose in the interval over which the trigger singles were measured). Since in
practice the time intervals over which the trigger singles and background counts were

collected were similar (T BG =D,

\Q_»\ /=t :
=3 ABG (C.10)

Cis.-BG) =g Bc,t S.-BG,

The compounded uncertainties in efficiency can now be computed by adding the relative

errors (C.8) and (C.10) in quadrature:

\/( )(1 -ne)+ Z‘SABI?G) ' (€10

Using the results AC = YC and ABG, = YBG,, this is identical to (C.7).
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Appendix D1: BBO

We have investigated a rather large number of nonlinear crystals. Subject to the
constraints that it must be possible to satisfy Type-II phase-matching at pump
wavelengths of 325 nm or 316 nm, that the conversion efficiency must be appreciable
(i.e., comparable to KDP), and that there must not be significant loss at the down-
converted wavelengths (650 nm or 632 nm), beta-barium borate (BBO; B-BaB50y)
was found to be the best candidate. The crystals investigated were KDP, KD*P, ADP,
AD"P, RDP, RD*P, CDA, CD*A, LilO3, LiNbO3, K3LisNbsO; 5, LBO, BBO, and
RANANA (barium sodium nichate). Herein we list the relevant parameiers for BBC,
which may be found in a suitable combination of [Dmitriev et al., 1991; Chen, 1989;
Eimerl et al,, 1987].

BBO is a negative uniaxial crystal. The indices of refraction are given by

n3=2.7405 + —Q0184 015537
2% - 0.0179

ng=23730 + —00128  _ 000447
A2 - 0.0156

The thermal coefficients over the range 0.4 - 1.0 um are %- =-1.66 x 107 K)!
oT

a
and e — -0.93 x 107 (K)'L. For type I phase-matching, the effective nonlinearity is

oT
deff = d3; sin® — d1; cosO cos3¢ , while for type I phase-matching, it is

degs = dq cos?6 sin3¢. Here 6 and ¢ are polar coordinates referring to z (= ¢) and x

(=a), respectively. The actual values of the coefficients, both in units of the KDP-
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nonlinearity and in “real” units, are as follows: d;; = 4.1 d3g(KDP) = 1.8 x 10712 m/v
and d3; < 0.3 d3(KDP) = 0.13 x 1072 myV.

In the region of transparency, optical absorption is primarily due to trace impurities:
therefore, the attenuation of a given sample may vary considerably depending on the
crystal quality and crystal growth process. The transmission of a 4-mm sample (at an
angle of 21° with respect to the optic axis, the type I phase-matching angle [for an
unstated sum-frequency process]) was ~87.5% over the range 0.35 - 2.0 um [Eimerl et
al., 1987]. Assuming Fresnel losses of 5% at each interface, this implies an attenuation
factor of less than 0.97/4mm -> 0.36dB/cm.

Calculation of the phase-matching angles proceeds similarly to the calculation
outlined in Chap. 2 for KDP. There is a fairly nasty added complication, however. As
we are interested in type-II phase-matching, (and because BBO is a negative uniaxial
crystal), both the pump and one of the down-converted photons (henceforth assumed to
be the idler) will be extraordinary-polarized. This has two related effects: First, the
refractive index of the idler beam will depend on the phase-matching angle; second, it
will depend in particular on both the angle with respect to the pump beam and on the
azimuthal angle about the pump beam. An important consequence is that the distribution
of down-converted photons of a particular color will not be symmetric about the pump
beam, in contrast to the situation with type-I phase-matching. where a cone centered
about the pump beam was emitted (see Chap. 2). This will become clear presently.

From the schematic in Fig. D1 we can immediately write down the longitudinal and

transverse momentum conservation relations:

Kp = Kg cosf; + x; cos; , (Dl.1a)

and
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Figure D1. Schematic representation of type-II vector phase-matching
(angles are exaggerated for clarity).

K sin6g = —x; sinG; , (D1.1b)

where the K’s are the momenta inside the crystal, given by Kp = @p Ne(@p, Opm),
Ks = g N5(0), and K; = ; ne(e;, ©;). Here 8p, is the angle between the pump and
the optic axis and @ is the angle between the idler beam and the optic axis. If we define

0; to be the azimuthal angle of x;, referenced to the optic axis (so that ¢; = 0 means that

K;j lies between the optic axis and Kp, and ¢; = T means that K lies between the optic

axis and x;), then we can express ®; in terms of Bpm, 6;, and ¢;:

cos®; = cosB), cosb; + sin@,, sin®; coso; . (D1.2)

Squaring (D1.1b) and using the trigonometric identity, sin?6 = 1 — cos28, we have
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x2 cos26, = '(iz_ei {cos26;- 1)+ 2, (D1.3)

where the second subscript on x; stresses the angular dependence. Next we move
X; €0s6; to the left-hand side of (D1.1a), and square this expression; substituting (D1.3)
for the new right-hand side gives

2
xg_epm + X0, cos?@; — 21cp'9pm)q‘ei cosf; = 'fiz.ei cos2; + ncg' - Kiz'ei ,(D1.4a)

or

Kg'epm - Kg - zxp’epmxi'ei cos el + Kiz.ei = O * (D1.4b)

This is a very transcendental equation, which we solve numerically (using an Excel
spreadsheet). First we set 6, 8; =0, and solve for the phase-matching angle Opm under
the degeneracy condition, wg = ;. For BBO, we find that Bpm(Ap = 325nm) = 54.25°
and Bpy (A, = 316.5nm) = 56.39°. [Note that this somewhat large angle implies a
reduction of the effective nonlinearity by a factor of ~0.33.] Next we use our
spreadsheet to find the value of 8; [and thus 6y, through (D1.3)], given a value of o,
over the idler wavelength range of interest. Lastly, we use Snell’s law to obtain the

laboratory angles 6'g and 6';:

sin@'s = ny(®;) sinBg , (D1.5a)
and

sin G'i = ne(coi,ei) sinei . (D1.5b)

where we have assumed that the pump is incident normal to the crystal face. It is these

angles which are displayed in the plots of Fig. 10.4.
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As aliuded to in Sect. 10., the birefringence of the nonlinear crystal results in a
relative displacement of the two down-converted photons: they propagate in the same
direction after exiting the crystal, but are separated by a distance d =L tanp, where L is
the propagation distance inside the crystal, and p is the intra-crystal angle between the
ordinary and extraordinary beams, given by [Dmitriev et al., 1991]

p(O) = arctan[—q— tane] 6 . (D1.6)

This has a value of 3.9° for our system.
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Appendix D2: Iris Size Effect on Collection
~ Efficiency

For a plane-wave pumbp, it is in principle possible to have 100%-collection
efficiency!, by which we mean that one could collect only down-converted photons
whose conjugate parters were also collected. Once we allow a more realistic, gaussian-
mode pump, then this is no longer possible. For identical, finite-sized collection irises,
there will always exist situations where one photon is detected while the other is not
(even aside from the problem of inefficient detectors). This effect is mitigated by
collecting over a larger solid angle.

We approach the problem by assuming that our signal and idler irises collect light
over the angular ranges [-6, 8] and [-©;,0;], respectivelyZ. For simplicity we will
treat the problem first in only one transverse dimension. If the joint probability
distribution for the signal and idler modes is g(Bs, 6;), then we can write the coincidence

probability C as

ei es
C= f as; [ de; g(0,9;) , D2.1)
-8; -8

the signal singles probability as

1 We are neglecting the (very) small spread in wave vectors due to the finite size of the
crystal.

2 Here we assume that the idler photons are sent to one detector, while the signal
photons are sent to the other, as is possible in the modified version of the source with a
half waveplate after one of the crystals. Also, we implicitly assume that we are
collecting those down converted photons that are roughly collinear (and that these are
essentially degenerate); otherwise, the angular ranges would possess an offset.

259.



oo es
- -8,

and the idler singles probability as

Si =f deif des g(es,e,-) . (D2.2b)
-8, —co

As discussed in Chap. 9, we can define the efficiencies in terms of the coincidence and
singles rates: T; = C/Sq and 1g = C/S; (the efficiency of each detector depends on the
singles rate for the other detector). In practice, the angular ranges we will need to
accept are relatively small, and for small angles the distribution g(8s, 6;) is symmetric in
its arguments. Therefore, if the irises are chosen to be the same (i.e., O, =0;) then the

singles probabilities S and S; will be identical, and g =N; =1, where

8; 8
f de; [ d6; g(6,,6;)
-6, -8
n= .

oo e,
f de; ] dog g(6,.6;)
o -8,

We now turn our attention to the distribution function g(6, 6;). This was

(D2.3)

calculated in the paraxial approximation explicitly by Ivan Deutsch (cf. p. 119 in
[Deutsch, 1992]) for the case of degenerate collinear type-I phase matching. He found
that if the pump beam consisted of a pulse with both a gaussian temporal as well as

transverse profile, described by
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) (D2.9)

Ep(XT,T) = €po exp{
(where wq and 1/t are the pump beam waist and pump pulse bandwidth, respectively),

then the joint Gistribution (in Fourier space) after propagating a distance z inside the

nonlinear medium is

~ 4.2
[f2)P = ng_ﬁiz %"n& exp-lgs + q;2w2)} expl{—(Q; + ©;<2)

2 2.,
X sinc:z\f—:'--(qg u qiz -+ Ok “ (L2.5)
12\ 2k, 2 v
3k
where Vo = 2““’° x@ ep,. ko _Jn(wo) W =p/2, and k" = 22 0y qs and q;
(0)) (]

are the transverse momenturn components of the signal and idler photons, respectively,
and Qg and €; are the frequency shifts (away from degeneracy). Henceforth we assume

a cw pump, so that T,—>eo and we have Qs = ~Q;. In the small angle approximation and
near degeneracy, we can define 6 = fpbn—, ;= p/2 , $O that If(z)l is essentially the

function g(6g, 6;).

The sinc-term of (D2.5) basically governs the phase matching, and the an gular
spread of the down-converted photons in singles. In treating type-II phase-matching it
is the argument of the sinc which would change somewhat (e.g., to include a ke and ko
for the two polarizations). In any event, it is the gaussian that enforces the tight angular
correlation of the signal and idler photons--for a plane-wave pump this correlation is

exact, even though the sinc-function may ascribe a broad distribution to either of the
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down-converted modes individually3. Consequently, we may wriie

g=Aclas+ afvd = A e{Gx + 6107 + @y + 472 D2.62)
2,2
2 W
=A c"{[(esv" +8,07+ Oy +6;y) ] > (D2.6b)
_/(es.x + ei.x)2 + (es.y + 8y 2‘
=Ae || 65 Oaitr.ar2 | | (D2.6¢)

where in going from (D2.6a) to (D2.6b) we used the definitions of the angles, and in

making the step to (D2.6¢), we have used the following definition of the diffraction half-

angle of the pump beam:

(D2.7)

8ifr,12 = tp _

T W, kpwo

From (D2.6c¢) it is clear that we can treat the two dimensions separately. Hence, we

use

2
6; +6;
(D2.6d)

8(65,6;) = A’ eﬁ(ediff.l/f!

in (D2.3)%. A plot of the effective collection efficiency (in one transverse dimension)

3 It is interesting to compare the relative widths of the gaussian and the sinc terms of
(D2.5). The gaussian forces the angular correlation to be less than kpwo; the sinc (in the

limit of k' =0) constrains the angles to be less than @ Assuming that the crystal
length and the pump beam waist are of the same order, then the sinc-function is much
proader than the gaussian, i.e., we can essentially treat it as a constant over the small
irises needed according to the gaussian angular correlation.

4 In neglecting to include the sinc-function, we have hidden any dependence which
might make it desirable to use different size signal and idler irises, or non-circular
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versus the iris sizes is shown in Fig. D2.1. To account for both dimensions, we simply
square the result®. Figure 10.2 shows a plot of inherent collection efficiency (2-
dimensional), versus the collection angle of the iris in units of the pump beam
divergence angle. In order to keep the losses less than 2%, we must employ irises

which accept light out to 30 times the pump divergence angle.

irises. However, our calculation should still be correct in terms of evaluating the effect
of finite-iris sizes on effective collection efficiency.

5 Note: One must also account for the fact that the above figuring implicitly assumed
that the photons were inside the nonlinear medium. To convert the angles into the lab
frame, we multiply by the index (because the angles are small).

263.



10
20
€0
0
S0
90
L0
80
60

"SuLinseaw are om £ua1oly 3o AS0YM J0J0IBP SY) 0F LI II[PI Oyl 1010313 4233141 Y} 0} spuodsaniod su feudis ay (6 dey)

33s) Aouatoyyo wniuenb 1015019p AN[OSqE 2NSEIW 0) swwawLadxs oy ur pasn awafueLre sures s AJenuasss st ased Jane|

SIUL "y3uy st Kouaranzya ays g >> Sg 10 oj1ym ‘[jews aq 1 Aduaronyye ayp

Y9 << Sp uaym ‘asojarayy, ‘Sg/o se Kouaronyyo
) sAUM (') asnesaq ‘(10]d ayy ut Tg) 'g pue (o1d ayp ur 1g) Sg ur ornowwAs jou are Sinsaz ayl ey 0N °a[3ue-jey

uopoelIp dund ay3 3o sipun ut ‘saj3ue-j[ey UOKD[[0D SLT JOFPI PuE [EUSIS dY) SIE SoXE [EIUOZLIOY 3], "UOLIOUN UCTINGLOSIP

ueissned e 10j ‘[uoiSudwIp ISIPASUER U0 ut ‘(g'za)] £oudtdnyga uonsa[os 2AR239 Jo 10id © josmamnom], 1z aunsiy

-~

€O s IAD D rmese

- AE- -2 B -2

jeloul
CSM] % [su] *sa (pr)ouaronffy

1’0
co
€0
v'0
S0
90
L0
8'0
6'0

(G1)fovery3

[/ [ [ ] [ ]

N
N

LL ] ]/

\VAAVAVA VAVAAWAY

TSHL P [Su] “sa (p1)Couatorffy

264.



Appendix D3: General Calculation for
Loophole-Free EPR Proposal

We present here a calculation of the various coincidence and singles rates expected
from the setup shown in Fig. 10.1, when non-ideal polarizing beam splitters and non-

unity efficiency detectors are allowed. We start with the state out of the two crystals, as

given in Eq. (10.1):

ly> =V1~]AR lvac) « ﬁ(ln,wmm +fH, VDaysara) .  (D3.1a)
1-

Henceforth, we will drop the vacuum term, as well as the prefactor A; physically, we
must filter out the unconverted pump beam, which would otherwise give rise t0 an
overwhelming background at our detectors. We write the state (D3.1a) in terms of

photon creation operators:

ly) = ﬁ (a:{’l?x:,'l +f 3;‘2?1:,'2) [0 , (D3.1b)
where the subscript /erters denote polarization, and the subscript numbers denote
spatial mode.

Our strategy will be to transform the creation operators ?x;“] and 3;'2 into operators
appropriate for the modes reaching the detectors. To this end, we state at the outset the
transformation rules for a half waveplate and a general beam splitter. The transformation
matrix Hj(e) for a half waveplate (in spatial mode j) with its axis at an angle 6 with

respect to the horizontal is
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Hj(9)=( cos 28 sin 20 ) ’ (D3.22)
sin 26 —cos 26

so that

H,-(e)a{,' i= 3{,. §€0s 20 + 3;1' jsin 26,
oAt _at oo ,
HJ(G)aH‘J- = aV.jSID 26 - aH'jCOS 26. (D3...b)

[We assume for simplicity that the wavelengths of the fields are equal to the design
wavelength of the waveplate. This approximation is very good, given that the
bandwidih of our photons (for the 0.05° haif-angie iris acceptance caicuiated in Section
10.IV) is less than 1 nm, and zero-order waveplates have a broad performance
window.] The mode transformation for a lossless symmetric beam splitter with input

ports 1 and 2 and output ports 3 and 4 is

at ~t
3,2 a,

A _[n rl) A3 , D3.3)
At By I

a1 a4

where t) and r) are the transmission and reflection amplitudes, respectively. We
distinguish each polarization component A to allow for the possibility of a polarizing
beam splitter. In what follows, we use o denote the reflection amplitude for p-
polarized light (ideally equal to 1), and I to denote the reflection amplitude for s-
polarized light (ideally equal to 0). For each polarization the amplitudes satisfy the
standard relations, Ir;tl2 + ltllz =1 and arg(r;) — arg(ty) = +n/2, derivable from unitarity.
Without loss of generality, let ty =|t;| and ry, =i|r,|.

Using (D3.3), and including a relative phase shift § between the two paths
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(associated, say, with a variable path length in the interferometer arm with crystal 2), the

state after the recombining beam splitter can be written
At At At At At At At At
IW) = (A~33 av‘ 33H' 3 + Aas av'4aH‘4 + A“_,.: 3V, 38H‘4 + A43 av'4aH‘ 3) IO>, (D34)

where

Azz=—L—(rprs + feidtot) | (D3.5a)
,——l+|ﬂ2(ps P )

(D3.5b)

tpts + feidrpry) |
W(PS p’s

=—21 _[rt, +feidrot) , (D3.5¢)
W(SP PS)

and

Agz = ﬁ_ﬁ(rpg + feidrgry) (D3.5d)
+

Note that the terms in (D3.4) with coefficients A33 and A4 correspond to processes
where both photons exit the same port of the interferometer. Only the Az4and Ay3

terms will contribute to coincidences.
Next we include the effect of a half waveplate in port 3, with its axis at angle

83 = /2 to the horizontal, and a half waveplate in port 4, with its axis at angle 64 =P/2:
ly™> = H365)H40) | y>

N o\f . .A‘ . At
= [ A33(a{,'3cos 0 + &y 3sin a) (a{,'3sm o — 3y 3c0s a)

+ AM(%E{,‘ 4€0s B + 3 4sin B) (33’4sin B -3 4cos B)

267.



+ A34(3:,.3cos a+ 3;.3 sin a) (3{,.4sin B — 2y 4c0s B)

+ A43(§:-‘4cos B+ 5;' 4sin B)(’é:-jsin o- 'é;jcos a)] lo> . (D3.6)

Lastly, we include the effects of the final analyzers, polarizing beam splitters with
reflection and transmission amplitudes Rj and Tj, respectively. (Note: We use upper
case for the analyzing beam splitters and lower case [cf. (D3.5)] for the interferometer

recombining beam splitter.) The 16 terms of (D3.6) become a total of 64!!

H ' r g . A'_:. At 71\‘!‘ AT AT AT
IW > = |_ A33 { cosasinQ (Rgav'3sav'3s + T§'av‘3pavv3p + ZRsTsav'3sav'3p

2&? A? 2Af A? A? A?
— Rpay 3534 35 ~ Than, 3p2u,3p — 2RpTpy 3533 3p)

+ (sin2 o ~ cos? cx)

A't A# A';' A? AT A? At At )
X (RstaV’3saH'3s + TsTpav’3paH,3p + RsTpaV,3saH'3p + TstaV‘3paH'3s }

. A? &T T At At At
+ A4 { cos B sin B(RZ3y 453y 4 + Téiy 4p8y 4p + 2Rs Ty 4 8y, 4p
T

- 2;\"‘ Af _ 2»\1’ ~ Af AT
Rpay 453,45 = Tpay, 4pan,4p ~ 2RpTpay 45ipy 4p)

+ (sin2 B — cos? B)

! This is an exclamation, nor a factorial. If it were a factorial, then we would have to
write “64111”1
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Ab At nt )
x ‘RstaV,4saH.4s + TeTyhy apRiap + ReTpAy ashiy ap+ ToRpay, apin s }
+ {A34cos a sin B + Ay3sin a cos B}
24t At 24t at Jat At At oAt }
X (Rs Ay 358y 45 + Ts 3y 3p3y ap + RsTy| ay 358y 4p + 3y 3py 45

+ {-— Azgcos o cos B + Ag3sin o sin B}

(R RDaV 3saH 4t T T aV ‘«ZnaH 4n +R Tnav ‘zsau ap +T. Rnay 3..31‘1 453

Y Ay Vi

+ {A345in a sin B — Ag3cos o cos B}

f
X (R RpaH 3sav 4s + T T, aH 3pav 4p +T RpaH 3sav 4p + RST aH 3pav 43)

+{- Az4sino cos B — Ayg3cos a sin B}

24% ~t A1 ~t at ]
(R 2y,3s3H,4s + T aH 3pa,4p + RpT| [aH 3saH'4p * 2y 3pay 45 ) ] 1) (D3.7)

As a check of this rather unwieldy expression, one can readily confirm that the

normalization is as expected from (D3.4) (assuming lossless analyzing beam splitters):

<yl =|agP +|Auf + 1Az +|AgsP . (D3.8)
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From (P3.7) we can now calculate the various rates which constitute Beli's
inequalities, using the standard Glauber theory of photodetection [Glauber, 1963]. For
instance, the rate n3g(o) of detection events at a polarization-insensitive detector (with
efficiency 7) at the s-channel of the analyzer in port 3 (described by the parameter o) is

given by
n3s(@) =< n <y’ [ESD-EQ [ v
o <y’ l (afi,3sezl,3s + 31\./,355:/,35) ’ (aH,3s€H.3s + 3V.3s€V.3s) I\V'>

e
'

A ~ Af -~ 1 .
3 353H,3s T 2y 352V, 35 | ¥ >

=n<vy'|
=nllanss WP +fav.ss v (D3.9)

Using (D3.7) in (D3.9), one finds, after many applications of the canonical commutation

relations and much algebra,
n3g(a) =7 {IA33]2(|RSI2 + |Rp[2) + |A34[2(c052a le|2 +sin‘a |Rp]2)
+|A‘«,3|2(sinzoles|2 +cos2a |Rp|2) } . (D3.10a)
Similarly, one can calculate the singles rate for the p-channel:
n3p(@) =1 { [A5PITSP +|Tof) + |asePlcos?e Ty + sinax )

+]Ags{sin2a T2 + cos?a [T, ) } . (D3.10b)
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Identical expressions hold for n4g(B) and ny,(B), when the substitutions 3 «» 4 and

o —p are made. (Note: In the numerical calculations which were performed, an
additional variable background was added; this was not taken to rely on 1, and so could
include dark counts, as well as counts from stray Iight.) (D3.10) is very general, and
therefore rather complicated. The results simplify greatly if one considers the special
case of ideal polarizing beam splitters (rg| =[R¢| = It]=|Tp| =1,

|rp| = |Rp| = |t =|T| = 0), for then As33and Ay vanish. Moreover, |AzP = 1/(1 + IfP)

and |A43P = |fi%/(1 +|f]?), so that we have

n35{00) = ——lcos2a +{fiZsin2 af, ©3.112)
1+]

nap(@) = ——{sina +|Peos? o} . (D3.11b)
1 +]f]

The various coincidence rates between detectors in positions i and j can be

calculated in like fashion, using
n; (0. B) = 12 <y’ | EPEMEDED |y
oc T'l2 <\]f' l : (ah'iaﬂ‘i + ﬁi,'iﬁv'i) (S;I,JEH.J + 5.1\./']5\/’]) : l\]f) , (D3.12)

where again we have assumed polarization-insensitive detectors with efficiency 7. For

example,

. . 2
n3s 45(a,B) = ng ¢(a,B) = n? {IA34cos o sin B+ Ay3sin a cos Bl IR([*
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+ (JA34cos acos B~ Ag3sin asin Bl2 + IAysin o sin B - As3cos & cos Blz) IRSRp]2
+ lAy,sin a cos B + Agzcos a sin BF |Rp[4 } . (D3.13)

As with the single-event rates, this fairly complicated form simplifies greatly if, for
example, the analyzers (described above by Rg and Rp) are ideal. Then only the first

term remains:

ng s(a,B) = 112|A34cos o sin B + A43sin & cos BF . (D3.14)

If we further specialize to the familiar case of an equal superposition of the contributions

from the two crystals (i.e., f = 1), and consider an ideal recombining beam splitter, we

are simply left with

2
ng s(ct,B) = T;—lcos a sin B + eiSsin o cos Blz , (D3.15)

2
which yields the familiar result n?sinz (o - B) when & = 180"

However, as discussed in Sect. 10.V1, it is preferable to use § = 0 for an
implementable, loophole-free test of Bell’s inequalities, because the required detection
efficiency is much less affected by non-idealities of the recombining polarizing beam
splitter than when 8= 180°". In fact, by examining the structure of Azzand Ay [EQ’s
(D3.52) and (D3.5b), respectively] one can readily see the destructive interference that
prevents both photons from exiting the same port of the recombining beam splitter,

under the conditions f = 1, |r| = [t} and |rp] =|td, and 8 = 0. (Remember that

arg(ry) — arg(ty) = +7/2!)
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Appendix E: Detector Trivia

In this Appendix we include copies of the various specifications sheets for the three
types of detectors used in our tests, as well as the circuit layout for the (in-house built)
temperature controller used with one of them. The reason for documenting this
information is that it is not generally available except through the company which makes
the products.

The contents of this appendix are as follows:

Detector Manufacturer! Part No. Pages
Photomultiplier Tube RCA-->Burle C31034A-02 274 - 276
Avalanche Photodiode RCA-->GE-->EG&G  C30902S-TC? 277 - 283

Schematic of temperature control circuit 284 -285

Schematic of APD passive-quench circuit 285

Component layout for above 286
Photon Counting Module =~ GE-->EG&G SPCM-200-PQ3  287-292

1 The companies that supplied these detectors have gone through several changes of
ownership.

2 These devices are identical to the C30902S, but come with an integral thermoelectric
cooler.

3 Our devices were custom-modified (by EG&G) to provide higher than usual
overbiasing. In particular, our overbias voltage was about 30 V, compared to the
standard 7 V. This substantally increased the time resolution and the efficiency (cf. the
specified values and those reported in Chap. 9).
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C31034 Series
Photomuitipliers

51-mm (2-inch) Diameter 11-Stage,

Lumlinous -

[RLr )

Range 185 to 930 nm

The BURLE C31034 Series are S1-mm (2-Inch) dlar eter end-
window, 11-stage Quantacon photomultipliers. They have
GaAs:Cs-0 phatocathodes, ultraviolat-transmirting glass win-
dows, snd in-llne coppar berylllum dynode structuras. The
C31034A s a variant of the C31034 Serles which exhis

higher photocathode responsivity.

‘The C31034 Series Is dasignad spactiically for use st reduced
temperatures, e.g., -30°C. Whan cooled 10 such tempera-
tures, these tubes are highly useful in photon counting eppli-
cations such as Raman and fluorescence spectroscopy snd
sstronomy. Cooling reduces dark noise to 8 minimal value and
silows taking full advantage of the performance capablities of
the tube,
Variants with lower dark pulse summations are shcwn under
Performance Data.
Absolute-Maximum Ratings'
Usmiting Values

Average Ancde Current:

Averagod over any 30 d interval 100' nA

0OC Supply Voliage:
Between anode and cathox® ...

|
i
it
~I’
5
3

8
]
g
a4
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€31034; 52 mA/W at 860 nm
C31034A: 81 mA/W st 860 nm

» Broad Spectral Rasponse

PHOTOCATHOOE REBFONIIVITY — reAMY

End Window Quantacon®PMTs

= Small Photocathode Atea

& Typicsl Cathode Responsivity - (Projected) -

4 mm x 10 mm minimum

€31034 ;: 440 vAIm
C31034A : 720 UAIm = Low Dark Nolse at -30 °C -
Radlnt - Maximum Dark Pulse Summation

31034, C31034A : S0 cps

i 7

1 .
200 300 40 $00 800 0 K0 KO

WAVELINGTH = nm

Figues 1 - Typical P}xotocalhodo Spectral Response

Charactesistics

BURLE B

€31034-06, C31034A-05: 25 cps
C€31034-02, C31035A-02: 12 ¢cps
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Performance Data
Whh the voltage distridution of Tadie 1, a0 ancde-I-caods 2
& armbient operaling tempecetire of 22 °C, xWess charwiss

CI1034 Serles
Min Typ. Max. Min,

Anode Responsivity:

Raciant a2 80 nm . . 28x10 - -

Luminous (1 x 10 Im) w 210 - 100
Cathoce 3 ’

Ractant at 960 nv* s 2 - 70

Luminous (1 x 10 Im, 200 voits between

cathade and al olher elecodss tonnecied

a8 anode) 210 440 . 560
Cusrent Amplification (Gain) S— 0Sx 10 - .
Rise Time - 28 - .
Trans Time . k<] . .
Anoda Dark Currentt . 18 L] .
WMMWW

ot & Current Arpitfication of 10° . d4x 10 - .

& 880 nm - 28x10" - -
Oark Puiss Summason=

o - - S0 -

10342 . - 12 .

C1034-08 . - 25 .

C31034A - - - .

C31034A-02 . - . .

CI10344-05 - - - .

s. mmmmmnmummspmnaam
by the El < Inck A Standard RS-Z304, formy-
fated by the JEDEC Electron Tube Counel.

2 mmtzmwmmaucawus.mkm
tmcopnhhblmbuhmmammiqnm
hmmmdmm“mmmm&m.m
Maximesm ratng must never be sxcesded. To obtaln best long-tlerm
mwmummaummummm
current values woll deiow the specified maximum of 100 nanoam-
peves.

3 Thouuorstawgactmmmmammmm
umuzsmum14uumwm-wc:an
dastoy the ude When tube operation below -S0° C is ceslred, the
hmmdummumwmm
1o circult-element connections should be use4

4 menm.amwmmhmﬂuamw

length at 860 &nda bancbass (FWHM) of approxi-
Mlom.mmxcmhnmmlm
MIWIW‘TNWIIMMHCM
iamperating of 2858 K and the vaiue of 5ght Sux Icident on the e
mno'um.zoommwmmmum
slactodes connectod &s anode.

& mmmg-haqumwwnmhmungau
Mwmﬂamoﬂo'.mukanmtbtmw
Current caused by thermionk isslon may be reck by cooling.

€. Maximum dark count made b Mpeand 18pe at
-ao-cwaeahotw-(surmnq
A Mulichannel Puise Height Analy having 258 channels s
mby-amommhnoo:sxmm:uumhm
m-mwmutwguﬁ.n-mnnwunh

CII034A Sevies
Typ. Max.
4.9 x10* -
40 .
81 .
720 .
08x10° -
25 -
33 .
15 ©
21x 10" .
19x 10 -
- 0

- 12
- 25

Mwhn-ur!oom.ummm;mulmmmdmw
InScaied.

Units

fonemissiantrom Me thotocamoce of the tide. The fightls removed
beforo the cark pulse summation is measuted, The sUpply velagels
acjusiad 30 £:a2 0 peak cf 0o slngis elecen dstibuten Les in

ch No.8. This D

Table t

10 3 tube Gain of approximately 10°.

Voitage to Be Provided by Divider

Voltage (E)
Between

8.06% o Supply

Mullplied By:

Cathoge and Dynooe No.1
Dynode No.1 and Dynode No 2
Dynode No 2 and Dynode No 3
Dynode No.3 and Cynode No 4
Dynode No 4 and Dynode No 5
Dynode No.5 and Dynoae No.8
Oynode No 8 and Dynode No 7
Dynode No 7 and Dynoce No 8
Oynode No @ and Dynode No 9
Dynoas No.9 and Dynede No 10
Dyncae No 10 andg Dynede No.1
Oynode No.11 ana Ancae
Ancde and Cathoce

1.0
1.4
10
10
10
1.0
10
10
10
1.0
1 10
10
124

(pin No.1).

Apsrire plais (pin No.17) s conneciad 1o photocanode
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Electio

RGA

Silicon Avalanche Pholocdicdes

Optics ©30902E, c309025, €30921E, £30921S

High Speed Solid State Delectors for Fiber Opiic
and Very Low Light-Level Applications

sve-

RS l lanche photodiode utilizes a

' silicon detector chip fabrica-

. ted with 8 double-diffused

. “reach-through™  structure.

i This structure provides high

| responsivity betwveen 400

,' and 1000 nanomelers as well

as extremely fast rise-and

falltimes at all wavelengths.

Because the fall-time charac-

teristics have no “13il”, the

responsivity of the device is

Independent of modulation frequency up to sbout

800 MHz. The detector chip is hermetically.sealed

behind a flat glass window in @ modified T0)-18 pac-

kage. The useful diameter of the photosensitive sur-
face Is 0.5 mm.

RCA Type C30921E utilizes the same siliron
detector chip as the C30902E. but In a package
containing a lightpipe which allows efficicnt cou-
pling of light to the detector from either a focussed
spot or an optical fiber up to 0.25 mm in diameter.
The internal end of the lightpipe is close enough to
the detector surface to aliow all of the illumination
exiting the lightpipe to fall within the active-area of
the detector. The hermetically-sraled TO-18 package
allows fibers to be epoxied to the end of the lightpi-
pe to minimize signal losses without fear of endan-
gering detector stability.

The C30902E and C30921E are designed for a
wide variety of uses including optical communi-
cations at data rates to 1 GBit/second. laser ranpe-
finding. and any other applications requiring high
speced and/or high responsivity.

The €309028 and C209218 are selecied C30402E
and C20921E photodiodes having extremely low
naise and low hulk dark-current. They are futended
for wlten-low light level applications foptical power
loss than 1 pW) and can bo used in either their nor-

[§-24] L

C30902E C30921E
C309025 C30921S

High Quantum Clicicnoy
77% Typical at 830 nen
B C30902S and 10218 in Geiger Mode:
= Single-Photon Detection Probability to 50%
- Low Dark-Count Rate al 5% Deteclion
Probability - Typically
15,000 second at 422 C
350/<econd at .25 C
~ Count Rates to 2 x 10%second
B Hermetically Sealed Package
B Low Neise at Rovm Temperature
= Camn2l’, Chm2iE -
2.3 x 1 A2
= (ogn2s, Cannzys -
11x 107 A2

B High Responsivity -
Internal Asalan be Gains in Excese of 150

B Spectral Response Range - (10 Points)
400 to 1000 nm

8 Time Response - Typically 0.5 ns

Wide Operating Temperature Range -
“40°Cto+70°C

mal linear mnde (V=) ot paing up to 250 or
greater. o as photon counters in the “Geiger™ mode
(V> Vi) where a single photoclectron may lripger
an avalanche pulse of about 10" carriers In this
mote, no amplitices aee wessary and single pho-
ton detection probabilities of up to approximately
SO0 are possible.

Photon-counting is alvn advantageons where
gting sind coincidence techniques ape cmployed for
signal retrieval

RCA Inc., Electro Oplics
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C30902E, C30902S, C30921E, C30921S

Optlical Characteristics

C30802E, C30802S (Figure 13)

Photosonaitive Surfaco:
Shnapn
Uselul area
Usefu! dinmnot

Field of View:
Approximate fu!l angle for totally
Hluminated photosensitive surface........... 100 deg

C30921E, C30921S (Figure 14)
Numerical Aperture of Light Pipe
Rofractive Index (n) of Core.........cooeeeene...

Light Pipe Coro Diamoter......cceeceeuereernenc 0.25 mm

Clreular
02 mm?2
0.5 mm

Maximum Ralings, Absolute-Maximum Values

Reverse Current at 22° C:
Average value, continuous
operation
Peak value (For 1 second
duration, non-repetitive

Forward Current, !y at 22°C:
Averngo value, continuous
operation
Peak value (For 1 second
duration, non-repetitivel......ccvereeenercsnes 50 mA

Maximuin Total Power

Dissipation at 22°C

Ambient Temperature —
Slomge, T" cossassnssasessace

Operating. T‘

Soldering:
For 5 seconds 200 °C

mA

5 mA

60 mw

60to+100 °C
40to+70 °C

—— 51

\

\\. \

o Cawelt AN

e ‘

Ld
e

TYPNCAL ALIPONIMTY - aawt rEL Ty
XX ]
1411
(11

- ) 100 00 - o "
MAVELING T = BANOML TERNS
[T

Fig. 1 Typical Spactral Responsivity et 22°C

b

S

YAy QUAN TS €2 70CILNCY o L Y
o & -
3
n
y
~ A

- .« oo ©0 L] L] “e

RAVELING TH = MANOME TINS
108002

Fig. 2 Typical Quantum Efficiency vs Wavelength

RCA Inc., ElectroOplics
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Electrical CharacleristicsT at T, =22°C

C30902E, C30902S, C30821E, C30821S

C30902E. C30323E €30902S. (2309215
Min. Typ. Max. Min. Typ. Max. Units
Orenkdown voltugy, Vag o eenees - 223 - - 228 - v
Temperaturo Cnvlhciont of
V, for C Cuin oS 0.7 08 0s (1 o8 vrce
Cain - 350 - - 250 -
Responsivity:
At %0 nm.... 55 (2] - a2 we - ANV
AL RO B 70 77 - 13?7 8 - AW
Quautum Ellicioncy:
At 0 nen .. - (] - - (24 - %
Al R3O0 nm ... - 77 - - ?? - L3
Dork Current. 1,. - 1.5x10°¢ 3x10°* - I Ixl0* A
{Figure §) (tigure 6)
Noise Curront, ),: ?
fo10kH2z 8F= 10 2. s - 23«10 Sx10 " - 1 Ixine 2x10°% Al
(Figure J) (Figure 3)
[T e - 16 2 - 1% 2 pr
Rice Time, 8,
R, = S0£2. 2 = 830 nm,
10°% to 9U% paints ....... - 05 075 - 0s 0.75 ns
Fall Time:
R, =502 1 = 830 am,
90'% to 10% poinls - 0S 075 - 05 0.7 ns
" Geiger Modc (See Appendiz]
ik Connt Rata at 5%, 'hoton
Detrction Probability * (830 nm):
22°C . o - - - - 15 L0 30 000 ps
.25° R - - - - 350 700 cps
Valtage Abave Ve, fur 5% Photon
Detection Peobubility? (830 nm)
[sec Figure B)..........ooccvervemnnssnennnas - - - - 2 - v
Dead-Time Pes Event
(Sce Appendix) ..... ..... - - - - 300 - ns
Afier-Pulse Ratio st 5% Photon
Detevtion Probability (830 nm)
22*Ce - - - - 2 15 %

1 At the DC reverso opcrating voltage Vg supplied
with the devico and a light spot diameter of 0.25
mm (C30902E, S) or 0.10 mm (C30921E, S). Note
that a specific value of Vy is supplied with each
device. When the pholodiode is operated at this
voliage, the device will mect the electrical char-
acteristic limits shown sbove. The voltage value

will be within the range of 180 to 250 volts.

The theoretical expression for shot noise current
in an avalanche photodiode is i, = (2q (I, +
(1,M? + P.RM} F) B_ )72 where q is the clectronic
charge. 1,, is the dark surfaco current. I, is the
dark bulk current, F is the excess noise factor, M
is the gain, P, is the optical power on the device.
and B, is the noise bandwidth. For these devices

F = 0.58 {2-1/M) + 0.02 M. (Reference: PP Webb,
RJ Mclntyre, IJ Conradi, "RCA Review™, Vol. 35,
p- 234, (1974).

3 The C30902S and C30921S can be operated at a
substantially higher Dectection Probabilities. See

Appendix.

4 After-Pulse occurring 1 microsecond to 60 sec-
onds after main pu'se.
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C30302E, C30902S, C30921E, C30921S
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Fig. 4 Typical Responsivity at 830 nm
vs Operaling Voltage

Note: Opcratlon below 145 volts is nol trcnmmended. since the
devics Is not fully depleted below this value.

L i

Fig. 5 Typical Gain-Bandwidth Product vs Gain
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C30902E, C30902S, C30921E, C30921S

vaeveace

WORIZONTAL - wOIvIsion
VARTICAL « 1 mv/DIVISION

[T 1)

Fig. 9 Passively Quenched Circuit and

Fig. 7 Avalanche Photodiade Response to a 100 ps
Resulting Pulse Shape

Laser Pulse as Measured With 3 350 ps
Sampling Head, {Horizanta! Axis: 200 p2
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Fig. 8 Gelger Mode, Photoelectron Detection
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Fig. 310 Load Line for C30921S in the Geiger Mode
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C30902E, C30902S, C30921E, C30921S
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Fig. 11 Typica! Dark Count vs Temperature at 5%
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Fig. 12 Chance of an After-Pulse Within the Next
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Quenched Circuit.

(Typical for C30902S, C30921S at Vyg + 25)
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Fig. 15 Cutaway of the RCA C30921E, C30921S
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C30902E, C30902S, C30921E, C30821S

Appendix

Opesation of the £30802S & C30921S

in the Geiger Mode

Introduction

Whon biasod shove the brnakdoivn voltage. sn avalanche photo-
diodo will normally ronduct a targe current. Howavor. If the cur-
rent is such that the current Is limited 10 less than 8 particulag
value {about 30 A for these diodes). the entrent is unstable and
can switch off by lisell. The explanation of this behsviour is that
the number of carriers in the avalanchie region at any one time is
small and fuctusting wildly. Il the number happens to Ructuate
to 2ero. the current mast stup 1t subsaquently remains off unil
the svalanche pulse Is retriggored by a bulk-or photo-genersted
carrier.

The C30902S and C30321S are selected to have unall bulk gener-
sted dark-curront. This makes them suitable for low-noise opera-
tion below Vgq or of photon-counting above V4, in the Geiger
modo. [n this so-callnd Griger mode. a single photoclectron (or
thermally-generated electron) may teigger an avalancha pulse
which discharges the photodiode from fis reverse voltage Vs to 8
voltage slightly below V,q. The probubility of this avalanche
occuring s shown in tigure 8 as the “Photocicetron Drtection
Prohability™ ond as ¢an be seen. It Increases with moverse vollage
Vy. For a givon valuo of Vg-Vay. the Phatoales teon Detection
Probubility is Indapemlent of lemy To determine tho
Photon Detection robobility, 1t is necesary to multiply the
Photoelettron Detection Probahility by the Quantum Elficiency.
which is shown in Figure 2. the Quantum Elficiency alsn is rela-
tively independont of temp except near the 1000 um cul-
ofl.

The C30902S and C30921S can |+ used In the Gelger mods using
either “passive™ or “active™ pulse quenching circuits The adven-
tages and disad ges of cach aro di 1 below.

Passlve-Quenching Circuit
Tho simplest. and In many cases a perfettly adequate method of
quenching 8 breakd: pulsc. Is through the use of & current.
limiting load resi An ple of such a “passive™ quenching
circult is shown in Figure 8. Tho load-line of the circuit is shown
in Figure 10. To be in the conducting state at V, two conditions
must bo met:

1. Tho avalanche must have been triggered by elther a photo-
clectron or a bulk-gencrated eloclron enlering e avalanchio
region of the diode. (Note: holes are Inefficicnt 81 starting
svalanches In silicon ) The probability of an avalanche being
Inltiated is discussed above.

2. To continue to be in the ¢ ing state. a sufficiently large
cureent, called the latching current Iiny. Must be passing
through the device so that theto is always an slectron or hulo
in the avalanche region. Typically in the €30102S and
C309218, Lasea = SO pA. for currents (V- Vao /R, much greater
thant L an s tho dicde sumains condueting. I the cuseent (Vge
VauV/R, is much less than I a. the diode switches almost
I diately to the non-conducting state 1f [Vy-Vy, )R, is
spproximately equal 10 & siray. then the diode will switch at an
arbitrary time from the conducting to the non-conducting
state depending on when the number of electeans and holes
In the avalanche region statistically fluctuates to zero

When R, is large, the photodiode Is normally noncenducling.
and tho oporaling point Is at V, - IR In the non-conducting
stutu. Following an avalonchie braskidown, the devive revharges to
tho vollugo Vy « f.R, with the thno constant CR, whero C is the
total device capacitance Including stray capacitance. Using
C = 1.6 pF and R, = 2002 K12 a tox harga tine constant of 32
microsovands is calculated, In reasonable agrecment with abser-
vation as shcwn In Figure 8. As is slso evidont from Figure 8, the

tise-time Is fasl. S 10 SO nanosuconds, decredseos as V,-Vo
increawes, and Is very depenident on the copacitane o3 of the load
resistors, leads. ete The jittee at tho hall-voliage point is typically
the same order of magnitude as the rise timo For tining pus-
poses where 0t is imporiant to have minimum |ittor. the lowest
possible threshoid of the rising pulse should be uscd.

Active-Quenching Clecuit

Until the C309028 ur (309218 s rechorged, the probability of
detecting snother incoming photoeiccizon is relatively low. To
svoid cn excessive dead time when operating at 8 large voltage
sbove V,,. an “actisely quenched™ clreuit can be used. The cir-
cuit tempoearily drops the blas voliage for a fraction of a
miteosceond fullowing the detection of an avaland he dischargo
This delay timo stluws all clectrons and bules to be collected.
including most of those temporarily “trapped ™ al various impuri-
ty sites in the silican Whea the higher soltagr: i< roapplied. there
are no electrons in the depletion region to trigger snother
svalanche or latch the diode. Recharging can now be very rapid
through a small load resisior Alternatively. the bias voliage can
be maintained but the luad resistor is replaced by & transisior
which is Lept off for & shurt time slter an avalanche. and then
turned on for 8 period sulficient to recharge the photodiode

Afler-Pulsing

An alter pulse Is an avaland o Teeabidown pulse which fulliws o
photon generated pulse and s indoced by it An afier pubse is
vsually caused by one of the approximalely 3109 carricrs which
pass through the divde because of the fiest avalanche This elec-
tron or hole is captured and trappesd at some impurity site in the
silicon, as previously described. When this charge catsier is
libwrated, veually in bese than 100 nanoseromde but sametines
several milliser onds loter, it iy start another avalam he The
probability of an after pulse vt rurzing more than one micro-
sccond later is typicolly less than 2% ot 2 volts alove Ve, nsing
the circuit shown in Figure 8 Alter-pulsing increases wilh bias
voltage. 11 it is neceesary (o eeduce alter-pulses, it is tecom-
mended that ene keep Vo Vg low. use an actively quenchied
circuit with a long delay-time [seo Figure 12). or & passively.
quenched circuit with a long R.C constant Stray capacitances
must also Le minimized Electranic gating of the signal can be
performed in certain situations Should shier-pulses be o scrious
complication in a particular application, operation below Ve
with a good amplifier might be considered

Dark Current

Buth the CI0902S and C30921S have been selected to have s low
dark count rate Cooling to 25" C can reduce this by a factor of
$0, since the dependend e of dark-count rate on temperature Is
exponential

The Dark -Count Incrrases with voltage fullowlng the same curvo
as the Photorirctenn Detei tion Probability until » voltage where
afict pulsing is responsible for a feedln k mechanism which dra-
matically increases the dark-count rate. This maximum voltage is
circuitl dependent. and Is r ot warranted other than the values
listed on page 3 In most wa.cs. with 8 delay time of 300 ns. the
diode can be used offectively 8t Ve up to Vea ¢ 25 V.

The €30902S snd C30921S shunld not be forward bissed or,
when unbiased. exposed to strong Hlumination Theso conditi
tesult In a greatly enchanced dark-count which requires up to 24
hours to return 1o Its nominal value
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The SPCM-100-PQ is a self-contained module which
detects single photons of light over the wavelrngth
range from 400 nm to 1060 nm ... a range and sensitivi-
ty which often outperforms photomultiplier tubes.

Applications include Lidar, Photon Correlation Spec-
troscopy, Astonomics! Observations, Optical
Rangefinding, Optical Fiber Test and Fault Location.
Ultrasensitive Spectroscopy etc.. where the light be-
ing measured can be focused to a small spot.

The module utilizes a unique silicon avalanche
photodiode which has a circular active area whose
peak photon detection efficiency. within 50 microns
of the center. exceeds 40% at 633 nm. At larger
distances from the center, the response decreases. so
that st 75 microns from the center the photon detec-
tion efficiency is only 20% (see figure 2).

Single Photon Counting Module

SPCM-100-PQ
DATA SHEET

SPCM-100-PQ -  General Purpose
SPCM-100-PQ-FC - FC Fiber Optic Receptacle

B Pcak Photon Delection Efficiency:
>40% at 633 nm
>25% at 830 nm

B Actise Arca: 150 microns Diamcter for
Guood Scnsitivity; 100 microns Diameter for
Peak Photan Detection Efficicency

B Low Voltage Inputs: + 12, +5, -8
B Digital Qutput Pulses
& VERY EASY 10 USE

The module has a so-called “'passive quench’ circuit,
which can count at specds up to 1,000,000 counts per
second. There is a “dead time™ of 200 ns between
pulscs. The avalanche photodiode sensing element is
lemperature controlled. ensuring stablized perfor-
mance despite changes in the ambient temperature.

Single photon arrival times can be measured with an
accuracy of 3 ns rms.

The SPCM-100-PQ requires + 12, + 5. -5 valt power
supplies {a mating cable is provided with ecach
module. A digital pulse. 2 volts high and approx-
Imately 200 n< wide. is output at the rear BNC con-
nector as cach photon is detected The case
temperature should be kept between 5 and 40° C dur-
ing operation.

GENERAL ELECTRIC CANADA INC., Electro Optics
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SPCM-100-PQ

{Terminate in 50 chms)

Electrical Characteristics Minimum Typical Maximum Unlts
Supply Voltages Required: .
+12 @ .08 A max 11.9 12.0 121 v
+5S @ 1.3 A max 49 5.0 5.1 v
S @ .02 A max -4.9 -5.0 -5.1 v
Supply Voltage Ripple (all supplies) - - 50 mV rms
Case Operating Temperature S - 40 °C
Humidity (Tests in Progress) - - 70 % R.H
{estimate)
Photon Detection Efficiency (P}
Within 50 microns of Center:
A« 1060 nm - 0.8 - %
A - 830 nm 25 32 - Yo
Ae633nm 40 43 - %
A« 400 nm - 20 - %
Photon Detection Efficiency
Variation at Constant Case
Temperature (12h} -_ 21 +3 " Relative
Photon Detection Efficiency
Variation from 5° to 40°CC compared
with 25°C Case tcmperature - +5 310 "s Relative
Dark Count - S00 1wne counts's
Dark Count Variation at
Constant Case Temperature
{12h. no illumination) - 22 +10 % Relative
Dark Count Variation from
S° to 40°C compared with
25°C Case Temperature - +5 +15 “ Relative
Dead Time - 200 - ns
Output Count Rate Before . .
Saturation 1.3x10 1.8x10 - counts’s
Single Photon Timing
Resolution (rms) - 3 - ns
Settling Time Following Power Up - 20 100 s
Threshold Setting Required
for Digital Output Pulse
0.5 10 1.5 Vv

GENERAL ELECTRIC CANADA INC., Electro Optics
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Figure 1 — Typical Peak Photon Detection Efficlency
vs Wavelength

Options

The SPCM-100-PQ-FC has an “'FC™ fiber optic
receptacle prealigned to the optical detector for ease
in measuring the signals from optical fibers. Optical
fibers with an FC connector on one end are
available. Consult Customer Service at the factory
for any fibers not listed in Table 2.

Safety
The SPCM-100-PQ contains a high voltage power
supply. All internal settings have been preset, and

there are no user adjustments.

Units which appear defective or have suffered
mechanical damage should not be used because of
possible electrical shorting of the high voltage
power supply.

Warranty
Any RCA warranty is null and void if the module

cese is opened.

Light Emission During Photon Detection

One peculiarity of the avalanche photodiode sens-
ing element is that as an incoming photon is
delected. 8 small amount of light is emitted by the
avalanche photodiode itself. In most cases this is
not a problem However it can caus - some confu-
sion if another detector is monitoring light, or if the
optical system is such that light emitted from the
SPCM-100-PQ is refllected back on itself. {An exam-
ple of the latter case would be where 2 long optical
fiber is used to bring light to the module. Some of
the photons from the avalanche pholodiode could
be captured by the fiber. guided down its Jength,
reflected from the far end of the fiber, and travel
back to the module If these photons return more
than 200 ns after the initial event. then they will
be detected.)

The light emitted from the module has a broad spec-
tral distribution. With reasonable optical design. the
lighte icn during photon detcction is rarely a

problem.
Saturation

At higher incoming light levels the count rate ac-
tually decreases. As an extreme example, if the
module is exposed to room light, the count rate will
fall to zero (if this occurs for a short time. there is
no deterioration in the performance of the
SPCM-100-F'Q) Consequently. in certain applica-
tions. some test should be perforined by the operator
to ensure that a low count rate is not caused hy
detector saturation One simple test is to deliberate-
ly increase the photon fus. eg turn on an extremely
weak light source during the experiment, and
thereby verify that the count rate goes up. rather
than down.

Table 2 — Standard fiber pigtall options. Standard length is 1 meter.

FIBER FIBER DIAMETERS NUMERICAL CUT-OFF
SPCM-QCX TYPE MANUFACTURER CORE CLADDING OUTER APERTURE | WAVELENGTH
-QC1 SINCLE MODE | YORK SM600 IsSum 125 um 3mm 013 590 nm
QC2 SINGLE MODE | YORK SM750 [ 4.5 gm 125 pm 3mm 01 635 nm
QC3 MULTIMODE CANSTAR 50 xm 125 pm 3Imm 020 Not Applicable
QC4 MULTIMODE | CANSTAR | 625 um | 125 um 3Imm 027 Not Applicable
QCs MULTIMODE CANSTAR 85 um 125 um 3mm 02 Not Applicable
QCs MULTIMODE CANSTAR 100 £m 140 um 3mm 029 Not Applicable

289
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SPCM-100-PQ
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Figure 2 — Typical Pholon Detection Elficiency % vs Pasition.
The device was measured with a spot 10 microns
in diameter, wavelength A = 633 am
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Figure 3 — Typical Dead Time Correction Faclor - Figure 4 — Typical Histogram o! Single Photon
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SPCM-100-PQ

OPTION WITH FIBLR OPTIC RECEPTACLE

otV
29v

LEMO SIZE 1. 4 PIN CONNECTOR FOR SUPPLY

VOLTACE INPUY
Case Pin Supply Wire ®
1 12V w)TE
2 +5v RCD
3 o0 CREEN
. =Sv BLACK
SHIELD oo BRAID

*MATING CABLE PROVIDED

STANDARD ANC CONNECTOR FOR DICITAL

AVALANCHE PHOTOO 1 00C DICITAL QUTPUT OUTPUT PULSE
L AL ) hoadd
Figure 5 — Block Disgram of Module Figure 6 — Electrical Connections.
The shicld must be connected to the ground wire at
the power supply end. This has been done in the 1
meter cable supplird. The digital cutput pulse has 2
minimum height of 2.0 volts. and it should be ter-
minated with a 50 ohm joad 1o avoid distortion and
ringing. A triggering level of 1.0 volts is recom-
mended.
PASKL) 101_6{s 00} _
v 751 [ r'_ l
-] Tivee 1
() Electro Pheten Counting (" a=
Optics Wodule s g
@ 3 1 Vol &
(r 50)
A\ J Pos-100 @
. — ]
e t t Bre
perecron ¢ 3 2 e, Covens F 1m0
{o 29) rY_‘ o) L IS l
I !
3 s
—— - Q——— B 2
oPTICaL l l [
DIStancE F 3 —_—— .
182 t 1 BOTICM viEw
(0 06) 1/4-20 THREAD
22 10 DO NOY PENETRAME
r—m MOSL Twaw 3 t7{ 12%)
1 m@m aptEenatE
(|°7‘0’1) |:¢'ur ‘CAP
OP 1 HONAL
1 {rc)

SPO-100

Vs ves

Dimensions in millimeters. Dimensions in parentheses are in inches.

Figure 7 — Mechanical Drawing. Care should be taken not
to warp the side walls of the module during
mounting since electronic components are
attached to them. The module is rated for

8 case lemperature of 5° to 40°C. so it may be
necessary to ensure good heatsinking or ventilation.
In 2 room temperature laboratory environment (not a
closed equipment box) natural convection is normal-
ly sufficient.

GENERAL ELECTRIC CANADA INC., Electro Optics
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SPCM-100-PQ
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Figure 8 — Number of Pholons / second vs Optical Power at various wavelengihs.

For further information, please contact your local GE Canada Electro Optics representative or
General Electric Canada Inc.. Electro Optics, P.O. Box 900, Vaudreuil. Canada |2V 7X)
Tel.: (514) 424-3300 * Fax: (S14) 424-3411 » Tel. USA: 717-653-9122 * Tel. Europe’ {011-33) 1-30547021
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