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Abstract

The nascent field of quantum information offers the promise of dramatic speed

increases for certain types of computation and logical protocols which are clas-

sically impossible. The phenomenon of nonlocality is fundamental to this study,

and polarization-entangled photons offer a clean, bright, and stable system for

its experimental investigation. This thesis investigates, both experimentally

and theoretically, the creation, manipulation, and measurement of polarization-

entangled photon pairs.

Our entangled photon pairs are created through spontaneous parametric

down-conversion within a pair of adjacent, orthogonally oriented nonlinear crys-

tals. The quality and brightness of this source is then dramatically improved

through the use of birefringent crystals which compensate for an angle-dependent

phase shift. The use of these compensation crystals has allowed measured count

rates of two million pairs per second with 97.7% fidelity (with a maximally en-

tangled state) or alternately, ten thousand pairs per second with 99.5% fidelity.

By manipulating these entangled states, it is possible to study both how they

change and how they can be used. We discuss the theory of state manipulation

and the experimental implementation of extremely precise single-qubit opera-

tions. To study the operations themselves, we use quantum process tomography

to characterize them and have successfully implemented the first experimental

realization of ancilla-assisted process tomography. To study decoherence, we

implemented the first experimental decoherence-free subspace. By using tech-

niques developed during these investigations, we are able to transform our source

of entangled photons into a source of any two-photon polarization state, mixed

or pure.

Developing new techniques for state creation and manipulation is possible

because of simultaneous development in state measurement. In addition to

detailing both a theoretical analysis and experimental instructions for state

tomography, we experimentally and theoretically compared state tomography

with tests of local realism (Bell inequalities) and entanglement witnesses (an

entanglement detection technique). In the process, we have measured the largest

violations of local realism to date, both statistical (over 2400-σ) and absolute

(S = 2.826 ± 0.005—within 0.2% of a maximal violation).
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2.1 The Poincaré sphere. . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Type-I down-conversion . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Entangled photon source . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Tomographies of nonmaximally entangled states . . . . . . . . . 34
3.4 Uncompensated fidelity versus iris size . . . . . . . . . . . . . . 35
3.5 Angle-dependent phase differences due to a birefringent material 37
3.6 Theoretical and experimental phasemaps and density matrices . 41
3.7 Fidelity versus iris size, compensated and uncompensated . . . . 42
3.8 Reflection recycling for high-efficiency detection . . . . . . . . . 43

4.1 Example unitary transformations . . . . . . . . . . . . . . . . . . 46
4.2 Experimental scheme for creating arbitrary two-qubit states . . . 54
4.3 Classes of experimentally created two-qubit states . . . . . . . . 56
4.4 Experimental schematic for implementing a DFS . . . . . . . . . 61
4.5 The effect of collective decoherence on the four Bell states . . . . 62
4.6 Noncollective decoherence . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Density matrices resulting from a non-standard DFS . . . . . . . 64
4.8 Effects of dissipation on the four Bell states . . . . . . . . . . . . 65
4.9 Graphical depictions of single-qubit quantum processes . . . . . . 69
4.10 Experimental arrangements for quantum process tomography . . 73
4.11 Geometric mappings for measured quantum processes . . . . . . 74
4.12 Experimental χ̂ matrices for unitary and decohering processes . . 75
4.13 Geometric mappings and χ̂ matrices for polarizing processes . . . 75

5.1 Implementation of an arbitrary polarization measurement . . . . 78
5.2 Electronics for a coincidence-based photon-counting circuit . . . 82
5.3 Experimental measurements of entanglement detection methods . 91
5.4 Visualizing tomography using the Poincaré sphere . . . . . . . . 94
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1 Introduction

Until the early 20th century, the language of physics described a world in which

any phenomenon could—in principle—be measured and predicted by a nearby

observer. The advent of quantum mechanics challenged part of this world view

by allowing for the possibility of true randomness—true unpredictability. This

thesis, however, concerns the experimental investigation of a more subtle and

potentially more profound consequence of quantum theory: that a nearby quan-

tum object can become inextricably linked to a distant system, in such a way

that it is impossible to completely describe the near object without considering

its far off partner. This linking between distant objects is called nonlocality, and

is quite possibly the strangest and most fundamental of quantum phenomena.

This seemingly paradoxical behavior was first pointed out in 1935 by Ein-

stein, Podolsky, and Rosen in their now famous EPR paper [25]. It wasn’t

until 1964 that Bell proposed a way to test this phenomenon [12], and in 1972

Freedman and Clauser experimentally observed the phenomenon of nonlocality

for the first time [26]. Since then, many groups have corroborated these results

using a variety of systems and techniques [75]. Interest in this fundamental

phenomenon has been magnified by a confluence of additional experimental and

theoretical results which have developed into the nascent field of quantum in-

formation [52]. These results include the realization that this type of strange

linking can lead to quantum computers which are able to solve certain prob-

lems much faster than their classical counterparts (examples include factoring

large numbers [62] and searching unordered databases [29]), and cryptographic

schemes which base claims of absolute security on quantum mechanical law [28].

Much of the excitement surrounding quantum information stems from con-

jecture about what will be possible when and if we gain precise experimental

control of large, complex quantum systems. However, at this early stage there

is still a great deal that is not understood, even about very simple quantum

systems. This thesis describes efforts to explore the limits of nonlocality using

one of the simplest quantum systems: pairs of polarized photons. These efforts,

more specifically, have pushed the limits of what is possible when creating, ma-

nipulating, and measuring quantum states. Our experiments have been carried

out, not just to observe phenomena which had never before been seen, but

in the hopes that the process might provide an intuitive insight into quantum

mechanics itself.

This thesis is presented in a tutorial form (e.g., it includes a number of

1



subjects and derivations which could be found in textbooks) in order to allow

those being introduced to the field, and particularly to experiments on entangled

photons, to absorb the material without extensive reference to a number of

different basic sources.

1.1 An abridged glossary of quantum

information

1.1.1 The qubit

The fundamental unit of classical information is the bit, a single piece of infor-

mation which can take exactly one of two values: 0 or 1. Quantum information’s

fundamental unit is analogous, a quantum system which has two levels, |0〉 and

|1〉 and is referred to as the qubit or sometimes q-bit.

While quantum and classical bits share some characteristics (for example,

when either type of bit is measured, there are exactly two possible results), there

are important and irreconcilable differences between them. Classical states can

be copied easily, while it is physically impossible to copy an unknown qubit.

(It is this phenomenon which makes qubits useful for quantum cryptography).

Classical bits always have exactly one value, either 0 or 1. Quantum bits can

exist in superpositions of either |0〉 or |1〉, occupying a huge range of states

somewhere “in between” the two extremes. In fact, quantum computers require

superpositions of multiple-qubit states.

Finally, there are important disadvantages to quantum bits as opposed to

classical bits. Because qubits are two-level quantum systems, they are generally

more delicate than classical bits, being either difficult to transmit (electrons or

atoms) or difficult to store (photons). Additionally, for most implementations

of quantum bits, it is either difficult to avoid decoherence due to interaction

with the environment (for electrons and atoms) or difficult to make the qubits

interact with each other (for photons).

The experiments described in this thesis use polarization-encoded photons as

the qubits, with a horizontally polarized photon representing a |0〉 and a verti-

cally polarized photon representing a |1〉. (For more information on polarization-

encoded qubits, see Example 2.1 in Section 2.1.1.)

1.1.2 Measurement

Measuring qubits is very different from measuring classical bits. There is only

one way to measure a classical bit, and only one possible answer: 0 or 1. After

it is measured, a classical bit is exactly the same as it was before. For quantum

bits, there are many ways to make a measurement, and the act of making

that measurement can nondeterministically change the state of the qubit being

measured.
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Consider one of the simplest qubits: a single electron’s spin. The state of an

electron’s spin can be completely represented by an arrow pointing in space (for

example, straight up along the positive z-axis). Measurements of an electron’s

spin must be made with respect to a single axis in space; for example, the z-axis

or the x-axis. The result of this measurement will give one of two answers: the

spin is pointing towards the positive direction of the measurement axis or the

spin is pointing towards the negative direction of the measurement axis.

If the electron’s spin is pointing along the measurement axis, the result of

the measurement will be this direction, and the state of the spin will not be

changed. However, if the measurement is made along a different axis, then the

result of the measurement will be at least partially random. The further from

the electron’s spin the measurement axis is, the more random the result will be,

until measurements made along axes which are perpendicular to the electron’s

spin will be totally random.

When measurements are made on an axis different than the electron’s spin,

the state of the electron’s spin is changed. It thereafter points along the direction

of the result of the measurement, changing because it was measured. This type

of behavior exists for all quantum systems, though for some systems the “axes”

of measurement are harder to visualize. In general, an “axis” of measurement

is called a basis (plural bases).

1.1.3 Correlation and anticorrelation

The results of separate measurements on separate qubits (e.g., separate electron

spins) can be related, either having a tendency to point in the same direction or

in opposite directions1. These are called correlated results (sometimes “corre-

lated” refers to results which always match and “anticorrelated” refers to results

which never match). Correlation and anticorrelation can exist in one basis or in

several. Two electrons with positive z-axis spin will exhibit perfect correlation

if measured in the z basis (they will both always be measured as spin-up) but no

correlation at all in the x or y bases. It is also possible for the measurement of

some special states (see “Entanglement” below) to give random—yet perfectly

correlated—results.

1.1.4 Entanglement

Two particles are entangled if their physical states cannot be described inde-

pendently2. The quantum state of particles which can be described separately

is said to be separable. In a classical world, all groups of objects are separable,

and it is possible to describe them completely independently. They can interact

1Here, “direction” refers to one-half of a measurement basis. “Opposite directions” refers
to the two different outcomes that can arise from a measurement in a single basis. For a
2-level electron’s spin, this will correspond to opposite physical directions in normal space.

2More correctly, a complete description of a pair of entangled particles cannot be divided
into a description of particle 1 and a description of particle 2.
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with each other, but only if nearby. In a quantum world, however, entangled

particles exhibit nonlocality, and need to be described as a joint system for that

description to be complete, regardless of the distance between the particles. En-

tanglement has strange consequences: measurements made simultaneously, on

two particles separated by any distance, can have totally random, yet totally

correlated results.

As an example of entanglement, consider the “singlet state” of two electron

spins. If one particle in a singlet state is measured, regardless of the direction

in which the measurement is made, the result will be truly random. However, if

both partners are subjected to the same measurement, regardless of how far they

are from each other, they will always be measured to be in opposite directions.

This type of behavior, totally random yet totally anticorrelated results, is only

possible with entanglement.

1.1.5 Decoherence

True randomness is one of the strangest features of a quantum world, and vio-

lates the fundamental classical assumption of realism3. It occurs even in separa-

ble states, like a single, unentangled electron spin. Normal spins are described

by a direction, and the results of measurements made along that direction’s

axis will not be random. This is really only true of what are called pure states.

A spin which has been completely decohered will give random results in every

direction. This type of spin is called mixed, the opposite of pure.

This omnidirectional randomness is a result of this spin being entangled with

something else, such as another spin. A state which is decohered looks random

because it cannot be described completely without its partner (or partners,

for multi-party entanglement). If one could describe both partners, they would

appear to be in a pure (non-decohered), entangled state which is both completely

random, yet completely correlated. If half of an entangled state is measured by

itself, it looks completely random, or decohered.

It is important to note that this is a somewhat controversial topic. It is

possible that instead of decoherence always resulting from entanglement, there

is some fundamental transition from the quantum to the classical world which

causes decoherence. One manifestation could be a maximum possible size for

quantum objects, with any larger objects devolving into classical states, and with

any observed randomness just the result of a complicated and noisy system. It

is the opinion of the author, however, that in the absence of any experimental

evidence to support these alternate theories, the former view is more useful.

3Realism requires that a complete description of a system be sufficient to predict the result
of any measurement that is made upon that system. Realism is a slightly more general version
of determinism; the latter additionally requires that the complete description of a system be,
at least in principle, accessible to an experimenter.
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1.1.6 Tomography

In some ways, quantum states are very difficult to measure. In the simple

example of an electron spin, one can make a measurement in any direction and

get one of two answers (up or down, relative to that axis). However, the act

of making this measurement changes the electron’s state so that its spin is now

parallel with the measurement axis in one of two positions. This means that

any additional measurements will not give any information about the original

state. Unless one’s first measurement happened to be carried out using the axis

of the electron’s spin, one’s guess about what the electron’s spin was before the

measurement will be wrong.

The solution to accurately determining an unknown quantum state requires

having access to not just one copy of that state, but to many. If it is possible

to prepare many identical copies of an unknown state (continuing the exam-

ple from above, many electrons all with the same unknown spin), then many

measurements from many directions will eventually allow reconstruction of the

unknown quantum state. This process of using many measurements in many

bases to reconstruct the quantum state of an ensemble of particles is called

quantum state tomography.

1.2 Synopses of thesis chapters

The investigations of nonlocality presented in this thesis can be conceptually di-

vided into three topics: the creation, manipulation, and measurement of quan-

tum states. However, research into each of these three areas has proceeded

simultaneously, and advances in each have been very useful for continuing re-

search into the other two. As a result, after Chapter 2’s introduction to state

representation, the last three chapters can be consulted in any order.

1.2.1 Chapter two synopsis: state representation

This chapter establishes a common notation for and introduces the basic theory

of quantum states. It begins with the theory of single-qubit states, and makes

use of the graphical representation of the Bloch/Poincaré sphere. This sphere

(Bloch for electron spin, Poincaré for photon polarization) shows the space of all

possible single-qubit states; pure states are on the sphere’s surface, and mixed

states on the inside. Chapter 2 also introduces the notation of pure and mixed

states.

A pure state is the most basic form of quantum state, and is a complete

description of a system which is unentangled to any other particles or degrees

of freedom. Even this isolated quantum system is different than its classical

analog, however, as it can exist in a superposition, in some sense simultaneously

coexisting in multiple states. For example, a photon can be polarized in the

horizontal or vertical direction (|H〉 or |V 〉 respectively), but can also exist in
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a superposition of the two such as 1√
2

(|H〉 + |V 〉) (otherwise known as 45◦ or

diagonally polarized light). Either a horizontally or vertically polarized photon

has only a 50% chance of passing through a 45◦ polarizer, but their diagonal

superposition will be transmitted every time. Two states of the same photon,

such as the horizontal or vertical components of diagonal light, can only exist

in a superposition with each other if they are indistinguishable, in other words,

it is not possible to tell the two superposed states apart through any method

other than their direct measurement.

If different possible states of a particle are in principle distinguishable, they

contribute not to a pure state in a superposition, but rather to a mixed state. (A

mixture of H and V is not diagonal light, and will not completely pass through

a diagonal polarizer; some of the H and some of the V would pass through, but

only a pure superposition of the two make 45◦ light.) When multiple terms in a

pure state are added in superposition, it is sometimes said they add coherently.

Similarly, when multiple states are distinguishable, it is said that they add

incoherently (if the multiple states are different from each other, this will result

in a mixed state). Pure states are represented using one dimensional complex

vectors (e.g., |ψ〉). Mixed states are represented using two dimensional complex

Hermitian matrices called density matrices (e.g., ρ̂), a more general notation

which can also be used to represent pure states.

In the next sections, single-particle states with more than two levels (“qu-

dits”) and multiple-particle states are covered. For two-qubit systems, the ab-

breviation |AB〉 is used to represent a two-particle state with the first particle

in state |A〉 and the second particle in state |B〉. For example, |HH〉 refers to

a two-photon state with both photons horizontally polarized.

This chapter also introduces state diagonalization and the Schmidt decom-

position, which allow a quantum state to be rewritten in a form that gives insight

into that state’s physical meaning. For example, diagonalizing a partially mixed

state reveals a combination of pure states that can be used to create that state.

Alternately, the Schmidt decomposition allows one to easily see if a state is

entangled. Finally, methods for representing entanglement and decoherence are

discussed.

1.2.2 Chapter three synopsis: state creation

Entangled photon pairs (our two-qubit system) are created using spontaneous

parametric down-conversion, whereby a high-energy photon is split into two

low-energy daughter photons inside a specially designed nonlinear crystal. In

our case, 351-nm pump photons are down-converted into pairs of 702-nm daugh-

ter photons. In order to fulfill energy and momentum conservation inside our

nonlinear crystals, the daughter photons produced always have the same polar-

ization, a polarization which is necessarily orthogonal (at right angles) to the

optic axis of the crystal and the polarization of the pump photons. This allows
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production of the correlated yet separable states

|ψ1〉 = |HH〉 and |ψ2〉 = |V V 〉, (1.1)

respectively produced by nonlinear crystals whose optic axes are oriented in

either the vertical (|HH〉) or horizontal (|V V 〉) planes. By using a diagonally

polarized pump beam (a beam in a superposition of horizontal and vertical light)

incident on a “sandwich” of two such orthogonally oriented nonlinear crystals,

both |ψ1〉 and |ψ2〉 can be simultaneously produced. If the crystals are thin

enough4, and the coherence length of the pump laser is long enough, then these

two processes will be technically indistinguishable, leading to the maximally

entangled state

|ψ〉 =
1√
2

(
|HH〉 + eiφ|V V 〉

)
. (1.2)

This chapter also describes efforts to make a very bright (many entangled

pairs produced per second), very high quality source (very pure and very en-

tangled states). These efforts have resulted in a source which has a 98% fidelity

(defined in Appendix A) with a maximally entangled state and over 2×106 mea-

sured entangled photons per second, the world’s brightest entanglement source

reported as of this writing. In addition, a state with 99.4% ± 0.1% fidelity and

104 measured pairs per second has also been produced, the highest fidelity with

a maximally entangled state measured to date.

These remarkably bright and pure states are difficult to generate, due to

an angle-dependent phase which is present when using the “sandwich” method

described above. When a large solid angle of the produced states is collected,

many different maximally entangled states are simultaneously measured. Be-

cause their angle distinguishes them, they are added incoherently, and result

in a mixed state. To create bright, pure states, extra birefringent elements are

added to the system; these compensate for (i.e., reverse) this angle-dependent

phase shift, making the output polarization states identical, regardless of the

angle at which they leave the crystals. Even though they are distinguishable,

states at many different angles combine to form a single, very bright and very

pure entangled state.

Finally, this chapter describes techniques for creating nonmaximally entan-

gled states. Techniques for creating other types of two-qubit states, which run

the gamut from pure to mixed and separable to entangled, are discussed in

Chapter 4.

4While thin crystals are sufficient to obtain indistinguishability, the thickness of the crystals
is not to be directly compared to the coherence length of the pump laser. Rather, the walk-
off between the pump laser and the down conversion in the first crystals needs to be small
compared to the coherence length of the laser, so that two processes cannot be distinguished
using timing information. This condition is more easily satisfied for thinner crystals, as is the
requirement that the down-converted cones spatially overlap.
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1.2.3 Chapter four synopsis: state manipulation

This chapter begins by discussing the basic tools for manipulating a state: uni-

tary operators, which transform pure states into other pure states and mixed

states into other mixed states; projectors, which allow state measurement; de-

coherers, which introduce noise into a system (often reversibly in our case); and

entangling operations, types of unitary transforms which create nonlocal links.

Most important are unitary transformations, which—in the single-qubit case—

correspond to rotations about an arbitrary axis through the Poincaré sphere. In

fact, unitary transformations on any system, regardless of the size, are mathe-

matically identical to rotations, though in higher dimensions they lack a simple

graphical representation. These higher dimensional rotations are remarkably

powerful, and can often be used to represent seemingly nonunitary operators

like projectors and decoherers. When this is done, the projectors and decoher-

ers can be seen as unitary operations that work on a larger, unseen system.

For example, a CNOT gate, which can change two separable qubits into two

maximally entangled qubits, appears to be a decoherer when only one of the

two qubits is measured, but when seen in the two-qubit space, it is simply a

unitary rotation.

These methods for state manipulation, when used together, can transform

the entangled states created in Chapter 3 into any two-qubit state. The chapter

describes several classes of states which have been created experimentally, and

in addition, includes a theoretical scheme for creating truly general two-qubit

states.

In contrast to the study of how states change, the next section of this chapter

describes how states fail to change. Decoherence, the unwanted interaction of a

system with its environment, is one of the largest hurdles to the implementation

of a quantum computer. One possible solution to this problem is the use of

“decoherence-free subspaces”, which allow qubits to be encoded into a larger

system, a subspace of which is immune to certain types of decoherence. This

section describes not only a simple theory of these subspaces, but the first

experimental implementation of a decoherence-free subspace (using two-qubit

polarization states).

This chapter continues with the theory of the representation of quantum pro-

cesses, which share a number of similarities with quantum states. Like ensembles

of quantum states which are represented by density matrices, any combination

of quantum processes acting together can be represented by a single matrix χij .

The most straightforward method to measure these quantum processes is

called standard quantum process tomography (SQPT); SQPT requires that a

complete set of linearly independent quantum states be subjected to the un-

known process and then measured. Together, these results provide a map-

ping which completely defines the quantum process. Somewhat more strangely,

a single entangled state can be used to measure a quantum process using
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entanglement-assisted process tomography (EAPT). This method takes advan-

tage of the correlations between entangled particles to measure a quantum pro-

cess acting on only one half of this entangled state, by measuring the correlations

remaining in the final state. Surprisingly, this type of process tomography can

be accomplished using an unentangled two-qubit state, as long as both the qubit

undergoing the process and an additional measured ancilla are in a highly corre-

lated state. (This more general method of using an ancillary system to measure

a process is called ancilla-assisted process tomography, or AAPT).

1.2.4 Chapter five synopsis: state measurement

This chapter begins by studying how a measurement is taken, specifically, a sep-

arable two-qubit measurement. In our experimental system, this is accomplished

by measuring the polarization of each photon in a two-photon state. Experi-

mentally, it is crucial to characterize and account for inaccuracies in detectors,

polarizers, waveplates (birefringent crystals that implement state rotations), and

any other optics in the system.

Sequences of these projections can be used to measure a Bell inequality.

Bell inequalities place a bound on what is a possible result for classical states

when summing several measurements. Exceeding this bound creates a para-

dox for classical logic, a paradox which is only resolved through entanglement.

Bell measurements were historically the first type of entanglement detector,

and though they are not as useful as other methods for detecting entanglement,

they have the crucial advantage of functioning as a fundamental test of the

phenomenon of nonlocality. Two types of Bell inequalities are experimentally

implemented on a class of states for which they are inequivalent. Furthermore,

separate experimental data for both the largest and the most statistically signifi-

cant violations of Bell’s inequality are included. The violations are, respectively,

2417-σ in two minutes of data collection and S = 2.826± 0.005 in four hours of

data collection—see Section 5.2.

The entanglement witness is another method that is sometimes able to iden-

tify a state as entangled while requiring few measurements. Its theory and

experimental implementation is discussed.

The next few sections of this chapter provide a detailed look at quantum

tomography, a method of complete state characterization. They begin with the

theory of analytic tomography, whereby ideal measurements return the exact

state being measured. Because no measurements are ideal, and statistical and

systematic errors are inevitable, the next section details the use of the “maxi-

mum likelihood technique”, which is used to find the state most likely to have

given rise to the measured data. Over the course of the last five years, the

improvements to tomography described here have transformed the standard of

state measurement from a 45-minute error-prone tomography with 1% error into

a completely automated 5-minute tomography with 0.1% accuracy.
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Finally, a comparison of the advantages and disadvantages of each entan-

glement detection method is presented, showing the measurement settings and

total number of state copies that are necessary for each technique to achieve a

precision of 1%, in addition to a brief discussion of the error analysis techniques

that are used for this analysis. (The difficulties of studying such large Hilbert

spaces analytically have made the use of Monte Carlo simulations necessary for

error analysis.)

1.3 A note about source material

This thesis is intended to provide a single guide to entangled, polarization-

encoded photon pairs. As such, it details a number of our experiments from

the last five years, expanded and integrated into a comprehensive guide to the

creation, manipulation, and measurement of two-photon states. Because this

is based on our recent research, portions of this thesis have been adapted from

those published works; where the original publication was already written in an

extended explanatory form, sections have largely been taken verbatim. Specifi-

cally, Chapters 2 and 5 have incorporated the tomography tutorial of a chapter

from the 2006 “Advances in AMO Physics” [8], which was in turn a refinement

of an earlier book chapter [5]. Chapter 3 has included the results of our recent

paper on an ultra-bright source [7], and Chapter 4 includes a number of re-

sults from process tomography [3] to decoherence-free subspaces [38, 4] to state

synthesis [57, 68]. Chapter 5 also includes our recent work on the quantitative

comparison of entanglement detection methods [6]. Almost all of the previously

published data has been expanded upon and more completely explained. The

most important new data included in this thesis are recent extremely precise

tests of Bell’s inequalities, which are reported here for the first time (see Section

5.2).
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2 Representation of Quantum

States

This thesis, and this chapter in particular, is written not only as a reference

but also as a tutorial for those trying to replicate these results. To that end, a

great deal of the material in this chapter has appeared in other sources (mainly

texts on quantum mechanics or quantum information) and is repeated here

both to standardize notation for the rest of this thesis and to provide a single

reference for the important concepts and theorems necessary to analyzing our

experiments.

2.1 Quantum states

2.1.1 Representation of single-qubit states

Pure, mixed, and diagonal representations

In general, any single qubit in a pure state can be represented by

|ψ〉 = α|0〉 + β|1〉, (2.1)

where α and β are complex and |α|2 + |β|2 = 1 [52]. If the normalization is

written implicitly and the global phase is ignored, this can be rewritten as

|ψ〉 = cos

(
θ

2

)
|0〉 + sin

(
θ

2

)
eiφ|1〉. (2.2)

Another common state representation is the density matrix ρ̂, which for pure

states is defined as

ρ̂ ≡ |ψ〉〈ψ|. (2.3)

The density matrix for a single qubit is a 2×2 Hermitian matrix whose diagonal

elements are respectively equal to to probabilities that a state is measured as

either |0〉 or |1〉. (Assuming the density matrix is written in the |0〉–|1〉 basis:

see below).

Example 2.1 (Pure states) Throughout this chapter, examples will be pro-

vided using qubits encoded into the electric field polarization of photons. (The

experiments described throughout this thesis also use polarization-encoded qubits,

and will use the same notation.) For a single photon, this system has two levels,

e.g., horizontal (|H〉 ≡ |0〉) and vertical (|V 〉 ≡ |1〉), with all possible pure polar-

ization states constructed from superpositions of these two states. For example,
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diagonal, antidiagonal, right-circular and left-circular light are respectively rep-

resented by

|D〉 ≡ (|H〉 + |V 〉)/
√

2,

|A〉 ≡ (|H〉 − |V 〉)/
√

2,

|R〉 ≡ (|H〉 + i|V 〉)/
√

2,

and |L〉 ≡ (|H〉 − i|V 〉)/
√

2. (2.4)

In practice, it is quite common to describe ensembles of quantum states,

rather than just individual qubits. Equations 2.1 and 2.2 can be used to describe

an ensemble of identical pure states, but are insufficient to describe either an

ensemble of different pure states or an ensemble whose members are not pure

(perhaps because they are entangled to unobserved degrees of freedom). In this

case the overall state is mixed.

In general, these mixed states may be described by a probabilistically weighted

incoherent1 sum of pure states, i.e., they behave as if any particle in the en-

semble has a specific probability of being in a given pure state, and this state

is distinguishably labeled in some way. If it were not distinguishable, the total

state’s constituent pure states would add coherently (with a definite relative

phase), yielding a single pure state.

A mixed state can be represented by a density matrix ρ̂, where

ρ̂ =
∑

i

Pi|ψi〉〈ψi| =

( 〈0| 〈1|
|0〉 A Ceiφ

|1〉 Ce−iφ B

)
. (2.5)

Pi is the probabilistic weighting (
∑
i Pi = 1), A,B and C are all real and non-

negative, A+B = 1, and C ≤
√
AB [52].

While an ensemble of pure states can be represented by infinitely many

terms in this way, it is also true that any ensemble of single-qubit states can

also be represented by an ensemble of only two orthogonal pure states. (Two

pure states |ψi〉 and |ψj〉 are orthogonal if |〈ψi|ψj〉| = 0). For example, if the

matrix from Equation 2.5 were diagonal, then it would clearly be a probabilistic

1The concepts of coherence and incoherence are crucial to understanding and using the
representation of quantum states. When multiple possible values (e.g., |ψ1〉 and |ψ2〉) of
a system are combined into a single representation, there are two ways to combine them.
If they are combined coherently, their amplitudes sum and the total state’s density matrix
is proportional to (|ψ1〉 + |ψ2〉) ⊗ (〈ψ1| + 〈ψ2|). If they are added incoherently, their density
matrices sum, and the total state’s density matrix is proportional to |ψ1〉〈ψ1|+|ψ2〉〈ψ2|. States
are added coherently if the superposed states are indistinguishable and incoherently if they are
distinguishable. The outcome of a measurement on indistinguishable possibilities cannot be
predicted, even in principle, from outside information. Similarly the result of a measurement
of distinguishable outcomes is correlated with some additional degree of freedom.
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combination of two orthogonal states, as

( 〈0| 〈1|
|0〉 A 0

|1〉 0 B

)
≡ A|0〉〈0| +B|1〉〈1|. (2.6)

However, any physical density matrix can be diagonalized, such that

ρ̂ =

( 〈ψ| 〈ψ⊥|
|ψ〉 E1 0

|ψ⊥〉 0 E2

)
= E1|ψ〉〈ψ| + E2|ψ⊥〉〈ψ⊥|, (2.7)

where {E1, E2} are the eigenvalues of ρ̂, and {|ψ〉, |ψ⊥〉} are the eigenvectors

(recall that these eigenvectors are always mutually orthogonal, denoted here by

the ⊥ symbol). Thus the mathematical representation of any single-qubit quan-

tum state, no matter how it is constructed, is identical to that of an ensemble

of two orthogonal pure states.2

Example 2.2 (A mixed state) Now consider measuring a source of photons

which emits a one-photon wave packet each second, but alternates—perhaps

randomly—between horizontal, vertical, and diagonal polarizations. Their emis-

sion time labels these states (in principle) as distinguishable, and so if we ignore

that timing information when they are measured, we must represent their state

as a density matrix ρ̂:

ρ̂ =
1

3
(|H〉〈H| + |V 〉〈V | + |D〉〈D|)

=
1

3




( 〈H| 〈V |
|H〉 1 0

|V 〉 0 0

)
+

( 〈H| 〈V |
|H〉 0 0

|V 〉 0 1

)
+

( 〈H| 〈V |
|H〉 1

2
1
2

|V 〉 1
2

1
2

)



=
1

6




( 〈H| 〈V |
|H〉 3 1

|V 〉 1 3

)


. (2.8)

2It is an interesting question whether all physical states described by a mixed state—e.g.,
Equation 2.7—are indeed completely equivalent. For example, Lehner, Leonhardt, and Kwiat
discussed the notion that two types of unpolarized light could be considered, depending on
whether the incoherence between polarization components arose purely due to an averaging
over rapidly varying phases, or from an entanglement with another quantum system altogether
[43].
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When diagonalized,

ρ̂ =
1

3




( 〈D| 〈A|
|D〉 2 0

|A〉 0 1

)



=
2

3
|D〉〈D| + 1

3
|A〉〈A|, (2.9)

which, as predicted in Equation 2.7, is a sum of only two orthogonal states.

Henceforth, the ‘bra’ and ‘ket’ labels will be suppressed from written density

matrices where the basis is {|0〉, |1〉} or {|H〉, |V 〉}.

The Stokes parameters and the Poincaré sphere

Any single-qubit density matrix ρ̂ can be uniquely represented by three param-

eters {S1, S2, S3}:

ρ̂ =
1

2

3∑

i=0

Siσ̂i. (2.10)

The σ̂i matrices are

σ̂0 ≡
(

1 0

0 1

)
,

σ̂1 ≡
(

0 1

1 0

)
,

σ̂2 ≡
(

0 −i
i 0

)
,

σ̂3 ≡
(

1 0

0 −1

)
, (2.11)

and the Si values are given by

Si ≡ Tr {σ̂iρ̂} . (2.12)

For all pure states,
∑3
i=1 S

2
i = 1; for mixed states,

∑3
i=1 S

2
i < 1; for the com-

pletely mixed state,
∑3
i=1 S

2
i = 0. Due to normalization, S0 will always equal

one.

Physically, each of these parameters directly corresponds to the outcome of

a specific pair of projective measurements (for more information on projective

measurements, see Chapters 4 and 5):

S0 = P|0〉 + P|1〉

S1 = P 1√
2
(|0〉+|1〉) − P 1√

2
(|0〉−|1〉)

S2 = P 1√
2
(|0〉+i|1〉) − P 1√

2
(|0〉−i|1〉)

S3 = P|0〉 − P|1〉, (2.13)
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where P|ψ〉 is the probability to measure the state |ψ〉. As we shall see below,

these relationships between probabilities and S parameters are extremely useful

in understanding more general operators. Because P|ψ〉 + P|ψ⊥〉 = 1, these can

be simplified in the single-qubit case, and

P|ψ〉 − P|ψ⊥〉 = 2P|ψ〉 − 1. (2.14)

The probability of projecting a given state ρ̂ into the state |ψ〉 (the probability

of measuring |ψ〉) is given by [27]:

P|ψ〉 = 〈ψ|ρ̂|ψ〉
= Tr {|ψ〉〈ψ|ρ̂} . (2.15)

In Equation 2.13 above, the Si are defined with respect to three states, |φ〉i:

|φ〉1 =
1√
2

(|0〉 + |1〉)

|φ〉2 =
1√
2

(|0〉 + i|1〉)

|φ〉3 = |0〉, (2.16)

and their orthogonal complements, |φ⊥〉. Parameters similar to these and serv-

ing the same function can be defined with respect to any three arbitrary states,

|ψi〉, as long as the matrices |ψi〉〈ψi| along with the identity are linearly in-

dependent. Operators analogous to the σ̂ operators can be defined relative to

these states:

τ̂i ≡ |ψi〉〈ψi| − |ψ⊥
i 〉〈ψ⊥

i |. (2.17)

We can further define an ‘S-like’ parameter T , given by:

Ti ≡ Tr {τ̂iρ̂} . (2.18)

Continuing the previous convention and to complete the set, we define τ̂0 ≡ σ̂0,

which then requires that T0 = 1. Note that the Si parameters are simply a

special case of the Ti, for the case when τ̂i = σ̂i.

Unlike the specific case of the S parameters, which describe mutually unbi-

ased3 (MUB) measurement bases, for biased measurements

ρ̂ 6= 1

2

3∑

i=0

Tiτ̂i. (2.19)

In order to reconstruct the density matrix, the T parameters must first be

3Two measurement bases, {〈ψi|} and {〈ψj |}, are mutually unbiased if ∀i,j |〈ψi|ψj〉|2 = 1
d
,

where d is the dimension of the system (for a system of n qubits, d = 2n). A set of measurement
bases are mutually unbiased if each basis in the set is mutually unbiased with respect to every
other basis in the set. In single-qubit Poincaré space, the axes indicating mutually unbiased
measurement bases are at right angles [42].
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transformed into the S parameters (see Equation 2.22 below).

Example 2.3 (The Stokes parameters) For photon polarization, the Si are

the famous Stokes parameters (though normalized), and correspond to measure-

ments in the D/A, R/L, and H/V bases [63]. In terms of the τ̂ matrices just

introduced, we would define a set of basis states |ψ1〉 ≡ |D〉, |ψ2〉 ≡ |R〉, and

|ψ3〉 ≡ |H〉. For these analysis bases, τ̂1 = σ̂1, τ̂2 = σ̂2, and τ̂3 = σ̂3 (and

therefore Ti = Si for this specific choice of analysis bases).

As the simplest example, consider the input state |H〉. Applying Equation

2.12, we find that

S0 = Tr {σ̂0ρ̂H} = 1

S1 = Tr {σ̂1ρ̂H} = 0

S2 = Tr {σ̂2ρ̂H} = 0

S3 = Tr {σ̂3ρ̂H} = 1, (2.20)

which from Equation 2.10 implies that

ρ̂H =
1

2
(σ̂0 + σ̂3) =

(
1 0

0 0

)
. (2.21)

When the Stokes parameters (Si) are used as coordinates in 3-space, all

physically possible states fall within a sphere of radius one (the Poincaré sphere

for polarization, the Bloch sphere for electron spin or other two-level systems;

see [16]). The pure states are found on the surface, states of linear polarization

on the equator, circular states at the poles, mixed states within, and the totally

mixed state – corresponding to completely unpolarized photons – at the center

of the sphere. This provides a very convenient way to visualize one-qubit states

(see Figure 2.1). The θ and φ values from Equation 2.2 allow any pure state to

be easily mapped onto the sphere surface. These values are the polar coordinates

of the pure state they represent on the Poincaré sphere.4 In addition to mapping

states, the sphere can be used to represent any unitary operation as a rotation

about an arbitrary axis. For example, waveplates implement rotations about an

axis that passes through the equator.

Any state |ψ0〉 and its orthogonal partner, |ψ⊥
0 〉, are found on opposite points

of the Poincaré sphere. The line connecting these two points forms an axis of

the sphere, useful for visualizing the outcome of a measurement in the |ψ0〉–|ψ⊥
0 〉

basis. Consider a line perpendicular to this axis which intercepts the state ρ̂.

This line will intercept the |ψ0〉–|ψ⊥
0 〉 axis at some point P . The distance from

this point P to the center of the sphere corresponds to the Stokes-like parameter

(T = 〈ψ0|ρ̂|ψ0〉 − 〈ψ⊥
0 |ρ̂|ψ⊥

0 〉).
4These polar coordinates are by convention rotated by 90◦, so that θ = 0 is on the equator

corresponding to the state |H〉 and θ = 90◦, φ = 90◦ is at the North Pole corresponding to the
state |R〉. This 90◦ rotation is particular to the Poincaré representation of photon polarization
[59]; representations of two-level systems on the Bloch sphere do not introduce it.
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Figure 2.1: The Poincaré (or Bloch) sphere. Any single-qubit quantum state ρ̂
can be represented by three parameters Ti = Tr {τ̂iρ̂}, as long as the operators
τ̂i in addition to the identity are linearly independent. Physically, the Ti param-
eters directly correspond to the outcome of a specific projective measurement:
Ti = 2Pi − 1, where Pi is the probability of success for the measurement. The
Ti may be used as coordinates in 3-space. Then all 1-qubit quantum states fall
on or within a sphere of radius one. The surface of the sphere corresponds to
pure states, the interior to mixed states, and the origin to the totally mixed
state. Shown is a particular pure state |ψ〉, which is completely specified by
its projection onto a set of non-parallel basis vectors. (a) When τ̂i = σ̂i (the
Pauli matrices), the basis vectors are orthogonal, and in this particular case
the Ti are equal to the Si, the well known Stokes parameters, corresponding to
measurements of diagonal (S1), right-circular (S2), and horizontal (S3) polariza-
tions. (b) A non-orthogonal coordinate system in Poincaré space. It is possible
to represent a state using its projection onto non-orthogonal axes in Poincaré
space. This is of particular use when attempting to reconstruct a quantum state
from mutually biased measurements. Shown here are the axes corresponding to
measurements of 22.5◦ linear (T1), elliptical light rotated 22.5◦ from H towards
R (T2), and horizontal (T3). Taken from [5].
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Thus, just as any point in three-dimensional space can be specified by its pro-

jection onto three linearly independent axes, any quantum state can be specified

by the three parameters Ti = Tr {τ̂iρ̂}, where τ̂i=1,2,3 are linearly independent

matrices equal to |ψi〉〈ψi| − |ψ⊥
i 〉〈ψ⊥

i |. The τ̂i correspond to general Stokes-

like parameters for any three linearly independent axes on the Poincaré sphere.

However, they can differ from the canonical Stokes axes and need not even

be orthogonal. See Figure 2.1b for an example of state representation using

non-orthogonal axes.

In order to use these mutually biased Stokes-like parameters, it is necessary

to be able to transform a state from the mutually biased representation to the

Stokes representation and vice-versa. In general, for any two representations

Si = Tr {σ̂iρ̂} and Ti = Tr {τ̂iρ̂} it is possible to transform between them by

using




T0

T1

T2

T3




=
1

2




Tr {τ̂0σ̂0} Tr {τ̂0σ̂1} Tr {τ̂0σ̂2} Tr {τ̂0σ̂3}
Tr {τ̂1σ̂0} Tr {τ̂1σ̂1} Tr {τ̂1σ̂2} Tr {τ̂1σ̂3}
Tr {τ̂2σ̂0} Tr {τ̂2σ̂1} Tr {τ̂2σ̂2} Tr {τ̂2σ̂3}
Tr {τ̂3σ̂0} Tr {τ̂3σ̂1} Tr {τ̂3σ̂2} Tr {τ̂3σ̂3}







S0

S1

S2

S3



.

(2.22)

This relation allows S parameters to be transformed into any set of T param-

eters. In order to transform from T to S, we can invert the 4 by 4 matrix in

Equation 2.22 and multiply both sides by this new matrix. This inversion is

possible because we have chosen the τ̂i operators to be linearly independent;

otherwise the Ti parameters would not specify a single point in Hilbert space.

2.1.2 Multiple qubits

With the extension of these concepts to multiple qubit systems, it becomes possi-

ble to investigate non-classical features, including the quintessentially quantum

mechanical phenomenon of entanglement.

Pure, mixed, and diagonal representations

As the name implies, multiple-qubit states are constructed out of individual

qubits. As such, the Hilbert space of a many-qubit system is spanned by state

vectors which are the tensor product of single-qubit state vectors. A general

n-qubit system in a pure state can be written as

|ψ〉 =
∑

i1,i2,...in=0,1

αi1,i2,...in |i1〉 ⊗ |i2〉 ⊗ . . .⊗ |in〉. (2.23)

Here the αi are complex,
∑
i |αi|2 = 1, and ⊗ denotes a tensor product, used

to join component Hilbert spaces. For example, a general two-qubit pure state

can be written

|ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉, (2.24)
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where |00〉 is shorthand for |0〉1 ⊗ |0〉2.

Example 2.4 (The Bell states) Perhaps the most famous examples of pure

two-qubit states are the Bell states [12]:

|φ±〉 =
1√
2

(|HH〉 ± |V V 〉)

|ψ±〉 =
1√
2

(|HV 〉 ± |V H〉) . (2.25)

As before, we represent a general mixed state through an incoherent sum of

pure states:

ρ̂ =
∑

i

Pi|ψi〉〈ψi|. (2.26)

And, as before, this 2n-by-2n density matrix representing the n-qubit state may

always be diagonalized, allowing any state to be written as

ρ̂ =

2n∑

i=1

Pi|φi〉〈φi|. (2.27)

2.26 differs from 2.27 in that the φi are necessarily orthogonal (〈φi|φj〉 = δij),

and there are at most 2n of them; in 2.26 there could be an arbitrary number

of |ψi〉.

Example 2.5 (A general two-qubit polarization state) Any two-qubit po-

larization state can be written as

ρ̂ =




〈HH| 〈HV | 〈V H| 〈V V |
|HH〉 A1 B1e

iφ1 B2e
iφ2 B3e

iφ3

|HV 〉 B1e
−iφ1 A2 B4e

iφ4 B5e
iφ5

|V H〉 B2e
−iφ2 B4e

−iφ4 A3 B6e
iφ6

|V V 〉 B3e
−iφ3 B5e

−iφ5 B6e
−iφ6 A4



, (2.28)

where ρ̂ is positive and Hermitian with unit trace. Henceforth, the ‘bra’ and ‘ket’

labels will be omitted from density matrices presented in this standard basis. Note

that this state has 15 free parameters, while a general n-qubit state has 4n − 1

free parameters.

Mixed states of note include the Werner states [70],

ρ̂W = P |γ〉〈γ| + (1 − P )
1

4
I, (2.29)

where |γ〉 is a maximally entangled state and 1
4I is the totally mixed state, and

the maximally entangled mixed states (MEMS), which possess the maximal

amount of entanglement for a given amount of mixture [51].

Measures of state fidelity, entanglement, and mixture may be derived from

the density matrix; for reference, Appendix A defines several such measures.
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Multiple-qubit Stokes parameters

Extending the single-qubit density matrix representation of Equation 2.10, any

n-qubit state ρ̂ may be represented as

ρ̂ =
1

2n

3∑

i1,i2,...in=0

Si1,i2,...in σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in . (2.30)

Normalization requires that S0,0,...0 = 1, leaving 4n − 1 real parameters (the

multiple-qubit analog of the single-qubit Stokes parameters) to identify any

point in Hilbert space, just as three parameters determined the exact position

of a one-qubit state in the Bloch/Poincaré sphere. Already for two qubits, the

state space is much larger, requiring 15 independent real parameters to describe

it. For this reason, there is no convenient graphical picture of this space, as there

was in the single-qubit case (see, however, the interesting approaches made by

[76, 77]).

For multiple qubits the link between the multiple-qubit Stokes parameters

[34, 1] and measurement probabilities still exists. The formalism of τ̂ operators

also still holds for larger qubit systems, so that

T = Tr {τ̂ ρ̂} . (2.31)

For ‘local’ measurements (a local measurement is the tensor product of a number

of single-qubit measurements: the first projecting qubit one along τ̂i1 , the second

qubit two along τ̂i2 , etc.), τ̂ = τ̂i1 ⊗ τ̂i2 ⊗ . . . ⊗ τ̂in . Combining Equations 2.30

and 2.31,

Ti1,i2,...in = Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) ρ̂} (2.32)

=
1

2n

3∑

j1,j2,...jn=0

Tr {τ̂i1 σ̂j1}Tr {τ̂i2 σ̂j2} . . .Tr {τ̂in σ̂jn}Sj1,j2,...jn .

Recall that for single qubits,

Ti=1,2,3 = P|ψi〉 − P|ψ⊥
i 〉

T0 = P|ψ〉 + P|ψ⊥〉 = 1,∀ψ. (2.33)

Therefore, for an n-qubit system,

Ti1,i2,...in = (P|ψi1
〉 ±P|ψ⊥

i1
〉)⊗ (P|ψi2

〉 ±P|ψ⊥
i2

〉)⊗ . . .⊗ (P|ψin 〉 ±P|ψ⊥
in

〉), (2.34)

where the plus sign is used for a zero index and the minus sign is used for a

nonzero index. For a two-qubit system where i1 6= 0 and i2 6= 0, Ti1,i2 simplifies
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dramatically, giving

Ti1,i2 = (P|ψi1
〉 − P|ψ⊥

i1
〉) ⊗ (P|ψi2

〉 − P|ψ⊥
i2

〉)

= P|ψi1
〉|ψi2

〉 − P|ψi1
〉|ψ⊥

i2
〉 − P|ψ⊥

i1
〉|ψi2

〉 + P|ψ⊥
i1

〉|ψ⊥
i2

〉. (2.35)

This relation will be crucial for reconstructing a two-qubit state from local

measurements (see Chapter 5).

As before, we are not restricted to multiple-qubit Stokes parameters based

only on mutually unbiased operators. Extending Equation 2.22 to multiple

qubits, and again assuming two representations

Si1,i2,...in = Tr {(σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in) ρ̂} , (2.36)

and

Ti1,i2,...in = Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) ρ̂} , (2.37)

it therefore follows that

Ti1,i2,...in = (2.38)

1

2n

3∑

j1,j2,...jn=0

Tr {(τ̂i1 ⊗ τ̂i2 ⊗ . . .⊗ τ̂in) (σ̂j1 ⊗ σ̂j2 ⊗ . . .⊗ σ̂jn)}Sj1,j2,...jn .

In general, a given τ̂ operator is not uniquely mapped to a single pair of anal-

ysis states. For example, consider measurements of |H〉 and |V 〉 corresponding

to τ̂H = |H〉〈H| − |V 〉〈V | = σ̂3 and τ̂V = |V 〉〈V | − |H〉〈H| = −σ̂3. There-

fore, τ̂H,H ≡ σ̂3 ⊗ σ̂3 = −σ̂3 ⊗ −σ̂3 ≡ τ̂V,V . This is a natural artifact of the

mathematics (and does not, for example, affect the results of a tomography).

Example 2.6 (A separable polarization state) Consider the state |HH〉.
Following the example in Equation 2.21,

ρ̂HH = |HH〉〈HH|

=
1

2
(σ̂0 + σ̂3) ⊗

1

2
(σ̂0 + σ̂3)

=
1

4
(σ̂0 ⊗ σ̂0 + σ̂0 ⊗ σ̂3 + σ̂3 ⊗ σ̂0 + σ̂3 ⊗ σ̂3). (2.39)

This implies that for this state there are exactly four non-zero two-qubit Stokes

parameters: S0,0, S0,3, S3,0, and S3,3 – all of which are equal to one. (As earlier,

for the special case when τ̂i,j = σ̂i,j, we relabel the Ti,j as Si,j, the two-qubit

Stokes parameters [34, 1].) The separable nature of this state makes it easy to

calculate the two-qubit Stokes decomposition.

Example 2.7 (The singlet state) If instead we investigate the entangled state

|ψ−〉 ≡ (|HV 〉 − |V H〉) /
√

2, it will be necessary to calculate each two-qubit

Stokes parameter from the σ̂ matrices. As an example, consider σ̂3,3 ≡ σ̂3 ⊗ σ̂3,

for which

S3,3 = Tr
{
σ̂3,3|ψ−〉〈ψ−|

}
= −1. (2.40)
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We could instead calculate S3,3 directly from probability outcomes of measure-

ments on |ψ−〉:

S3,3 = (PH − PV ) ⊗ (PH − PV )

= PHH − PHV − PV H + PV V

= 0 − 1

2
− 1

2
+ 0

= −1. (2.41)

Continuing on, we measure S0,3:

S0,3 = (PH + PV ) ⊗ (PH − PV )

= PHH − PHV + PV H − PV V

= 0 − 1

2
+

1

2
− 0

= 0. (2.42)

Here the signs of the probabilities changed due to the zero index in S0,3. These

results would have been the same even if the analysis bases of the first qubit had

been shifted to any other orthogonal basis, i.e., S0,3 =
(
Pψ + Pψ⊥

)
⊗(PH − PV ).

If the method above is continued for all the Stokes parameters, one concludes

that

ρ̂ψ− =
1

2
(|HV 〉 − |V H〉)(〈HV | − 〈V H|)

=
1

4
(σ̂0 ⊗ σ̂0 − σ̂1 ⊗ σ̂1 − σ̂2 ⊗ σ̂2 − σ̂3 ⊗ σ̂3). (2.43)

2.1.3 Representation of non-qubit systems

Although most interest within the field of quantum information and computa-

tion has focused on two-level systems (qubits) due to their simplicity, availabil-

ity, and similarity to classical bits, nature contains a multitude of many-level

systems, both discrete and continuous. A discussion of continuous systems is

beyond the scope of this work—see [44]—but we will briefly address here the

representation and tomography of discrete, d-level systems (“qudits”). For a

more detailed description of qudit tomography, see [65].

Pure, mixed, and diagonal representations

Directly extending Equations 2.1 and 2.2, a d-level qudit can be represented as

|ψ〉 = α0|0〉 + α1|1〉 + . . .+ αd−1|d− 1〉, (2.44)
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where
∑
i |αi|

2
= 1. Mixed qudit states can likewise be represented by general-

izing Equations 2.5 and 2.7:

ρ =
∑

k

Pk|φk〉〈φk| (2.45)

=

d−1∑

i=0

Pi|ψi〉〈ψi|. (2.46)

Here {|φk〉} is completely unrestricted while |〈ψi|ψj〉| = δij . In other words,

while any mixed state is an incoherent superposition of an undetermined num-

ber of pure states, any mixed state can be represented by an incoherent super-

position of only n orthogonal states (the diagonal representation).

Example 2.8 (Orbital angular momentum modes)

The Laguerre-Gaussian modes of an optical field propagating in the z direction

possess z components of orbital angular momentum that serve as the quantum

numbers of a multiple-level photonic system that has recently been studied for

quantum information [47, 41, 9, 11]. Consider a qudit system with an infinite

number of levels representing the quantization of orbital angular momentum. A

superposition of the three lowest angular momentum levels would look like

|ψ〉 = |+1〉 + |0〉 + |−1〉, (2.47)

where |+1〉 (|−1〉) corresponds to a mode where each photon has +~ (-~) z-

component of orbital angular momentum, and |0〉 corresponds to a zero angular

momentum mode, e.g. a mode having a Gaussian transverse profile. Using

specially designed holograms, these states can be measured and interconverted

[2].

Qudit Stokes parameters

In order to completely generalize the qubit mathematics laid out previously to

the qudit case, it is necessary to find Stokes-like parameters which satisfy the

following conditions:

ρ̂ =

n∑

i=0

Siσ̂i, (2.48)

Si ≡ Tr {σ̂iρ̂} . (2.49)

In addition, in order to reconstruct these parameters experimentally, it will be

necessary to find Si as a function of measurable probabilities:

Si = F
({
P|ψ〉

})
. (2.50)

Obviously, it would be ideal to find a simple form similar to the qubit σ̂ matrices.

Conveniently, the general qudit sigma matrices and corresponding Si parameters
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can be divided into three groups (
{
σ̂Xi , σ̂

Y
i , σ̂

Z
i

}
and

{
SXi , S

Y
i , S

Z
i

}
), according

to their similarity to σ̂x = σ̂1, σ̂y = σ̂2, and σ̂z = σ̂3, respectively [65]. Using

these divisions, we can expand Equation 2.48:

ρ̂ = S0σ̂0 +
∑

j,k∈{0,1,...n−1}
j 6=k

(
SXj,kσ̂

X
j,k + SYj,kσ̂

Y
j,k

)
+
n−1∑

r=1

SZr σ̂
Z
r . (2.51)

Investigating the simplest group first, it is unsurprising that

σ̂0 = I, S0 = 1, (2.52)

continuing the previous qubit convention. The X- and Y -related variables are

defined almost identically to their predecessors:

σ̂Xj,k = |j〉〈k| + |k〉〈j|, (2.53)

SXj,k = P 1√
2
(|j〉+|k〉) − P 1√

2
(|j〉−|k〉), (2.54)

σ̂Yj,k = −i (|j〉〈k| − |k〉〈j|) , (2.55)

SYj,k = P 1√
2
(|j〉+i|k〉) − P 1√

2
(|j〉−i|k〉). (2.56)

The definitions for σ̂Zi and SZi are slightly more complicated:

σ̂Zr =

√
2

r (r + 1)





r−1∑

j=0

|j〉〈j|


− r|r〉〈r|


 , (2.57)

SZr =

√
2

r (r + 1)





r−1∑

j=0

P|j〉


− rP|r〉


 . (2.58)

These definitions complete the set of n2 sigma matrices, and have a slightly

more complex form in order to satisfy Tr [σ̂i] = 0 and Tr [σ̂iσ̂j ] = 2δij (these

definitions apply to all σ̂i except σ̂0).

Example 2.9 (The qutrit) For a 3-level system (|0〉, |1〉, and |2〉), the σ̂ ma-
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trices can be defined as:

σ̂0 =




1 0 0

0 1 0

0 0 1


 σ̂Z1 =




1 0 0

0 −1 0

0 0 0


 σ̂Z2 =

√
1
3




1 0 0

0 1 0

0 0 −2




σ̂X1,2 =




0 1 0

1 0 0

0 0 0


 σ̂X1,3 =




0 0 1

0 0 0

1 0 0


 σ̂X2,3 =




0 0 0

0 0 1

0 1 0




σ̂Y1,2 =




0 −i 0

i 0 0

0 0 0


 σ̂Y1,3 =




0 0 −i
0 0 0

i 0 0


 σ̂Y2,3 =




0 0 0

0 0 −i
0 i 0




.

Expanding the Si parameters in terms of probabilities, we find that:

S0 = 1,

SX1,2 = P 1√
2
(|0〉+|1〉) − P 1√

2
(|0〉−|1〉),

SX1,3 = P 1√
2
(|0〉+|2〉) − P 1√

2
(|0〉−|2〉),

SX2,3 = P 1√
2
(|1〉+|2〉) − P 1√

2
(|1〉−|2〉),

SY1,2 = P 1√
2
(|0〉+i|1〉) − P 1√

2
(|0〉−i|1〉),

SY1,3 = P 1√
2
(|0〉+i|2〉) − P 1√

2
(|0〉−i|2〉),

SY2,3 = P 1√
2
(|1〉+i|2〉) − P 1√

2
(|1〉−i|2〉),

SZ1 = P|0〉 − P|1〉,

SZ2 =
1√
3

(
P|0〉 + P|1〉 − 2P|2〉

)
.

2.2 Representing entanglement and

decoherence

The phenomenon of entanglement deserves special attention during any discus-

sion of quantum state representation, particularly because there appears to be

no consensus among the community as to how to quantify it (most notably for

systems larger than two qubits). By definition, systems A and B are not en-

tangled if and only if they are not separable, i.e., not able to be written in the

form

ρsep =
∑

i

|ψA,i〉|ψB,i〉 ⊗ 〈ψA,i|〈ψB,i|. (2.59)

More intuitively, separable states are those which can be constructed when their

constituent particles are at a distance, using only local operations. Entangled

states, by contrast, only arise from joint operations. These entangling opera-

tions can only be performed when the two systems to be coupled (or parts of
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the two systems) are in the same physical location56. Were this not the case,

the quantum correlations produced by entangling operations could be used to

communicate faster than light.

Entangled states are not the only states to possess correlations. Many clas-

sical states possess correlations, ranging from perfect correlations in one basis

to imperfect correlations in many bases, but maximally entangled states are the

only states which exhibit perfect correlation7 in every basis (see two-qubit ex-

amples below). Put another way, entangled states exhibit correlated quantum

fluctuations, a property which can be written mathematically as

〈(A− 〈A〉) (B − 〈B〉)〉 ≥ 0, (2.60)

where A and B are observables on particles 1 and 2, respectively.

2.2.1 Two-qubit entanglement

Because this thesis focuses on the special case of two-qubit systems, this subsec-

tion will describe entanglement in those systems. While all entangled two-qubit

systems can be identified using the tangle (see Appendix A), there are several

representations which are useful when discussing entangled states. First is the

Schmidt decomposition [52], through which two-qubit pure states can be written

in the following form:

|ψ〉 = cos(θ)|α〉|β〉 + sin(θ)eiφ|α⊥〉|β⊥〉. (2.61)

Here |α〉 and |β〉 represent single qubit states while |α⊥〉 and |β⊥〉 represent

their orthogonal complements. Pure, two-qubit entangled states, when written

in this form, have exactly two terms; separable states have only one term.

This is a very convenient parametrization, but only applies to pure states.

For mixed states, an entanglement rule can be constructed based on the state

fidelity. The two-qubit entangled states |ψent〉 are exactly those for which

∃|γ〉 such that |〈ψent|γ〉|2 >
1

2
, (2.62)

where |γ〉 is a maximally entangled state. Close examination of this rule reveals

that not all states which exhibit multi-basis correlation (the hallmark of entan-

glement) are in fact entangled (see Example 2.11). As we will see in Chapter 4,

5The phrase “physical location” is used somewhat loosely in this context to refer to objects
which are near enough to each other that any interaction between them does not violate special
relativity’s prohibition on information traveling faster than the speed of light. In a laboratory
setting, this meaning becomes even clearer, e.g., two photons will never become entangled
with each other unless they are present in the same optical element at the same time.

6The exception to this rule is entanglement swapping [56]. The entanglement between two
particles, A and B, can be transferred to another pair of particles, C and D, if A and C are
near each other and B and D are near each other.

7Correlation here is used to mean either correlation or anticorrelation. More generally,
a measurement of one particle of a maximally entangled pair will completely determine the
state of its partner.
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it is precisely this type of unentangled correlation in multiple bases which will

facilitate ancilla-assisted process tomography (AAPT). In Chapter 5, this rule

will be used to construct a simple entanglement witness, a method for detecting

entangled states using few measurements.

Example 2.10 (A maximally entangled state) Maximally entangled states

possess a unique quality: more than one separable basis can be chosen such that

measurements in that basis result in completely random, yet perfectly correlated

results. In effect, as soon as a measurement is made on one qubit, its partner

qubit is immediately known to be in a specific state corresponding to the result

of the first measurement. For example, the state |φ+〉 ≡ 1√
2

(|HH〉 + |V V 〉)
exhibits perfect correlation in any linear basis and perfect anticorrelation in the

circular basis. That is, if the first qubit of this state is measured to be in the

state |H〉, the second qubit will also be measured in |H〉, and if the first qubit is

measured in the state |R〉, then the second qubit will be measured in the state |L〉.
In contrast, the singlet state |ψ−〉 ≡ 1√

2
(|HV 〉 − |V H〉) exhibits anticorrelation

in every basis. If the first qubit is measured to be in state |α〉, then the second

qubit will be measured to be in state |α⊥〉.

Example 2.11 (A Werner state) The Werner state

|ρ〉 =
1

3
|φ−〉〈φ−| + 2

3
I, (2.63)

has a fidelity with the maximally entangled state |φ−〉 of exactly 0.5, which is

just insufficient for entanglement. However, this state exhibits correlation in

multiple bases, just as |φ+〉 does. Because it is unentangled, however, we should

be able to represent it using only separable terms:

ρ =
1

6
(|HH〉〈HH| + |V V 〉〈V V | + |DD〉〈DD| +

|AA〉〈AA| + |RL〉〈RL| + |LR〉〈LR|) (2.64)

The state ρ is written here as the incoherent sum of six terms, each of which

provides correlation to the total state. This state exhibits the maximum two-qubit

correlation that is possible while still being separable.

2.2.2 Entanglement in higher degrees of freedom

The parametrization and quantification of the entanglement of more than two

systems has generated great interest, but remains an open question. Whether

this difficulty arises from the inherent complexity of the problem or because

“entanglement” is not a well-defined quantity for large systems remains to be

seen. Regardless, there have been proposed solutions to this problem (see, for

example, [67]), but their discussion is beyond the scope of this work.
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2.2.3 Subsystems and the partial trace

Often, it is important to predict the dynamics of a subsystem which is part of a

larger space. Mathematically, this subsystem is described via the partial trace.

Consider a state ρ̂AB composed of two subsystems, A and B, each of which can

be respectively described using orthonormal bases |ai〉 and |bi〉. Making the par-

tial trace of ρ̂AB over subsystem B will give a density matrix ρ̂A which describes

the subsystem A when subsystem B is ignored. Written mathematically,

ρ̂A ≡ TrB
{
ρ̂AB

}
, (2.65)

TrB {|ai〉〈aj| ⊗ |bk〉〈bl|} ≡ |ai〉〈aj |Tr {|bk〉〈bl|} . (2.66)

Written another way,

ρ̂A ≡ TrB
{
ρ̂AB

}
≡
∑

i

〈bi|ρ̂AB|bi〉. (2.67)

This formalism allows one to not only predict how smaller pieces of known large

systems will behave, but also to conjecture on the nature of the larger systems

of which smaller observed pieces are just a small part.

Example 2.12 (The partial trace of a separable state) The simplest ex-

ample of the partial trace is for a separable state. Separable states, by definition,

should be easily divided into their component subsystems. Mathematically, this

means that

TrB
{
ρ̂AB

}
= TrB

{
ρ̂A ⊗ ρ̂B

}
= ρ̂ATr

{
ρ̂B
}

= ρ̂A. (2.68)

Example 2.13 (The partial trace of a Bell state) A more interesting ex-

ample is the maximally entangled Bell state. Here we will have to calculate the

result more carefully, remembering that |HH〉 is shorthand for |HA〉 ⊗ |HB〉:

TrB
{
ρ̂φ+

}
= TrB

{
1

2
(|HH〉 + |VV〉) (〈HH| + 〈VV|)

}

= TrB

{
1

2
(|HH〉〈HH| + |HH〉〈VV| + |VV〉〈HH| + |VV〉〈VV|)

}

=
1

2

∑

i

〈bi|
(
|HH〉〈HH| + |HH〉〈V V | + |V V 〉〈HH| + |V V 〉〈V V |

)
|bi〉

=
1

2

[
〈HB |

(
|HH〉〈HH| + |HH〉〈V V | + |V V 〉〈HH| + |V V 〉〈V V |

)
|HB〉 +

〈V B |
(
|HH〉〈HH| + |HH〉〈V V | + |V V 〉〈HH| + |V V 〉〈V V |

)
|V B〉

]

=
1

2

[
|HA〉〈HA| + |V A〉〈V A|

]
. (2.69)

The result is the single-qubit totally mixed state. This should have been no

surprise, in fact, as we have already discussed how one particle in a maximally

entangled state will always give totally random measurement results in every
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basis, which is only true of the totally mixed state. In fact, for a two-qubit pure

state, there is a direct, monotonic relationship between the entanglement of the

state and the mixture of the single-qubit subsystems which constitute it.

2.2.4 Decoherence

In Example 2.13, we saw that when a component of a maximally entangled

state is investigated without attention to its partner, it appears to be maximally

mixed, in other words, totally decohered. In fact, any observed decoherence in a

density matrix can be mathematically modeled as the result of that system being

entangled to other degrees of freedom, i.e., other systems in a larger, unobserved

Hilbert space. We can in fact easily construct such a model by using the state

diagonalization developed earlier in this chapter. From Equation 2.27, we know

that

ρ̂ =

2n∑

i=1

Pi|φi〉〈φi|. (2.70)

If the state above has more than one term, then it is at least partially decohered.

Under the assumption that this decoherence is the result of entanglement in a

larger Hilbert space, we can attempt to write down the larger entangled state.

The larger pure state

|ψ〉 =

2n∑

i=1

eiζi

√
Pi|φi〉 ⊗ |Xi〉, (2.71)

when subjected to a partial trace over the ancillary space X, exactly reproduces

the state ρ̂ above. There is of course some ambiguity to this process; for example,

the exact phases ζi are totally unimportant and unspecified. Likewise, there are

an infinite number of states in larger spaces which could be simplified through

partial traces to the measured state ρ̂. This is simply an example that easily

applies to any decohered state, requiring an ancillary space equal in dimension

to the space in which the original state ρ̂ exists.
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3 State Creation

The creation and control of quantum states is at the heart of any study of the

rich, strange physics of quantum information. Light, or more precisely, photons,

has been central to the study of quantum mechanics since its earliest stages, and

provides a clean, controllable, easily manipulated medium for investigations of

quantum information. While the behavior of single photons has been studied

for centuries (classical optics is the study of single photon dynamics, albeit for

many photons all undergoing the same processes), the true beauty of quantum

mechanics begins with correlation and nonlocality, and for that, two-photon

systems are required. The experiments described throughout this thesis utilize

sources of correlated photon pairs collected from spontaneous parametric down-

conversion in birefringent nonlinear crystals. Moreover, this down-conversion

process can be made to yield entangled photon pairs, making possible the in-

vestigation of this quintessential characteristic of quantum mechanics.

This chapter will describe the physics of down-conversion, the design of a

two-crystal entanglement source and the evolution of that design into a source

of unequaled quality and brightness [7].

3.1 Spontaneous parametric down-conversion

Though impossible under classical electromagnetism, quantum theory predicts

that birefringent crystals with a nonlinear electric susceptibility have the po-

tential to convert high energy pump photons to pairs of low energy daughter

photons, through a process known as spontaneous parametric down-conversion.

The complete derivation of this process requires the quantization of the electric

field, and will not be rederived here (although there are many references on the

subject, see for example, [18]).

In brief, spontaneous parametric down-conversion is one of a broad class of

nonlinear optical effects that are possible in a crystal whose dielectric polariza-

tion (dipole moment per unit volume) responds nonlinearly to an electric field.

The response can be expanded as a power series of the electric field:

P (t) ≡ χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . . . (3.1)

Because down-conversion involves the transformation of a single photon into two

photons, only materials with a large χ(2) nonlinearity will exhibit this behavior.
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This is because, in a χ(2) material, two oscillating electric fields of the same

frequency can produce an oscillating field of twice that frequency. In a linear

material, the combination of two fields would be akin to adding two sinusoidal

waves of frequency ω; the result is still a wave of frequency ω. In a χ(2) material,

however, the product of two waves of frequency ω is a wave of frequency 2ω

(consider the trigonometric identity 2 cosω sinω = sin 2ω).

The phenomenology of down-conversion can be understood by observing that

it must conserve both energy and momentum:

ω1 + ω2 = ω3 (energy conservation), (3.2)

~κ1 + ~κ2 = ~κ3 (momentum conservation inside the crystal). (3.3)

In general, there are two ways to satisfy both of these conditions for down-

conversion in a nonlinear crystal. Type-I down-conversion, which is the sub-

ject of this work, requires that an extraordinarily1 polarized pump photon

down-convert into two ordinarily polarized daughter photons. Type-II down-

conversion requires instead that an extraordinarily polarized pump photon down-

convert into one ordinarily polarized daughter photon and one extraordinarily

polarized daughter photon.

Momentum and energy conservation in Type-I down-conversion require that

the photons produced exit the crystal within the geometry of a pair of cones,

shown graphically in Figure 3.1, and always on opposite sides of the propagation

axis of the pump beam. The opening angles of these cones depend on the

wavelength of the down-converted light, and for the special case of degenerate

down-conversion (ω1 = ω2), these cones overlap; i.e., the daughter photons are

produced on opposite sides of the same cone. While the polar angle of this single

cone is defined by the geometry of the crystal, the azimuthal angle is random.

3.2 Two-crystal source of entangled photons

Our entanglement source uses degenerate Type-I down-conversion from 0.6-mm

thick nonlinear β-Barium Borate (BBO) crystals, cut such that the optic axis is

∼ 33.9◦ from the pump axis. In this geometry, 351.1-nm pump photons down-

convert into 702.2-nm daughter photons which exit the crystal in a cone with

a ∼ 3◦ half opening angle. One such crystal, with its optic axis oriented in

the vertical plane, will produce pairs of horizontally polarized daughter photons

(|HH〉) when pumped with vertical light (|V 〉). If this geometry were to be

rotated by 90◦, then horizontal pump photons (|H〉) would down-convert into

1Birefringent materials have different indices of refraction depending on both the direction
that light is traveling within them and the polarization of that light. Uniaxial crystals have a
single axis whose index differs from the other two. The polarization component of light which
is perpendicular to this axis is said to be ordinarily polarized, and the component of the light
which is orthogonal to this ordinary component is said to be extraordinarily polarized. The
exception to this is light whose propagation direction is the optic axis. This light is entirely
ordinary.
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Figure 3.1: Type-I spontaneous parametric down-conversion from a nonlinear
crystal. High energy pump photons occasionally transform into two lower en-
ergy daughter photons. The pump photon is extraordinarily polarized within
the down-conversion crystal; the daughter photons are ordinarily polarized. The
diagram shows a nonlinear crystal with vertical optic axis, vertically polarized
pump beam, and horizontally polarized down-conversion. Energy conservation
requires that the frequencies of these daughter photons sum to the pump fre-
quency. Momentum conservation requires that the daughter photons exit the
crystal on opposite sides of the pump axis. The down-converted mode is al-
ways in the shape of a cone, but the opening angle (with respect to the pump
axis) depends on the frequency of the down-converted photons. Down-converted
pairs are always emitted on opposite sides of the pump axis (e.g., the two points
marked 1 and the two points marked 2 in the diagram correspond to the lo-
cations where pairs could be detected in coincidence). For the special case of
degenerate down-conversion, the cones overlap and the daughter photons always
exit the crystal on opposite sides of a single cone (the figure shows nondegenerate
down-conversion).

pairs of vertically polarized daughter photons (|V V 〉).
In order to create entangled states, we place crystals of each orientation

back to back, such that the two down-conversion processes are coherent with

each other [39]. (This is possible because the pump coherence length is very long

compared to the difference in optical path length accumulated in the DC crystals

by the pump and the down-conversion, making the two processes technically

indistinguishable.) In this configuration, the 351-nm pump state

|ψpump〉 = cos (ǫ) |V 〉 + eiφ sin (ǫ) |H〉 (3.4)

down-converts into the two-photon 702-nm state

|ψdc〉 = cos (ǫ) |HH〉 + eiφ sin (ǫ) |V V 〉. (3.5)

For a 45◦-polarized pump photons this state is maximally entangled. Figure

3.2a shows a top-down view of the experimental setup.

Example 3.1 (Producing nonmaximally-entangled states) Our source of

entanglement, when pumped with 45◦ light, produces the maximally entangled
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Figure 3.2: Entangled photon source. (a) A 45◦-polarized 351-nm pump beam
down-converts in two adjacent nonlinear crystals (BBO) into the two-photon
state |ψ (φ)〉 = 1√

2

(
|HH〉 + eiφ|V V 〉

)
. The phase factor φ depends on the an-

gle of the down-conversion photons within the crystals, such that the states
corresponding to paths 1’ and 2’ are |ψ (1′)〉 and |ψ (2′)〉, respectively. The
addition of these states results in effective decoherence. The use of larger collec-
tion apertures increases the effect. (b) By placing additional specially designed
birefringent crystals into the down-conversion path, this phase variation can
be compensated for, largely eliminating the decohering effect of large collection
apertures. The quarter waveplate (QWP), half waveplate (HWP), polarizing
beam splitter (PBS) combinations in each arm allow projection into any sep-
arable polarization basis. A sequence of these projections allows complete to-
mographic reconstruction of any two-qubit density matrix. Quoted high count
rates were collected using 9-mm irises (120 cm from the source) and 25-nm
(FWHM) frequency filters.

state:

|ψmax〉 =
1√
2

(
|HH〉 + eiφ|V V 〉

)
. (3.6)

However, because the HH and V V processes are separately controlled by the

V and H polarizations of the pump, using a different pump polarization will

produce down-converted states with any amount of entanglement:

|ψdc〉 = cos (ǫ) |HH〉 + eiφ sin (ǫ) |V V 〉. (3.7)

Here the factor ǫ controls the entanglement of the state produced. Experimen-

tally, any value of ǫ can be achieved by sending a vertically polarized pump

through a half waveplate at an angle of ǫ
2 (followed by the down-conversion crys-

tals) [72]. Experimentally produced nonmaximally entangled states are shown in

Figure 3.3.

This geometry has proved to be very robust (it is in essence an extremely

stable interferometer), and can be used to produce states which have greater

than 99% fidelity with a maximally entangled state [4]. However, it is desirable

to have both a very high quality as well as a very bright source; as the bit

rate of any quantum protocol—as well as the speed of most experiments—is

limited by state brightness. The state’s brightness can be easily increased by
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Figure 3.3: Four experimentally measured density matrices of two-qubit photon
states, ranging in entanglement from separable to nonmaximally entangled to
maximally entangled states. These states are of the form of Equation 3.7, with
ǫ approximately equal to: (a) 0.0◦ (a separable state), (b) 45◦ (a maximally
entangled state), (c) 54◦ (a nonmaximally entangled state), and (d) 67◦ (a
nonmaximally entangled state). The absolute value of the density matrices are
shown; the phases on the off-diagonal elements can be easily tuned using a
φ-plate (see Example 4.1).

increasing the pump power, which is typically around 50 mW continuous wave

(from a SpectraPhysics argon-ion laser running at 351.1 nm). Unfortunately,

the nonlinear crystals are easily damaged by too much pump power2, effectively

limiting everyday use to less than 100 mW of power.

The next step for increasing state brightness is the collection of a larger solid

angle of down-converted photons. In practice, this is accomplished by opening

the collection apertures that define the ~k-vector content of the entangled state.

This quadratically increases the number of measured photon pairs with aperture

diameter, but also typically induces a steady drop in the quality of the entangled

states. More specifically, the coherence between the |HH〉 and |V V 〉 terms

degrades, leading to progressively more mixed states. This effect was measured,

and the results are shown in Figure 3.4.

3.2.1 The “Migdall effect”

Equation 3.5 states that the output of our entanglement source produces only

HH and V V terms, with no contribution from HV or V H counts. This is

2Though little data has been systematically collected concerning this effect, it is believed
that it is in fact the antireflection coatings on the BBO crystals which are damaged by excessive
pump power. In practice this effect requires that the experimenter periodically move the pump
to fresh “spots” on the down-conversion crystals, and eventually replace them entirely with
new, undamaged crystals.
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Figure 3.4: The effects of iris size on the quality of the measured entangled state.
The data was taken with collection irises 120 cm from the down-conversion
crystals; the irises were opened together. For larger irises, a larger solid angle
is collected, which leads to state decoherence and degraded fidelity with the
maximally entangled state.

in fact an approximation, which was first pointed out by Alan Migdall in [49].

Type-I down-conversion requires that the daughter photons be ordinarily po-

larized in the nonlinear crystal in which they are produced. However, for a

nonlinear crystal which is not critically phasematched3 (like our crystal, whose

optic axis is at 33.9◦), ordinary polarization will not exactly correspond to |HH〉
or |V V 〉. The details of this are discussed in [49], but the essential effect arises

because the ordinary polarization vector must be perpendicular to both the

beam propagation vector and the crystal optic axis. For our source, the actual

state produced by the first crystal is predicted to be ∼ |1.3◦〉| − 1.3◦〉, rather

than |HH〉 ≡ |0◦〉|0◦〉. These states have 99.9% fidelity with our HH and V V

approximations, and are therefore neglected. However, this effect will account

for a 0.1% error in all states that we create—an effect that becomes increasingly

important as the accuracy of our state creation system improves. The actual

state produced by the second crystal is |V V 〉 ≡ |90◦〉|90◦〉, as expected.

3Critical phasematching refers to the condition where the optic axis of the down-conversion
crystal is in a plane parallel to the surface of that crystal, and hence perpendicular to the
pump propagation direction.
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3.3 Angle-dependent birefringent phases

The observed decoherence of the entangled state as a function of collected solid

angle is due to an angle-dependent phase shift. Recall from Equation 3.5 that

for experimentally produced entangled states there is a phase factor eiφ between

the |HH〉 and |V V 〉 terms. This phase depends on the geometry of the crystals,

the wavelengths of the down-converted photons and, most importantly, on the

angles that the down-conversion leaves the crystals. Because the propagation

direction of down-converted photons is distinguishing information, when multi-

ple ~k-vectors are collected simultaneously, many entangled states with different

phases are added incoherently, leading to decoherence. In order to calculate

this effect, it is first necessary to calculate the optical phase that a photon of a

specific wavelength receives from an arbitrary birefringent crystal. It is impor-

tant to note that the relevant phase is not derived from the total optical path

length, but from the difference in optical path lengths between the horizontal

and vertical components of light sent through the nonlinear crystal.

3.3.1 Angle-dependent phases from arbitrary crystals

In general, calculating the phase that a monochromatic photon accumulates

from a birefringent crystal at arbitrary orientation requires three separate but

interconnected calculations: the extraordinary phase Φe, the ordinary phase Φo,

and the extra phase Φ∆ that the extraordinary beam accumulates outside the

crystal.

To simplify this calculation, it is assumed that the ẑ-axis is normal to the

crystal surface, the incident photon is traveling in the x̂-ẑ plane with positive

ẑ- and non-negative x̂-momenta, and the faces of the crystal are parallel and

transversely unbounded. Furthermore, it is useful to define the following angles,

vectors, and variables (see Figure 3.5). Note that in this section, ˆ symbol

written over a variable indicates a unit vector. In every other section, a ˆ

symbol written over a variable indicates a matrix.

Using these definitions, it is possible to construct the formulae necessary to

compute the desired phases. First, recall the formulae for Snell’s Law and basic

birefringence [24]:

ψo ≡ asin

(
sin (α)

no

)
, (3.8)

ψe ≡ asin

(
sin (α)

ne (θ)

)
, (3.9)

ne (θ) ≡ no

√√√√
1 + tan2θ

1 +
(
no

ne
tanθ

)2 . (3.10)

In birefringent materials, the extraordinary beam’s Poynting vector (Ŝe)
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k̂α Incident photon’s unit momentum outside of the crystal
κ̂o Unit momentum for ordinarily polarized light in the crystal
κ̂e Unit momentum for extraordinarily polarized light in the crystal

α Angle between ẑ and k̂α
ψo Angle between ẑ and κ̂o
ψe Angle between ẑ and κ̂e
Ô Crystal optic axis

Ŝo Ordinary Poynting vector inside the crystal Always equal to κ̂o
Ŝe Extraordinary Poynting vector inside the crystal

β Angle between ẑ and Ŝe
ρ Angle between Ŝe and κ̂e
∆ Free-space distance that the extraordinary beam must travel

no, ne The crystal’s ordinary and extraordinary indices of refraction
ne (θ) Index of refraction for a direction angle θ from the optic axis

Table 3.1: Variables used for calculating optical phases in birefringent crystals.
Note that a ˆ symbol written over a variable indicates a unit vector.

κ̂e

κ̂o, Ŝo

Ŝe

k̂α

Ô

·
ŷ

ẑ

x̂

ρ

β

ψo

ψe

θ

α
∆

d

Figure 3.5: Diagram illustrating all relevant vectors, angles, and variables used
for calculating angle-dependent phase differences due to birefringent crystals.
Arbitrarily polarized light is incident from the left onto a negative uniaxial
crystal (e.g., BBO) with its optic axis (Ô) in the plane of the page.

deviates from its momentum vector (κ̂e) by an angle ρ [24]:

ρ =

(
θ − atan

[
n2
o

n2
e

tanθ

])
sgn (no − ne) . (3.11)

Ŝe dictates the physical path of the light as it travels through the crystal, and

more importantly, when and where it exits the crystal. This vector is further

from the optic axis than κ̂e for negative uniaxial crystals (no > ne, e.g., BBO),

and closer for positive uniaxial crystals (no < ne, e.g., quartz). Figure 3.5 shows

the special case where Ŝe is in the plane of incidence.

It is now possible to compute in radians the three phases relevant to the

problem, by multiplying the optical path length in waves by a factor of 2π
λ

(λ
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is the wavelength of the photon outside of the crystal):

Φo =
d

cos (ψo)
no

(
Ŝo · κ̂o

) 2π

λ
=

d

cos (ψo)
no

2π

λ
, (3.12)

Φe =
d

cos (β)
ne (θ)

(
Ŝe · κ̂e

) 2π

λ
, (3.13)

Φ∆ =
2π

λ
∆ =

2π

λ

(
d

cos (ψo)
Ŝo · k̂α − d

cos (β)
Ŝe · k̂α

)
. (3.14)

The dot product in Equation 3.12 and Equation 3.13 accounts for the fact

that although the light travels along Ŝ, its wavefronts are perpendicular to and

determined by κ̂, creating a smaller effective optical path length by a factor of

the cosine of the angle between these vectors. In Equation 3.12, this factor is

1, but for the extraordinary case—Equation 3.13—this can be a large effect.

The distance ∆ depends entirely on where Ŝo and Ŝe enter and exit the crystal,

which can be quite complicated for the general case where these vectors are not

in the plane of incidence: to simplify this calculation, one can instead project

these two vectors (using a dot product) onto k̂α. The difference between these

projections is the distance ∆.

3.3.2 The angle-dependent phase from DC crystals

Using these methods to compute ordinary and extraordinary phases in bire-

fringent crystals, it is possible to apply them to the specific case of the down-

conversion crystals used to produce entangled states. To do this, it is necessary

to calculate the phase φ as a function of the signal direction outside of the crys-

tals, k̂α. To simplify this task, assume that the signal and idler photons are

“born” in the center of their respective crystals, travel in directions which are

completely symmetric about the pump beam, are ordinarily polarized in their

own crystal, and are extraordinarily polarized in the remaining crystal (this

last approximation is close to correct, but see Section 3.2.1 and reference [49]).

Both the |V V 〉 and |HH〉 terms receive an equal ordinary phase in their own

crystals, which we can neglect as a global phase. The |V V 〉 photons born in the

first crystal together receive a net additional extraordinary phase in the second

crystal equal to

φdc

(
k̂α

)
= 2 (Φdc,e + Φdc,∆) , (3.15)

double the phase accumulated by just one of the daughter photons. (Note that

the terms in Equation 3.15 implicitly depend on k̂α). This makes the final

entangled state for a 45◦-polarized pump beam:

|ψ
k̂α
〉 =

1√
2

(
|HH〉 + ei2(Φdc,e+Φdc,∆)|V V 〉

)
. (3.16)

Because experimental setups use finite size irises which accept a range of k̂α,
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the state passed by the irises can be described by the unnormalized state:

|ψ〉Iris =

∫

Iris

|ψ
k̂α
〉|k̂α〉dk̂α. (3.17)

Because all pairs that pass through the irises are measured together, the actual

state measurement traces over direction, producing the density matrix:

ρ̂ =

∫

Iris

|ψk̂α
〉〈ψk̂α

|dk̂α. (3.18)

Incoherently summing these individually maximally entangled states leads to an

effective decoherence, as we conjectured earlier. Direct theoretical calculation of

the phase φ for our down-conversion crystals does in fact reveal a large, mostly

one-dimensional angle-dependent phase shift, which appears to explain the ex-

perimentally observed decoherence with increased iris size. This theoretically

calculated phasemap is shown in Figure 3.6a.

In order to experimentally verify this calculation, the same phasemap was

measured by taking a series of 25 complete state tomographies, using very small

(2-mm) irises, and recording the phase φ between the |HH〉 and |V V 〉 compo-

nents of the measured entangled state. These experimental results are shown in

Figure 3.6d.

3.4 Phase compensation

The angle-dependent birefringent phase, which is the source of decoherence for

the bright source of entangled photons, can be compensated for with an appro-

priate choice of additional birefringent optics. These compensation crystals are

inserted into the path of the down-converted entangled state in each arm, paral-

lel to the down-conversion crystals, as shown in Figure 3.2. In order to calculate

the phase-shift that this type of crystal will cause, it is necessary to remember

that these are different than the special case of down-conversion crystals; here

all photons always travel through the entire crystal (e.g., no photons are born

in the middle of a crystal). For compensation crystals of the same type, one in

each arm, with optic axes in the horizontal plane, the compensating phase is

φc

(
k̂α

)
= 2 (Φc,o − Φc,e − Φc,∆) , (3.19)

with the final compensated state equal to

|ψcomp,k̂α
〉 =

1√
2

(
|HH〉 + ei(φdc+φc)|V V 〉

)
. (3.20)

In order to design crystals to compensate the measured phase slope from the

down-conversion source, it is necessary to optimize compensation crystals such

that the sum of the phasemaps from the down-conversion and the compensation
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crystals is as flat as possible.

It was experimentally convenient to use BBO cut at the same angle as the

down-conversion crystals for the compensation crystals. Note however that there

is a continuum of virtually equivalent choices accessible by making a tradeoff

between optic-axis angle and crystal thickness. If the optic axis is fixed at 33.9◦

(from crystal normal) and the thickness is optimized, we find that a thickness

of 245-µm is ideal (phasemap shown in Figure 3.6a). Figure 3.6b shows the ex-

pected sum of the first two phasemaps, an extremely flat function as compared

to the original down-conversion phasemap; Figure 3.6c shows the theoretical pre-

diction of the simultaneously bright and high-fidelity compensated state (only

the absolute value of the state is shown, as it is the coherence which is important

rather than the particular value of the phase between |HH〉 and |V V 〉).
In order to test the effectiveness of this compensation method, another ex-

perimentally measured phasemap was taken, this time with the compensation

crystals in the beam path. This data, shown in Figure 3.6e, reveals a flat

phasemap. This indicates that for the ~k-vectors measured the down-converted

entangled states have essentially the same phase factor φ. Even though these

states are added incoherently, this addition does not lead to decoherence. Figure

3.6c and Figure 3.6f compare the theoretical and experimental density matrices,

respectively, for a compensated entangled state collected using 1-cm irises.

Close inspection of the compensated experimental curves shows small in-

duced phase shift in the azimuthal (y) direction, even while the radial (x) phase

shift appears to have been almost completely compensated for. This residual

phase shift is not predicted by theory, and could result from a number of effects,

none of which have been thoroughly tested: limitations of the theory, due to its

use of monochromatic light; limitations on the theory, due to the Migdall effect

(see subsection 3.2.1 and reference [49]); systematic error in the tomographies,

which is dependent on the ~k-vectors of the down-conversion; misalignment of the

compensation crystals relative to each other or relative to the down-conversion

crystals.

3.5 The ultra-bright source

3.5.1 Results

The final test of this compensation method is its effectiveness in dealing with

the original decoherence problem. Figure 3.7 shows the original data for source

decoherence with iris size, superimposed with the measured data for the com-

pensated source. For reference, the same plot also shows the quadratic increase

in coincidence counts gained from using larger collection irises.

This figure’s data indicates that the compensation technique has led to a si-

multaneously bright and high quality state. The brightest state measured using

this technique and characterized with state tomography (see Chapter 5) had a
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Figure 3.6: Theoretical (a-b) and experimental (d-e) plots of the phase difference

φ as a function of signal direction k̂α, combined with the predicted (c) and
measured (f) density matrices. To match experimentally collected data, the

direction k̂α is represented as a transverse position in space ∼ 120 cm from the
down-conversion crystals. Here, x = 0, y = 0 corresponds to the central 702-nm
down-conversion directions, ∼ 3◦ (6.35 cm) from the pump axis. Here, x refers
to the radial direction and y refers to the azimuthal direction, with respect to
the pump axis. (a) The phasemap due solely to the down-conversion crystals
(each 600-µm thick, 33.9◦ optic axis, BBO), superimposed with the phasemap
due to two BBO compensation crystals, one in each arm, each 245 µm thick
and cut with a 33.9◦ optic axis. The slope of each phasemap is approximately
±14◦ per mm. (b) The sum of both phasemaps from (a). The flat character
indicates that approximately the same entangled state will be present at each
position on this plot, corresponding to a high-fidelity state measured using large
irises. (c) The theoretically predicted density matrix that would result from
a measurement over this flat phase surface, using 1-cm diameter irises. (d)
Experimentally measured phase for the uncompensated configuration. Each
black dot represents an experimental measurement of this phase, extracted from
the result of a full state tomography. The mesh graphically represents these
points by linearly connecting nearest neighbors. The phase difference is nearly
linear, approximately 17◦ per millimeter, and varying in the radial direction out
from the pump beam axis. (e) The compensated configuration. The surface
is very flat, with a maximum slope of less than 3◦/mm, and a total phase
variation of approximately 25◦ over a centimeter, a seven-fold improvement
over the uncompensated case. (f) The experimentally recorded density matrix
(absolute value shown here) describing the ultra-bright entangled state: 1.02 ×
106 measured pairs per second, 97.7% fidelity with a maximally entangled state.

fidelity of 97.7%± 0.1% with a maximally entangled state and an average mea-

sured intensity of 1.02× 106 photon pairs per second. A series of measurements

of Bell’s inequalities4 [75] were taken using a 310-mW pump beam in order

4A Bell inequality is a type of measurement which measures correlation and is used to
characterize two particle states; it is discussed in detail in Chapter 5. For the type of inequality
used here, local hidden variable theories predict values of less than or equal to 2. Quantum
mechanics predicts values of up to 2

√
2, with values of greater than 2 indicating entangled

states. The largest violations of Bell’s inequalities reported in Chapter 5 are 2419–σ in 2
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Figure 3.7: The effects of iris size on the fidelity and rate of measured entan-
gled states. Note that for this measurement, the diameters of both irises are
adjusted, with each positioned in the plane normal to the pump direction and
120 cm from the down-conversion crystals. Shown here are both the standard
(uncompensated) and compensated configurations. The y-axis on the right de-
scribes the detected source intensity (for a 280-mW pump and 25-nm filters),
quadratically increasing as a function of iris size.

to demonstrate not only the state’s quality but also the extremely short time

in which precise measurements can be collected. These measurements resulted

in a violation of 2.7260 ± 0.00336 (216 σ) in 0.8 s of total measurement time,

and a violation of 2.7252± 0.000585 (1239 σ) in 28 s with an average measured

intensity of 2.01 × 106 pairs per second. (Note that because the statistical er-

rors on these values are extremely low, it is almost certain that uncharacterized

systematic errors are dominating these measurements.)

3.5.2 Experimental techniques

In order to measure this ultra-bright source, it was necessary to address the

problem of detector saturation. Because the Si-avalanche photodiodes used as

detectors have a maximum useful rate of approximately 4 × 106 singles counts

per second, measuring high coincidence count rates requires high detection effi-

ciencies.

One method for increasing our detection efficiencies was proposed and first

implemented by A. G. White (Univ. of Queensland, Australia), and attempted

to eliminate some of the loss due to high reflectivity (40%) spectral filters. By

placing a QWP between the measurement PBS and the filter-detector assem-

minutes of data collection (largest statistical violation) and 2.826±0.005 in four hours of data
collection (largest absolute violation).
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blies, and a mirror at the unused port of the PBS, all light reflected at the filters

will eventually be redirected towards the filters a second time. This reflection

technique is illustrated in Figure 3.8a, and the associated filter transmissivity

improvement is plotted in Figure 3.8b. This technique effectively increases the

transmission of our filters from 0.6 to ∼ (0.6 + 0.4 × 0.6) = 0.84. (Note that

these calculations assume perfect transmission in the waveplates and polarizing

beam splitter, and perfect reflection at the mirror.)
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Figure 3.8: Diagram and theoretical benefits of a reflection recycling technique
designed to increase the transmission of an interference filter which reflects
too much light. The same technique can be applied to any partially reflective
surface. (a) A diagram of the experimental setup. Consider light transmitted
by the PBS, and therefore horizontally polarized. After passing through the
QWP this light is transformed to right-circularly polarized light, and then either
transmitted or reflected by the interference filters. If transmitted, then the
device is considered to have succeeded. If reflected, the light will travel back
through the quarter waveplate, be rotated to vertical polarization, reflected at
the PBS, retroreflected by a mirror, and travel back through the PBS toward the
filter-detector assembly for a second chance at detection. In a similar manner,
light which is reflected towards the other detector will also get two attempts
at transmission. (b) A theoretical plot of the effectiveness of this technique.
One curve shows possible transmissions of an interference filter, T, and another
shows the theoretical improved transmission T ′ when reflection recycling is used:
T ′ ≡ T + T (1 − T ) = T (2 − T ).
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Taking advantage of both the high collection efficiency of large irises and this

new reflection technique, detection efficiencies in excess of 30% were achieved.

(This efficiency is due to detector quantum efficiency (∼ 65% for the SPCM

AQR-14), iris collection efficiency (∼ 70% for 9-mm irises), reflection losses from

the interference filters (∼ 84%), saturation losses due to the 30-ns dead-time of

the detectors (up to ∼ 5%, depending on the count rate), and other reflection

and absorption losses due to miscellaneous optics.) In addition, a polarizing

beam-splitter and two detectors in each arm (see Figure 3.2), simultaneously

measured a complete basis of four separable projectors at a time, giving each

singles count a chance to contribute to a coincidence.

It is interesting to note that because these experiments operated near the

saturation limit of the detectors, the entangled pairs produced far exceeded those

measured, and it is estimated that the actual rate of entangled-state production

into 9-mm irises and 25-nm filters exceeds 20× 106 entangled pairs per second.
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4 State Manipulation

4.1 Methods for manipulating quantum states

The photon source described in Chapter 3 can produce either separable or

maximally-entangled states, as well as the gamut of nonmaximally-entangled

states running between those two extremes (see Example 3.1). This chapter

details the experimental options for state manipulation.

To represent the operators which act on polarization-encoded qubits, it is

convenient to introduce the Jones calculus [30], a representation for polarized

photons corresponding to the notation of Chapter 2. In Chapter 2, pure and

mixed states were represented using vectors and matrices; operators in the Jones

calculus are represented by matrices which linearly act on these vectors and

matrices. For an operator Ô acting on a pure state |ψ〉, the resulting state |ψ′〉
is given by

|ψ′〉 = Ô|ψ〉. (4.1)

For a state represented by a density matrix ρ̂, the resulting state after the

operator is given by

ρ̂′ = Ôρ̂Ô†, (4.2)

where the † represents a Hermitian conjugate (i.e., transposed complex conju-

gate). For single qubit states, the operator Ô will be a 2× 2 matrix, for d-level

qudits, a d× d matrix, and for n-qubit systems, a 2n × 2n matrix. In all cases,

each element of Ô will in general be complex.

4.1.1 Unitary transformations

The simplest form of operator is the unitary transformation. An operator Û is

unitary if and only if

Û Û† = I, (4.3)

where I is the identity matrix. Unitary transformations are often referred to as

unitary rotations, and single-qubit unitary transformations can be easily visual-

ized as rotations of the Poincaré sphere about an axis defined by the orthogonal

states defined by the eigenvectors of the transformation. In optics, unitary trans-

forms on polarization are often implemented by waveplates, which most often

act as either a 90◦ (for a quarter waveplate) or a 180◦ (for a half waveplate)

rotation about an axis in the equator of the Poincaré sphere. More information
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Figure 4.1: Graphical depictions of two unitary transformations on the Poincaré
sphere. (a) A π

4 rotation about the H-V axis. This type of rotation
could be implemented using a φ-plate (see Example 4.1). (b) A Hadamard
gate. This rotation is equivalent to a half waveplate at 22.5◦, and takes
|H〉 → |D〉, |V 〉 → |A〉, |D〉 → |H〉, |A〉 → |V 〉, |R〉 → |L〉, and |L〉 → |R〉.

about waveplates can be found in Appendix C.

General unitary transformations have several qualities which are very useful

to keep in mind. First, all unitary transformations have an eigenbasis. This is a

set of orthonormal states which are unaffected (except for a phase factor eiφ) by

the unitary transformation (for a d-level system, the eigenbasis has d elements).

This is why a unitary rotation on the Poincaré sphere rotates about an axis

defined by the rotation’s eigenvectors. They are the only states unaffected by

the rotation. Second, the unitary transformation operates by applying a phase

to each of these states. Written mathematically, this looks like

Û ≡ eiφ0 |e0〉〈e0| + eiφ1 |e1〉〈e1| + . . .+ eiφd−1 |ed−1〉〈ed−1|, (4.4)

where the states |ei〉 are the orthonormal basis which are the eigenvectors of the

operator Û . Thought about another way, a unitary transformation rotates the

d-element canonical basis |i〉 into a new orthonormal basis |ψi〉 while applying

a phase to each element:

Û ≡ eiφ
′
0 |ψ1〉〈0| + eiφ

′
1 |ψ2〉〈1| + . . .+ eiφ

′
d−1 |ψd−1〉〈d− 1|. (4.5)

Even more generally, a unitary can always be written as a transformation from

any orthonormal basis |τi〉 to another orthonormal basis |ψi〉:

Û ≡ eiφ0 |ψ1〉〈τ0| + eiφ1 |ψ2〉〈τ1| + . . .+ eiφd−1 |ψd−1〉〈τd−1|. (4.6)

Figure 4.1 depicts several single-qubit rotations using the Poincaré sphere.

Example 4.1 (The φ-plate) In general, the two-crystal entanglement source

of Chapter 3 yields maximally entangled states of the form

|ψ〉 =
1√
2

(
|HH〉 + eiφ|V V 〉

)
. (4.7)
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It is often experimentally useful to tune the phase φ in order to produce a differ-

ent maximally entangled state of the same form. Experimentally, this is accom-

plished by placing a waveplate at 0◦, tilted about the vertical axis, in one arm

of the down-conversion. Tilting the waveplate will slowly vary the retardance φ′

of that waveplate, changing it from a quarter or a half waveplate to some other

value. Written in terms of its eigenstates, this waveplate’s transformation is

Ûφ ≡ |H〉〈H| + eiφ
′ |V 〉〈V |. (4.8)

For a waveplate at normal incidence,

φ′ = 2π (no − ne)
d

λ
. (4.9)

Written as a matrix, the transformation is

Ûφ ≡
(

1 0

0 eφ
′

)
. (4.10)

Since this is a single-qubit operator, applying it to the two-qubit state above

requires writing it in a tensor product with the identity (as there is no operator

being applied to the other arm of the down-conversion). The total operator is

therefore

Û = Ûφ ⊗ I =

(
1 0

0 eφ
′

)
⊗
(

1 0

0 1

)
=




1 0 0 0

0 1 0 0

0 0 eφ
′

0

0 0 0 eφ
′



, (4.11)

which in turn makes the final state

Û |ψ〉 =
1√
2

(
|HH〉 + ei(φ+φ′)|V V 〉

)
. (4.12)

See Figure 4.1a for a graphical depiction of this operation.

Example 4.2 (Half and quarter waveplates) Waveplates, as some of the

most useful tools in a polarization lab, are often used as single-qubit operators.

The operator matrices for quarter and half-waveplates are given by

UHWP (θ) =

(
cos2(θ) − sin2(θ) 2cos(θ)sin(θ)

2cos(θ)sin(θ) sin2(θ) − cos2(θ)

)
,

UQWP (θ) =

(
cos2(θ) + isin2(θ) (1 − i)cos(θ)sin(θ)

(1 − i)cos(θ)sin(θ) sin2(θ) + icos2(θ)

)
, (4.13)

with θ denoting the rotation angle of the waveplate with respect to horizontal.

On the Poincaré sphere, these correspond to rotations of either π
2 (QWP) or π

(HWP) about an axis in the equatorial plane (i.e., the H-D plane), at an angle
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2θ from H.

Example 4.3 (The Hadamard transformation) The Hadamard transfor-

mation [52] is often used in the theory of quantum computation as a basic op-

erator. It’s operation on the cardinal polarization states can be summarized as

|H〉 → |D〉, |V 〉 → |A〉, |D〉 → |H〉, |A〉 → |V 〉, |R〉 → |L〉, and |L〉 → |R〉. As an

operator,

Ĥ ≡ 1√
2

(
1 1

1 −1

)
. (4.14)

The Hadamard gate can be implemented for polarization-encoded qubits with

a half waveplate at 22.5◦. See Figure 4.1b for a graphical depiction of this

operation.

4.1.2 Projections

Not all useful operations are unitary. Specifically, projective measurements (first

introduced in Chapter 2 as a way to interpret certain state parametrizations)

allow both the preparation of pure states and the characterization of unknown

systems. A projection is a lossy process, meaning that an ensemble of states

subjected to projection will in general be reduced in size by the projection, and

it will additionally transform all members of the ensemble which survive into

the projected state. A projection1 into the state |ψ〉 can be written as

Pψ ≡ |ψ〉〈ψ|. (4.15)

Example 4.4 (A polarizing beam splitter) A polarizing beam splitter is an

optical element which splits the horizontal and vertical components of a beam

of light into two different spatial modes. Most commonly, horizontal light is

transmitted through the beam splitter and vertical light is reflected by 90◦. This

effectively acts as two different projectors, one horizontal (PH) and one vertical

(PV ). As matrices, these are written as

PH ≡
(

1 0

0 0

)
, PV ≡

(
0 0

0 1

)
. (4.16)

(More correctly, the PBS entangles the polarization state with direction, and the

above matrices apply when we look at only one output at a time—see Example

4.7).

1While we discuss projections onto a single state, real measurements almost always project
onto a subspace of a larger Hilbert space which is composed of many states. For example,
a polarizing beam splitter projects a photon into a specific polarization, but because it has
limited physical extent also projects that photon into a specific range of spatial modes. This
more general view of physical projectors is beyond the scope of this work.
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4.1.3 Decohering elements

Decoherence is another type of non-unitary operation, and one of the chief ob-

stacles to the realization of a quantum computer. It is generally considered

something to be avoided, though as we will see later, it can also be used to

engineer desired states and operations. Decoherence, like a unitary transforma-

tion, is associated with an eigenbasis, and the orthonormal states within this

basis are unaffected by the decohering operation. Instead of rotating around

these states, a decoherer instead destroys their coherence by making them dis-

tinguishable. This means that for a decoherer acting in the ψ − ψ⊥ basis, all

coherence between |ψ〉 and |ψ⊥〉 will be destroyed, and the |ψ〉〈ψ⊥| and |ψ⊥〉〈ψ|
terms in a state’s density matrix will disappear. In a sense, decoherence is like

simultaneous projection into the |ψ〉 and |ψ⊥〉 bases; the decoherence described

above operating on the state ρ̂ will yield the state Dψ (ρ̂), given by

Dψ (ρ̂) = Pψρ̂P
†
ψ + Pψ⊥ ρ̂P †

ψ⊥

= |ψ〉〈ψ|ρ̂|ψ〉〈ψ| + |ψ⊥〉〈ψ⊥|ρ̂|ψ⊥〉〈ψ⊥|. (4.17)

For decoherence in multiple qubits, the situation becomes more complex and

requires careful thought to determine the operators involved. The key element is

distinguishability; when two states become (in principle) distinguishable, their

coherence disappears.

Example 4.5 (Polarization-based temporal decoherers) A thick birefrin-

gent element, with its optic axis in the horizontal or vertical plane, will induce

an phase difference (ei(φH−φV )) between horizontal and vertical light. Depend-

ing on the characteristics of the light passing through the element, and the size

of the path length difference, the horizontal and vertical components of the light

may become distinguishable. This distinguishability arises from an entanglement

between frequency and polarization. The phases that a birefringent element with

an optic axis at 0◦ apply to horizontal and vertical light (ignoring dispersion)

are given by:

φH = 2πne
d

λ

φV = 2πno
d

λ
, (4.18)

where no and ne are the ordinary and extraordinary indices of refraction, re-

spectively. While the distinguishability can be exactly calculated by using these

frequency dependent phase relationships, it is extremely helpful to think of these

phase shifts as a temporal shift, and the H-V phase difference as an induced

temporal separation between the horizontal and vertical components of the light.

(Recall a phase shift which is linearly proportional to frequency will act as a

pulse delay). If the timing delay is larger than the coherence length of the light,

then this information effectively distinguishes between the two states, |H〉 and
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|V 〉, and causes decoherence, which transforms the state’s density matrix ρ̂:

ρ̂ =

(
A α

α∗ B

)
−→ DH (ρ̂) =

(
A 0

0 B

)
. (4.19)

Temporal decoherence will produce a subtle phenomenon when applied to a two-

qubit state. Consider applying this type of decoherence in each arm of a two-

qubit, polarization-encoded state, of the type described in Chapter 3. In practice,

we use thick pieces of quartz as the decoherers, which induce a ∼ 140λ path length

difference between |H〉 and |V 〉 photons—the typical down-conversion coherence

length for 5-nm interference filters. This path length is large enough to ensure

a measurable relative delay of the light’s vertical component with respect to the

horizontal. However, the path length difference is much less than the coherence

length of the pump photons (∼ 30 cm), which determines the absolute delay

necessary to induce decoherence. In other words, for the state |HV 〉, photon

A will arrive before photon B, for the state |V H〉, photon B will arrive before

photon A, and for the states |V V 〉 and |HH〉, the two photons will arrive at the

same time. Because the coherence length of the pump is so long, the absolute

arrival times of the |V V 〉 and |HH〉 terms will not be distinguishable, and the

coherence between them will not be destroyed. This makes the final operation of

the twin decoherers

ρ̂ =




A α β γ

α∗ B δ ǫ

β∗ δ∗ C ζ

γ∗ ǫ∗ ζ∗ D




−→ Dtwin (ρ̂) =




A 0 0 γ

0 B 0 0

0 0 C 0

γ∗ 0 0 D



. (4.20)

This operation is of course an approximation. Because the pump coherence

length is not infinitely larger than the induced time delay, the γ terms will be

slightly decohered. Because the induced time delay is not infinitely longer than

the down-conversion coherence length, the other coherences will be slightly larger

than zero. An exact calculation of temporal decoherence requires using the com-

plete frequency spectrum of the pump and the down conversion, as well as the

dispersion of the quartz crystal. A full treatment is given in [15].

4.1.4 Entangling operations

All the operations discussed to this point transform single-qubit states, and

are used in that capacity for most of the experiments described in this thesis.

However, quantum information’s real promise lies within the realm of multiple

qubits. Entangling operations can couple qubits, creating entangled states from

separable states and vice versa. They are, if fact, a special case of the unitary

operations described in Section 4.1.1.

Example 4.6 (The CNOT gate) The most famous example of an entangling
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operation is the CNOT gate (an abbreviation for “conditional not”). This gate

implements a conditional operation. If qubit 1 is in the state |V 〉 then a σ̂x

operation is implemented on qubit 2. Written in operator form,

ÛCNOT ≡




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



. (4.21)

This operator transforms the separable state |DH〉 into the maximally entangled

state |φ+〉 = 1√
2

(|HH〉 + |V V 〉).

Interestingly, many projections and decoherers can be rewritten in terms

of unitary entangling operations that take place in a larger dimension Hilbert

space than the projection or the decoherence. For projections, an entangling

operation couples the states being measured to different modes (e.g., spatial

modes or ~k-vectors), and only one of these modes is measured. This is why

projections appear to destroy some of the members of an ensemble. Instead,

these particles may have been redirected into a mode that is not measured;

this type of behavior is obvious for a PBS (see Example 4.7). For a decoherer,

the entangling operation can couple the states which lose coherence to another

degree of freedom (see Example 4.8). Because measuring that degree of freedom

would in principle distinguish between the states, they must lose coherence.

Example 4.7 (A polarizing beam splitter, revisited) Instead of looking at

the polarizing beam splitter as a projection, we can instead view it as a device

which entangles polarization and momentum. If a photon is vertically polarized,

it is directed to path ~kR (reflected); if it is horizontally polarized, it is directed

to path ~kT (transmitted). Written as an operator,

ÛPBS ≡




〈H|〈~kT | 〈H|〈~kR| 〈V |〈~kT | 〈V |〈~kR|
|H〉|~kT 〉 1 0 0 0

|H〉|~kR〉 0 1 0 0

|V 〉|~kT 〉 0 0 0 1

|V 〉|~kR〉 0 0 1 0



. (4.22)

This is exactly the same operator matrix as the CNOT gate; both are entangling

operations that can make separable states into entangled states and vice versa.

Example 4.8 (The CSIGN as a decoherer) Consider coupling the ancil-

lary qubit state |ψ1〉 = 1√
2

(|A〉 + |B〉) to a spin- 1
2 particle initially in the pure
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state |ψ2〉 = 1√
2

(| ↑〉 + | ↓〉) with the CSIGN2 operation

ÛCNOT ≡




〈A|〈↑ | 〈A|〈↓ | 〈B|〈↑ | 〈B|〈↓ |
|A〉| ↑〉 1 0 0 0

|A〉| ↓〉 0 1 0 0

|B〉| ↑〉 0 0 1 0

|B〉| ↓〉 0 0 0 −1



. (4.23)

This is a mathematical model for a magnetic field in the quantization direction

with a random and equal chance to apply either an ei2π (field A) or an eiπ (field

B) phase factor to | ↓〉. This produces the entangled state

|ψ〉total =
1

2
[(| ↑〉 + | ↓〉) ⊗ |FieldA〉 + (| ↑〉 − | ↓〉) ⊗ |FieldB〉] . (4.24)

Tracing over the state of the field, we find the system in the totally mixed ensem-

ble ρmixed = 1
2 (| ↑〉〈↑ | + | ↓〉〈↓ |). The presence of a degree of freedom which is

in-principle measurable has made the | ↑〉+ | ↓〉 and | ↑〉−| ↓〉 states distinguish-

able, and has destroyed their coherence. This model of decoherence can vary in

either strength3 or basis (with the random phases applied to a state other than

| ↓〉).

4.2 Creating arbitrary two-qubit states

Aside from implementing quantum protocols, such as decoherence-free sub-

spaces, the tools of state manipulation that have been presented up to this

point can be used to transform the Bell-state output from the double-crystal

entanglement source into a wide variety of states. This section will detail a theo-

retical scheme for implementing truly arbitrary two-qubit state creation, as well

as document several important classes of states which have been successfully

constructed in the lab.

4.2.1 Creating arbitrary two-qubit pure states

A state’s entanglement cannot be changed by using separable operations on its

constituent qubits. The converse is also true: for a pure state, local unitary op-

erations can transform it into any other pure state with the same entanglement.

Our entanglement source can be used to create nonmaximally entangled states

of the form

|ψ〉 = cos(θ)|HH〉 + eiφ sin(θ)|V V 〉. (4.25)

2The CSIGN operation is an entangling operation closely related to the CNOT; instead
of conditionally applying a σ̂x operator, the CSIGN conditionally applies a σ̂z , only if the
control bit is in the state |1〉.

3For example, if there were only a 10% chance of the decohering magnetic fields affecting
the system, it would create the partially mixed state ρ = 0.9|ψi〉〈ψi| + 0.1ρmixed—the result
of relatively weak decoherence.
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Local unitary operations can transform |H1〉 → |α〉 and |H2〉 → |β〉, creating

the state

|ψ〉 = cos θ|α〉|β〉 + sin θeiφ|α⊥〉|β⊥〉, (4.26)

which is the Schmidt decomposition of an arbitrary two-qubit pure state (see

Equation 2.61). For information on how to use waveplates to implement arbi-

trary local unitary operations, see Appendix C.

4.2.2 Revisiting the diagonal representation

Creating arbitrary two-qubit states requires the ability to create mixed as well

as pure states. The problem is that for mixed states, an arbitrary number of

types of pure states can make up an ensemble of particles. Fortunately, using

Equation 2.27, it is possible to write any two-qubit state as the sum of at most

four orthogonal pure states:

ρ̂(2) =

4∑

i=1

Pi|φi〉〈φi|. (4.27)

This sum is incoherent, which means that any mixture of these four pure states

must leave them distinguishable from each other. Using this representation

therefore requires the ability to simultaneously create four arbitrary and or-

thogonal pure states (corresponding to |φi〉), incoherent with each other and

with arbitrarily selected probabilities (corresponding to Pi).

4.2.3 Scheme for totally arbitrary state creation

A complete analysis of possible schemes for two-qubit schemes for state creation

can be found in reference [68], and one such scheme will be presented here.

The key to this technique is the observation that a single pump photon with

arbitrary polarization maps, after down-conversion, to exactly two of the four

terms required for an arbitrary two-qubit pure state (see Figure 4.2a):

(α|V 〉 + β|H〉)pump −→ (α|HH〉 + β|V V 〉)dc . (4.28)

By inserting a half waveplate at 22.5◦ in one arm of this down-conversion,

another type of Bell state is created (see Figure 4.2b):

(γ|V 〉 + δ|H〉)pump −→ (γ|HV 〉 + δ|V H〉)dc . (4.29)

By sending a coherent superposition of these two pump beams through the

down-conversion crystals from opposite directions (so that the superposed pump

photons are counter-propagating) and adding the aforementioned half waveplate

to one of the (now four) down-conversion arms, the two final states from Equa-

tions 4.28 and 4.29 can simultaneously be produced, albeit traveling in opposite
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α|V 〉 + β|H〉

α|HH〉 + β|V V 〉

γ|V 〉 + δ|H〉

γ|HV 〉 + δ|V H〉

γ|V 〉 + δ|H〉 α|V 〉 + β|H〉

γ|HV 〉 + δ|V H〉α|HH〉 + β|V V 〉

γ|V 〉 + δ|H〉

α|V 〉 + β|H〉

α|HH〉 + β|V V 〉

+γ|HV 〉 + δ|V H〉

Figure 4.2: Experimental scheme for creating arbitrary two-qubit states, shown
through several conceptual stages. (a) A pump beam with polarization
(α|V 〉 + β|H〉)pump down-converts into the state (α|HH〉 + β|V V 〉)dc. (b) A
half waveplate at 45◦ is added to one arm of the down-conversion, allowing a
pump beam with polarization (γ|V 〉 + δ|H〉)pump to down-convert into the state
(γ|HV 〉 + δ|V H〉)dc. (c) By counterpropagating these two pump beams through
the same set of crystals, with a half waveplate at one of the four outputs the two
down-converted states above can simultaneously be produced, although these
two output states will be traveling in opposite directions. (d) By adding mirrors
to retro-reflect one down-converted pair and replacing the half waveplate with a
quarter waveplate, both down-converted states will overlap, producing the state
(α|HH〉 + β|V V 〉 + γ|HV 〉 + δ|V H〉)dc, an arbitrary two-qubit pure state. (e)
By arranging for four different pairs of pump pulses to enter the setup above,
each timed so as to be distinguishable, an arbitrary two-qubit mixed state can
be produced. (An arbitrary incoherent mixture of four arbitrary pure states is
an arbitrary mixed state.) This figure, created by T. C. Wei, first appeared in
[68].

directions (see Figure 4.2c).

Next, if one of these down-converted states is retroreflected using a mirror in

each arm to pass back through the down-conversion crystals, a superposition of

all four canonical basis terms will overlap, creating an arbitrary two-qubit pure

state. This actually requires one more change. Assuming the retroreflected state

is the state that was passing through the half-waveplate, it will now pass through

that waveplate twice, negating its effect. That half waveplate must therefore be
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replaced with a quarter waveplate; passing through a quarter waveplate twice

has the same effect as passing through a half-waveplate once (see Figure 4.2d).

Finally, in order to complete the arbitrary source of two-qubit states, an

incoherent mixture of pump light must be generated in order to cause these

crystals to create four orthogonal, distinguishable pure states. Coordination of

the delays between these states is essential, as the relative delay of the different

pump paths completely controls the coherence (and incoherence) of all of the

terms in the state. Specifically, as long as the relative pump delays (see Figure

4.2c) are greater than the coherence length of the pump, each of the four created

pure states will have a random phase relationship with the other three. Figure

4.2e shows a diagram of the complete experimental setup.

4.2.4 Classes of experimentally created states

While the type of arbitrary state creation scheme detailed in Section 4.2.3 has

never been experimentally implemented, several important classes of states have

been experimentally reproduced with a very high fidelity. In general, all of these

states are created using the methods for state manipulation that were laid out

in Section 4.1. Figure 4.3 shows experimentally measured density matrices for

each type of state.

Nonmaximally entangled states

The down-conversion source outlined in Chapter 3, Example 3.1, allows the

single-qubit pump state

|ψpump〉 = cos (ǫ) |V 〉 + eiφ sin (ǫ) |H〉 (4.30)

to down-convert into the two-qubit state

|ψdc〉 = cos (ǫ) |HH〉 + eiφ sin (ǫ) |V V 〉. (4.31)

This state can possess, with an appropriate choice of ǫ, any amount of entan-

glement, from separable (ǫ = 0◦) to nonmaximally entangled (0◦ < ǫ < 45◦) to

maximally entangled (ǫ = 45◦). These types of states can be reliably produced

with fidelities in excess of 99.5% [72, 7].

MEMS

During the early stages of quantum information, it was suspected that the

Werner states possessed the maximum entanglement for a given amount of mix-

ture (for measures of both entanglement and mixture, see Appendix A). This

was a natural assumption considering that the Werner states are a linear com-

bination of a maximally entangled state and the totally mixed state. However,

it was discovered [51] that a different class of states was more entangled than
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Figure 4.3: Experimentally measured density matrices for several classes of
two-qubit states. The absolute values of the density matrices are shown, as the
states which differ by off-diagonal phases are in practice equivalent (under local
phase shifts). All states have greater than 99% fidelity with their target. For
diagrams of the experimental apparatus used to create these states, see Figures
3.2 (nonmaximally entangled states), 4.10 (Werner states and MEMS), and 5.7
(CG states). (a) The state |HH〉, a separable state. (b) A maximally entangled
Bell state. (c) A nonmaximally entangled state, cos (ǫ) |HH〉+ eiφ sin (ǫ) |V V 〉,
with ǫ = 57◦. (d) A Werner state on the border between entanglement and
separability. (e) A maximally entangled mixed state (MEMS) with r = 0.71.
(f) A MEMS with r = 2

3 . (g) A “Collins-Gisin” state, specifically, ρ̂CG(π8 ). (h)
ρ̂CG( 3π

8 ).
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the Werner states for the same amount of mixture. These maximally entangled

mixed states, or MEMS, are written as

ρ̂MEMS ≡




r
2 0 0 r

2

0 1 − r 0 0

0 0 0 0
r
2 0 0 r

2




2
3 ≤ r ≤ 1




1
3 0 0 r

2

0 1
3 0 0

0 0 0 0
r
2 0 0 1

3




0 ≤ r ≤ 2
3

, (4.32)

where r is a state parameter which can vary from 0 to 1. To see how to create

these states, note that by creating the pure state

ρ̂pure =




r
2

√
r
2 (1 − r) 0 r

2√
r
2 (1 − r) 1 − r 0

√
r
2 (1 − r)

0 0 0 0
r
2

√
r
2 (1 − r) 0 r

2




2
3 ≤ r ≤ 1




1
3

1
3 0 1

3
1
3

1
3 0 1

3

0 0 0 0
1
3

1
3 0 1

3




0 ≤ r ≤ 2
3

,

(4.33)

using the techniques of Section 4.2.1 and applying to it the twin temporal de-

coherers of Example 4.5, one creates the partially mixed state

ρ̂partmixed =




r
2 0 0 r

2

0 1 − r 0 0

0 0 0 0
r
2 0 0 r

2




2
3 ≤ r ≤ 1




1
3 0 0 1

3

0 1
3 0 0

0 0 0 0
1
3 0 0 1

3




0 ≤ r ≤ 2
3

. (4.34)

This is almost exactly the state required by the MEMS formula, except that

the remaining off-diagonal elements are too large for r < 2
3 . Recall that these

did not decohere because the |HH〉 and |V V 〉 terms were indistinguishable after

the application of the twin decoherers, because even after these temporal delays,

both photons in each of these states still arrived at the detectors at the same

time. If only one of the temporal delays were to be slightly increased, these two
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states would start to become distinguishable, and the last off-diagonal element

would start to shrink, allowing the final element in the density matrix to be

tuned to match the form of the arbitrary MEMS state. This procedure was

performed in the lab, facilitating the creation of the first experimental MEMS,

which had greater than 99% fidelity with their target [57].

Werner states

A Werner state is a linear mixture of a maximally entangled state and the totally

mixed state, given by the formula

ρ̂Werner ≡ r|γ〉〈γ| + (1 − r)ρ̂I , (4.35)

where ρ̂I is the totally mixed state, |γ〉 is a maximally entangled state, and r is

a state parameter which varies from 0 to 1.

Werner states were experimentally created [3] using almost exactly the same

technique as the MEMS above. First choose an appropriate pure state to match

the state diagonal for the target state, then decohere all coherences except one,

and then vary the size of that element as desired by changing the temporal

delay of a single decoherer. Experimentally, this technique was implemented by

creating the pure state

ρ̂pure =




1
3

√
1
3 × 1

6

√
1
3 × 1

6
1
3√

1
3 × 1

6
1
6

1
6

√
1
3 × 1

6√
1
3 × 1

6
1
6

1
6

√
1
3 × 1

6

1
3

√
1
3 × 1

6

√
1
3 × 1

6
1
3



, (4.36)

and applying matched temporal decoherers to create the final state

ρ̂Werner =




1
3 0 0 1

3

0 1
6 0 0

0 0 1
6 0

1
3 0 0 1

3



. (4.37)

This final state is noteworthy because it exists in Hilbert space on the bor-

der between entangled and separable states, and because of its usefulness in

implementing ancilla-assisted process tomography (see Section 4.5.2).

Collins-Gisin states

A Bell inequality is one method of testing the entanglement of a state, or more

specifically, if that state is forbidden by local realism. Collins-Gisin (CG) states

[21] fall on the border between violating and not violating this inequality, and

provide an excellent test for methods of characterizing entanglement. The CG
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states are given by the equation

ρCG (θ) = λ|ψ (θ)〉〈ψ (θ) | + (1 − λ) |HV 〉〈HV |,
with |ψ (θ)〉 = cos(θ)|HH〉 + sin(θ)|V V 〉. (4.38)

For each state ρCG (θ), λ is chosen such that the CHSH violation4 is theoretically

predicted to be exactly equal to 0.

These states look very similar to MEMS (from the previous subsection).

They have multiple values on the diagonal, but only a single non-zero off-

diagonal element in the upper-right half of the density matrix. They can there-

fore be created just as MEMS were, using unitary transformations to make

an arbitrary pure state, followed by twin decoherers to eliminate all the off-

diagonal elements except for the corners. Of course this will not be necessary

for separable (θ = 0, π2 ) CG states.

4.3 Decoherence-free subspaces

4.3.1 Theory of decoherence-free subspaces

Decoherence occurs when quantum bits, internal to the quantum computer (or

any other quantum system), couple to (become entangled with) external de-

grees of freedom that are unmeasured. A pure quantum superposition of qubits

is thereby transformed into a mixed state. While error-correcting codes [14] or

dynamical decoupling [66] act to minimize these effects, it is possible to perform

quantum operations in a space fundamentally immune to certain types of deco-

herence. Specifically, qubits can be embedded in a “decoherence-free subspace”

[46], or DFS, in such a way as to be unaffected by collective decoherence or

dissipation (energy loss), and robust against noncollective perturbations.

Even for the simplest types of decoherers (see Example 4.8), it is impossible

to avoid decoherence on a single qubit without eliminating all external couplings.

For two or more qubits, however, it is possible for some states to be unaffected

by some types of decoherence. The singlet state, for example, is immune to a

number of operations which might otherwise change a state. It has the unique

quality of having the same representation in every basis ( 1√
2

(
|ζ〉|ζ⊥〉 − |ζ⊥〉|ζ〉

)
,

for any |ζ〉), making it unaffected by single-qubit operations which are applied

to both of its constituent qubits. To see how, consider that any single-qubit

unitary operator can be written in the form of Equation 4.6:

Û (1) = eiφ0 |ψ〉〈ζ| + eiφ1 |ψ⊥〉〈ζ⊥|. (4.39)

When applied to each qubit of the singlet state, the result (up to an irrelevant

global phase) is simply 1√
2

(
|ψ〉|ψ⊥〉 − |ψ⊥〉|ψ〉

)
, an identical singlet state. In

4More details on Bell inequalities and the CHSH violation will be given in Chapter 5; for
now, we are simply concerned with how to create these states, regardless of the value of λ.
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the same way, the singlet state is unchanged by any decohering operation which

couples the same ancillary qubit to each of the singlet’s qubits in the same

way. When a decohering operation acts in the same way for both qubits in a

two-qubit state, it is classified as collective decoherence.

Note that the state |ψ+〉 = 1√
2
(| ↑〉1| ↓〉2 + | ↓〉1| ↑〉2) is also immune to

decoherence in the ↑, ↓ basis; together |ψ−〉 and |ψ+〉 form the simplest DFS,

a 1-qubit basis immune to collective decoherence restricted to the |0〉, |1〉 basis

(| ↑〉, | ↓〉 for spin, or |H〉, |V 〉 for polarization) [37]. Note, however, that while

the singlet state is decoherence-free in every basis, |ψ+〉 will degrade when

subjected to decoherence in any basis other than ↑, ↓.

Example 4.9 (A decoherence-free singlet state) Consider the singlet state

|ψ−〉 ≡ 1√
2
(| ↑〉1| ↓〉2 − | ↓〉1| ↑〉2), (4.40)

subject to a random magnetic field that induces arbitrary phases eiχA or eiχB to

the | ↓〉 state of both qubits 1 and 2, the resulting state is:

|ψ〉total =
1

2
((| ↑〉1eiχA | ↓〉2 − eiχA | ↓〉1| ↑〉2) ⊗ |FieldA〉

+(| ↑〉1eiχB | ↓〉2 − eiχB | ↓〉1| ↑〉2) ⊗ |FieldB〉)

= |ψ−〉 ⊗ 1√
2
(eiχA |FieldA〉 + eiχB |FieldB〉). (4.41)

Under the assumption of collective decoherence, i.e., the field acts in the same

basis for both qubits, the field has no effect on the singlet state, regardless of the

specific phases χA and χB.

The theory of decoherence-free subspaces for systems larger than two-qubits

is beyond the scope of this work, though see reference [10]. The remainder

of this section will instead detail the first experimental implementation of a

decoherence-free subspace, and an experimental study of the singlet state’s im-

munity to collective decoherence and robust response to noncollective pertur-

bations and dissipation.

4.3.2 Implementing the first experimental DFS

The experimental realization of a two-qubit decoherence-free subspace was per-

formed using a source of entangled photons in the state

|ψ+〉 =
1√
2
(|H〉|H〉 + |V 〉|V 〉), (4.42)

of the type described in Chapter 3. The other three Bell states can be generated

by applying a simple unitary operation via a half wave plate in one arm. The

four Bell states are then used as the input to various decohering or dissipating

apparata, shown in Figure 4.4.
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Figure 4.4: A schematic of our experimental setup. Photons in the maximally
entangled state |ψ+〉 = (|HH〉 + |V V 〉)/

√
2 are produced when 45◦-polarized

pump light is directed through two adjacent nonlinear crystals [39]. Two half
waveplates immediately after the crystals are used to interchange between the
four Bell states within a phase factor. This phase factor is adjusted by tilting
a quarter waveplate. Depending on the experiment, either decohering elements
or dissipative elements are inserted into both paths. The final state of the light
is determined by making a series of polarization correlation measurements in
various bases, and from these deducing what the density matrix of the output
light is, which may then be compared with the input density matrix.

Quantum state tomography [5] allows analysis and characterization of these

Bell states both with and without decoherence. State tomography uses a series

of correlation measurements (e.g., HH, HV, V45◦) to reconstruct the density

matrix of the incident state. Each correlation measurement is performed using

a polarization analyzer in each arm, consisting of a half waveplate, quarter

waveplate, and polarizing beam splitter, which together allow projection into

any polarization basis.

As described in Example 4.5, decoherence in our experiment is controllably

introduced using a thick (11 mm) piece of birefringent quartz in each arm; the

quartz separates the ordinarily and extraordinarily polarized wave packets by

approximately 140 wavelengths along the propagation axis, approximately the

coherence length of the down-converted light after a 5-nm (FWHM) bandwidth

interference filter. Because the H and V components of the light are separated

by the coherence length, these become in principle distinguishable with respect

to one another. This acts as a label (the frequency and the polarization become

entangled) and therefore induces decoherence in the ordinary-extraordinary ba-

sis of the quartz crystal. Half waveplates before and after the decoherers (see

Figure 4.4) induce rotations which allow each decoherer to effectively operate in

any linear polarization basis. For a complete treatment of this type of photon

state decoherence, see reference [15].
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Collective decoherence

For collective decoherence, these waveplates rotate together5, ensuring that the

two environments always operate in the same basis. Figure 4.5 illustrates the

effect of collective decoherence by plotting the fidelity (see Appendix A) between

input Bell states and the same states after they pass through the decoherer; as

predicted, the singlet state is decoherence-free in every collective linear basis.

Figure 4.5: Plot showing the effect of collective decoherence on the four Bell
states, when the decoherence is applied in a number of different (linear polar-
ization) bases. Solid lines are the theoretical predictions.

Noncollective decoherence

Another predicted [10] benefit of a DFS is that it should be robust against

perturbations: when the decoherence has a small noncollective component, the

DFS basis states will still be largely decoherence-free. One way to investigate

the dependence of a DFS’s susceptibility to noncollective effects is to apply

the decoherence in each arm in a different basis, using the basis-selection half

waveplates (see Figure 4.4). Figure 4.6a shows the fidelity of the output state

with the input Bell state when the decohering basis in arm 1 is fixed at 15◦

while the decohering basis in arm 2 is varied from 0◦ to 30◦. Notice that the

fidelity of the DFS state |ψ−〉 falls off only quadratically (rather than linearly)

with angle, showing that it is robust to perturbations in the normal assumption

of collective decoherence.

Figure 4.6b illustrates a second type of noncollective decoherence. By vary-

ing the thickness of quartz in one arm, the strength of the decoherence can be

changed, ranging from no decoherence (no crystal present) to total decoherence

(asymptotically approached for an infinitely long crystal). For our experiment

the crystal-induced separation between the o and e waves in arm 1 is fixed at

140λ, while the thickness of the crystal in arm 2 is varied. Once again, the DFS

5To compensate for frequency anticorrelations in the two daughter photons, the fast axes
of the decohering crystals in arms 1 and 2 were oriented at 90◦ to each other [15].
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Figure 4.6: Results showing the effect of non-collective decoherence. Solid lines
are theoretical predictions. (a) The strength of the decoherence affecting each
qubit is the same (corresponding to the thickness of the decohering piece of
quartz, measured in terms of the induced longitudinal separation between the o
and e wave packets), but the relative bases in which this decoherence occurs is
changed: the decoherence basis is fixed at 15◦ for photon number 1, while the
basis is varied from 0◦ to 30◦ for photon number 2. (b) The orientation of the
bases are now kept fixed (15◦ in both arms), while the amount of decoherence
is varied for photon 2 relative to photon 1. In all cases we see that the sin-
glet state |ψ−〉 is robust against perturbations to the assumptions of collective
decoherence, falling off quadratically rather than linearly.

state is robust (scaling quadratically) against perturbations in the assumption

of collective decoherence.

Tailoring decoherence-free subspaces

The normal DFS state, the singlet state, does decohere somewhat under condi-

tions of noncollective decoherence, but a different DFS state exists that can

compensate for these conditions. In fact, for every pair of orientations for

two equal-strength decohering environments, there exist two special DFS states

which are completely decoherence-free under these conditions. For example, the
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DFS for the conditions 15◦ basis in arm 1 and 45◦ basis in arm 2 is spanned

by |ψ〉special = 1√
2
(|15◦〉|45◦〉 ± |105◦〉|135◦〉). Both the singlet state and one of

these states were subjected to this environment. Figure 4.7 shows their density

matrices before and after the noncollective environment and, as expected, the

singlet state decoheres while |ψ〉special does not. These results, coupled with the

ability to exactly characterize any source of decoherence (via quantum process

tomography—see Section 4.5), allow the construction of a DFS optimized for

any (static) environment.
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Figure 4.7: Measured density matrix elements demonstrating that DFSs exist
even when the environments acting on the two qubits are very different. We
show the effect of different decohering elements (15◦ basis in arm 1 and 45◦ basis
in arm 2, but both the same strength) on both the singlet state and a special
state specifically calculated as the DFS for these environments (see text). (a)
The singlet state is heavily decohered - the fidelity between the initial and final
state is 66± 2%. (b) For these environments, a true DFS is shown. The fidelity
between the initial and final state is 98 ± 2%.

Dissipation

A problem separate from decoherence is dissipation, whereby entire qubits have

some probability of being lost, dissipated into an unmeasured mode. Consider

using a state subject to dissipation for quantum cryptography [13]. In addition

to requiring additional qubits for the same size key, if the dissipation is basis

dependent (e.g., dissipating the |0〉 state more frequently than the |1〉 state), Bob

has a chance to incorrectly measure the (|0〉±|1〉)√
2

states sent by Alice. Dissipation

of a single qubit may be characterized by a basis (e.g., |0〉 and |1〉) and a ratio

(e.g., dissipates twice as much |0〉 as |1〉). As for the case of decoherence,

dissipation can be collective (affecting each qubit of a multiple-qubit system

identically) or noncollective (differing from qubit to qubit in either basis or
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Figure 4.8: Plots showing the effect of dissipation on the four Bell states. (a)
The effects of collective dissipation. (b) The effects of noncollective dissipation.
The dissipating environment in arm 1 is applied at 15◦ while the environment in
arm 2 is rotated between 0◦ and 30◦. Solid lines are theoretical predictions. The
singlet state |ψ−〉 is robust against both collective and noncollective dissipation.

ratio). A DFS state subject to collective dissipative conditions will sometimes

be destroyed, but never measured incorrectly.

Our dissipative environments were experimentally realized using tilted glass

plates so that H polarization had different transmission than V (TH = 0.86, TV =

0.21). As before, we subjected the Bell states to both collective and noncollec-

tive environments. In Figure 4.8a the collective dissipation results show that

|ψ+〉 and |ψ−〉 form a dissipation-free subspace (subjecting these states to un-

balanced dissipation in the H-V basis causes a net loss, but never results in

the states being incorrectly measured). This is to be expected, as a dissipa-

tive environment in the H-V basis causes |H〉|V 〉 ± |V 〉|H〉 to be measured as√
TH |H〉

√
TV |V 〉 ±

√
TV |V 〉

√
TH |H〉 =

√
TH

√
TV (|H〉|V 〉 ± |V 〉|H〉), i.e., the

same state after renormalization. Because the singlet state has the same rep-

resentation in every basis, it is never affected by collective dissipation. Figure

4.8b shows noncollective dissipation with the environment in arm 1 fixed at 15◦

and the environment in arm 2 varied from 0◦ to 30◦. As with decoherence,

|ψ−〉 is robust (scaling quadratically) against perturbations to the assumption

of collective dissipation. Though not shown here, a special state can also be
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constructed that is completely unperturbed by this type of stable noncollective

dissipation.

4.4 Representing quantum processes

4.4.1 Limitations of the Jones calculus

Section 4.1 presented the Jones calculus, which allowed square matrices operat-

ing on both pure state vectors and mixed density matrices to represent unitary

transformations and projectors. However, we have already seen in Section 4.1.3

that some operations, such as decoherers, cannot be represented using a single

matrix. In general, this is because unitary operators in larger Hilbert spaces,

when observed in a subspace, appear to act as several operators combined inco-

herently. This behavior can be modeled using the operator-sum representation

[52].

4.4.2 The operator-sum representation

The operator sum representation [52] models the action of any quantum process

E as the incoherent combination of any number of d×dmatrices Êj , all operating

on the input state ρ̂. Here d is the dimension of the system ρ̂ being subjected

to the process E . In this way, the output of the process E(ρ̂) can be given by

E(ρ̂) =
∑

j

Êj ρ̂Ê
†
j . (4.43)

The conditions for what constitutes a legal process are somewhat ambiguous,

and depend on how a “legal” process is defined. A common requirement [52]

for a process to be physical is that

∑

j

ÊjÊ
†
j = I. (4.44)

With this assumption, any process acting on the totally mixed state must yield

the totally mixed state. However, for some processes, this is clearly not true. For

example, a polarizer will cause a totally mixed state to be measured as a pure

state because this type of projection is lossy, and fails to measure the entire

space of the particles subjected to the process. In contrast, if both outputs

of a PBS were measured, then it would indeed leave the totally mixed state

unchanged.

The requirement of Equation 4.44, because of these problems, is sometimes

relaxed to ∑

j

ÊjÊ
†
j ≤ I, (4.45)

where the ≤ symbol applies to each element of the matrices on either side of
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the equation. For an appropriate basis choice, all projectors can satisfy this

requirement, e.g., lossy processes can be characterized.

The next requirement for physicality is that the process be completely posi-

tive. This is a stronger version of positivity, which requires that a process map

all physical input states to physical output states. In the Poincaré sphere pic-

ture, positivity requires that every point on the surface or inside the sphere be

mapped to another point on the surface or inside the sphere, thereby disallow-

ing the creation of illegal density matrices. Complete positivity is a stronger

requirement which states that a process cannot map a state in a larger Hilbert

space to an illegal state. Mathematically,

(E ⊗ I) (ρ̂input) = ρ̂legal, (4.46)

for all legal input states.

Example 4.10 (The universal NOT gate) The universal NOT gate is a for-

bidden operation which transforms any pure, single-qubit input state into its or-

thogonal state. This operation is positive, as it never produces an illegal single-

qubit state. However, consider using this operation on one qubit of a two-qubit

singlet-state, which exhibits perfect anti-correlation in every basis. After the

universal NOT gate, the output state would necessarily exhibit perfect correla-

tion in every basis. But there is no legal two-qubit state which exhibits perfect

correlation in every basis; therefore, the universal NOT gate is not completely

positive, and not a physical operation [19].

4.4.3 The χ̂-matrix representation

The operator-sum representation, while complete, is somewhat bulky and diffi-

cult to use in practice. It is also reminiscent of the representation of mixed states

as an incoherent sum of a potentially infinite list of types of pure states. Much

like mixed states were concisely represented by density matrices (and those den-

sity matrices’ diagonalization), there is a similar solution for quantum processes.

First relate the operation elements Êj to a fixed set of operators, {Ẽm}, where

Êj =
∑
m ejmẼm and ejm can be complex. This allows us to define a single

matrix, χ̂, that fully characterizes the process: if we rewrite Equation 4.43 as

E(ρ̂) =
∑

mn

Ẽmρ̂Ẽ
†
nχ̂mn, (4.47)

then χ̂ is a positive, d2 × d2, Hermitian matrix [52].

In general, writing down a χ̂ matrix requires choosing an operator basis,

{Ẽm}, just as writing down a density matrix requires choosing a basis for state

vectors. We will consistently use the σ̂i matrices as this operator basis through-

out this work.
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Example 4.11 (χ̂ matrix for a decoherer in the H,V basis) Using Equa-

tion 4.17, we can write the operation of a decoherer in the H-V basis as

Edec (ρ̂) = |H〉〈H|ρ̂|H〉〈H| + |V 〉〈V |ρ̂|V 〉〈V |. (4.48)

Rewriting |H〉 and |V 〉 in terms of the σ̂ matrices:

Edec (ρ̂) =
1

4

(
(σ̂0 + σ̂3) ρ̂

(
σ̂†

0 + σ̂†
3

)
+ (σ̂0 − σ̂3) ρ̂

(
σ̂†

0 − σ̂†
3

))

=
1

2

(
σ̂0ρ̂σ̂

†
0 + σ̂3ρ̂σ̂

†
3

)
. (4.49)

The two terms in Equation 4.49 are the only nonzero elements in this operation’s

χ̂ matrix:

χ̂dec =
1

2




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1



. (4.50)

4.4.4 A geometric representation

Single-qubit processes can be visualized using the Poincaré sphere. These pro-

cesses map each point on the sphere to another point, but because nearby points

must be mapped to nearby points, this mapping can be modeled by showing

a rotated and distended sphere inside the original state space. Unitary opera-

tions are represented as rotations of the sphere, decoherers collapse the sphere

partially or completely to a spindle passing through the center of the sphere,

and polarizers map all points on the sphere to a single point. This graphical

approach can even be applied to lossy processes, e.g., partial polarizers, though

it is important to note that it does not indicate the amount of loss, only the

quantum state of the surviving qubits. Several of these sample processes are

depicted in Figure 4.9.

4.5 Measuring quantum processes

The measurement of quantum processes shares a great deal in common with

the measurement of quantum states, although state measurement will not be

covered in detail until Chapter 5. Here three different methods for measur-

ing quantum processes will be discussed: standard quantum process tomogra-

phy (SQPT), entanglement-assisted quantum process tomography (EAPT), and

ancilla-assisted quantum process tomography (AAPT). When compared to the

state measurement techniques presented in the next chapter, the methods we

used to reconstruct quantum processes are quite primitive, corresponding to

only a linear reconstruction rather than a maximum-likelihood technique. This

is partially because far more work has been spent improving state tomography,
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(a) (b) (c)

Figure 4.9: Graphical depictions of single-qubit quantum processes. (a) On
the Poincaré sphere, a unitary transformation acts as a rotation about an axis
defined by its eigenvectors. (b) A decoherer collapses all points on the sphere
towards a spindle defined by its eigenvectors. For the partial decoherer shown,
this collapse is not completed and the pure states are mapped from a sphere to
an oblong ellipsoid. (c) Polarizers map all points on or inside the sphere to a
single point on the sphere’s surface.

but also because there are significant subtleties associated with implementing

maximum-likelihood process tomography; see, however, the attempts of [55].

4.5.1 Standard quantum process tomography

In SQPT, a quantum system A experiences an unknown quantum process E .

To determine E we first choose some fixed set of states {ρ̂j} which form a

basis for the set of operators acting on the state space of system A, e.g.,

{ρ̂j} = {ρ̂H , ρ̂V , ρ̂D, ρ̂R} for a polarization qubit. Each state ρ̂j is then sub-

ject to the process E , and quantum state tomography (see Chapter 5) is used to

experimentally determine the output E(ρ̂j). Because an arbitrary state ρ̂input

is a linear combination of the set of {ρ̂j}, characterizing E (ρ̂) will completely

characterize E :

ρ̂input =
∑

j

aj ρ̂j

ρ̂output = E (ρ̂) =
∑

j

ajE (ρ̂j). (4.51)

This same method will determine χ̂. We define the output of our measure-

ment of E(ρ̂j) as:

E(ρ̂j) =
∑

k

cjkρ̂k, (4.52)

where the set ρ̂k is an arbitrary and linearly independent basis for the output

states. If we define, in terms of the same output basis,

Ẽmρ̂jẼ
†
n =

∑

k

βmnjk ρ̂k, (4.53)

where βmnjk is another complex number matrix which we determine from our
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choice of input basis states {ρ̂j}, output basis states {ρ̂k}, and operators {Ẽj},
we can see that ∑

k

∑

mn

χ̂mnβ
mn
jk ρ̂k =

∑

k

cjkρ̂k, (4.54)

independent of ρ̂k. If we have linearly independent basis sets ({ρ̂j}, {ρ̂k}, and

{Ẽj}), then β is invertible and

χ̂mn =
∑

jk

(
β−1

)mn
jk

cjk. (4.55)

4.5.2 Ancilla-assisted process tomography

In ancilla-assisted process tomography (AAPT) [3] the process E is characterized

by preparing a single state, σ̂, and then measuring (E ⊗ I)(σ̂). Entanglement-

assisted process tomography (EAPT) [48], developed first, is in fact a specific

type of AAPT, wherein the input states σ̂ are always maximally entangled.

Standard process tomography relies on a linearly independent set of input states.

EAPT is very similar, relying on the perfect correlations present between parti-

cles A and B in maximally entangled states: if one half of a maximally entangled

state (particle B) is measured, then the state of its partner (particle A) is im-

mediately known [58]. By making a complete set of these measurements, we are

able to prepare particles of type A into a complete set of input states, which

we then subject to the unknown process E . Then, just as in SQPT, the process

can be completely characterized.

Ancilla-assisted process tomography is the generalization of this process to

states which have a high degree of correlation, but which are not necessarily

entangled. This requires an ancilla system, B, with Hilbert space dimension

at least as great as that of A. For an appropriate initial state, it is possible

to characterize E by preparing the state σ̂, performing the process E on sys-

tem A—leaving system B completely isolated—and taking a tomography of the

output (E ⊗ I)(σ̂). The total number of measurements is the same in AAPT

(16 measurements on a single 2-qubit state) as in SQPT (four measurements on

each of four input states).

AAPT has potential advantages over SQPT, most notably being that prepa-

ration of only a single quantum state is necessary for its operation. Consider

the possibility of using it as a diagnostic tool in a quantum computer. When

an unknown effect acts on less than half of a system of qubits, knowledge of the

larger state before and after the change is sufficient to exactly predict the effect

this change will have on every other state. (Assuming that the larger state is

usable for AAPT — see below). Alternatively, SQPT has the advantage that it

is generally easier to produce and measure states with fewer qubits.
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States usable for AAPT

In order to determine the class of states suitable for AAPT 6, it is necessary to

introduce an operator generalization of the Schmidt decomposition for entangled

states [52]. First, consider an inner product on operators, (M,N) ≡ tr(M †N),

and define an orthonormal operator basis to be a set of operators {Mj} such

that (Mj ,Mk) = tr(M†
jMk) = δjk. (For example, an orthonormal basis for

single-qubit operators is the set {I/
√

2, σ̂x/
√

2, σ̂y/
√

2, σ̂z/
√

2}). The operator-

Schmidt decomposition [54] states that an operator M acting on AB can be

decomposed as

M =
∑

l

slAl ⊗Bl, (4.56)

where the sl are non-negative real numbers, and the sets {Al} and {Bl} form

orthonormal operator bases for systems A and B, respectively [53]. The Schmidt

number Sch(M) of an operatorM is defined [54] as the number of non-zero terms

in the Schmidt decomposition.

A state σ̂ of AB may be used to perform AAPT if and only if the Schmidt

number of σ̂ is d2
A, where dA is the dimension of the state space of system A.

Consider that in order to measure the mapping of the entire space, the input

state must possess correlations - represented by the Schmidt number - between

enough states to form a basis for the mapping. To prove this [3], expand σ̂

in its Schmidt decomposition as σ̂ =
∑
l slAl ⊗ Bl. Assume σ̂ has Schmidt

number d2
A, so that the Al form an orthonormal operator basis, and sl > 0 for

all l. Let σ̂′ be the output obtained after letting E act on system A, that is,

σ̂′ = (E ⊗ I)(σ̂) =
∑
l slE(Al) ⊗ Bl. By the orthonormality of the Bl and the

previous equation it follows that

trB((I ⊗B†
m)σ̂′) =

∑

l

slE(Al)tr(B
†
mBl) = smE(Am), (4.57)

and so

E(Am) = trB((I ⊗B†
m)σ̂′)/sm. (4.58)

The fact that the Schmidt number of σ̂ is d2
A ensures that sm > 0, so there is

no problem with division by zero. By performing state tomography on σ̂′ and

applying the above equation, it is possible to determine the action of E .

Another proof of this result can be obtained by investigating the mapping

E . Let EA be the space of trace-preserving quantum operations on system A,

and let SAB be the space of quantum states on system AB. Define a map

f : EA → SAB by f(E) ≡ (E ⊗ I)(σ̂). (4.59)

For AAPT, we require that f be a one-to-one map, i.e., there are never two

6The theory in this section was developed by Michael Nielsen’s group at the University of
Queensland, Australia, and was first presented in [3]. It is repeated here in an expanded form.
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distinct operations such that f(E1) = f(E2). A parameter counting argument

shows that f cannot be one-to-one when σ̂ has Schmidt number less than d2
A.

The dimensionality of the manifold EA is d4
A−d2

A. Since f(E) =
∑
l slE(Al)⊗Bl,

the dimension of the image manifold f(EA) is at most Sch(M)×(d2
A−1), because

the map E → E(Al) has image of dimension at most d2
A − 1. Thus, for AAPT

we require that

Sch(M) × (d2
A − 1) ≥ d4

A − d2
A, (4.60)

which is only possible when Sch(M) = d2
A.

Note that AAPT is possible only when the dimension of system B is at least

as great as the dimension of system A. When this is true, almost all states

of system AB may be used for AAPT, because the set of states with Schmidt

number less than d2
A has measure zero. That is, a maximally entangled input is

not required for AAPT — indeed many of the viable input states are not entan-

gled at all, as demonstrated below by our Werner state AAPT. However, while

almost any state can be used for AAPT, maximally entangled states appear to

be experimentally optimal in that they have perfect non-local correlations. Fig-

ure 4.11 highlights this difference, as the AAPT results have significantly greater

statistical errors than the EAPT (both were from identical measurement runs).

4.5.3 Experimental results

We investigated a variety of processes, using the three methods of SQPT, EAPT,

and non-entangled AAPT. Our processes operate on the polarization state of a

single photon. We used spontaneous parametric down-conversion (of a 351-nm

pump beam) in a nonlinear crystal (BBO) to create pairs of time-correlated

photons at 702 nm. For SQPT, by triggering on one photon, the other was

prepared into a single-photon state [31] with H polarization (Figure 4.10). Half

and quarter waveplates converted the horizontal polarization into an arbitrary

state, thus allowing preparation of the necessary input states ρ̂H , ρ̂V , ρ̂D, and

ρ̂R. The tomography of the post-process states was performed by measuring

(in coincidence with the trigger detector) the Stokes parameters S1 = PH −PV ,

S2 = PD − PA, and S3 = PR − PL, and performing a maximum-likelihood

estimation of the density matrix (see Chapter 5). Typical measurements yielded

a maximum of 13,000 photon counts over 30 seconds.

For our EAPT results, two adjacent BBO crystals were used to prepare the

maximally entangled state |φ−〉 = (|HH〉 − |V V 〉)/
√

2). One of the resulting

qubits was subjected to the given process, and two-qubit tomography of the pair

was then performed by measuring the polarization correlations of the photons

with 16 measurements, e.g., in the following bases: HH, HV, HD, HR, VH, VV,

etc. (see Chapter 5). Note from Figure 4.10 that the elements used in SQPT to

prepare the single-photon state are now placed (in reverse order) in the other

detection arm, highlighting the symmetry of the two techniques.

We also performed AAPT using the non-entangled Werner state ρ̂W = 1
6I+
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Figure 4.10: Experimental arrangements for quantum process tomography. A
351-nm pump is directed through two 0.6 mm-thick BBO crystals, giving rise
to pairs of correlated 702 nm photons, which are detected using Si avalanche
photodiodes and fast coincidence electronics. A, B, and C above denote which
elements are present for SQPT, EAPT, and non-entangled AAPT, respectively.
(a) SQPT: Polarizer (P), half waveplate (HWP) and quarter waveplate (QWP)
allow preparation of required pure single-photon (conditioned on “trigger” detec-
tion) states; identical elements allow tomography of the post-process states. (b)
EAPT: The source produces the maximally entangled state (|HH〉−|V V 〉)/

√
2.

A two-photon tomography of the output allows reconstruction of the process.
(c) AAPT: The source produces ρ̂W ∼ 1

6I + 1
3 |γ〉〈γ|, where |γ〉 is a maximally

entangled state. Although there is no entanglement, the correlations in ρ̂W
allow AAPT.

1
3 |γ〉〈γ|, where |γ〉 is a maximally entangled state. See Section 4.2.4 for the

details of Werner state creation.

We investigated several processes, including the identity, a unitary rotation,

a decoherer, and both a coherent and an incoherent partial polarizer (see below).

Data for these processes is shown in graphical form in Figure 4.11, and as

χ̂ matrices in Figure 4.12. The results for the identity process measure how

well the input state(s) are preserved. We used SQPT, EAPT, and AAPT to

measure the same unitary rotation process (a birefringent waveplate). The

results were in close agreement (Figure 4.11b); the resulting χ matrices had

an average process fidelity (see Appendix A) between the three methods, of

F = 100.4± .8%. Likewise, the SQPT and EAPT measurements of a decohering

process (implemented with a 6.3-mm piece of quartz) yielded F = 99.9 ± .3%

(Figure 4.11c). The same process, when measured using our Werner State,

appears to be a recoherer — a process which is not a positive map.

This Werner state was prepared using a thick piece of quartz to temporally

separate the H and V components of the light, introducing decoherence. Con-

sider adding another piece of quartz, with optic axis perpendicular to the first,

after the original. This also temporally shifts the H and V components of the

light, but in the opposite direction, undoing the original decoherence. Our de-

cohering process does exactly this, effectively recohering the Werner State —

impossible for a 1-qubit process. The resolution to this paradox lies in an un-

written assumption that that the measured process does not act on any degrees
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Figure 4.11: Geometric mappings for three quantum processes – (a) identity ,
(b) unitary transformation, and (c) decoherence – measured using SQPT (left),
EAPT (center), and AAPT (right). The axes are the Stokes parameters (S1,
S2, S3). The colored mesh surfaces show how all pure states are transformed
by the process. The initial states H, R, V, and A are shown by the green, red,
yellow, and blue dots, respectively. The transformation of initial mixed states
(inside the surface) may be interpolated from the pure state results using the
linearity of quantum mechanics. The mesh coloring denotes the orientation of
the transformed sphere.

of freedom used to prepare the input state other than the tested qubit. For

example, if frequency is traced over to prepare a mixed input state, a process

that couples to frequency cannot be measured.

Coherent and incoherent partial polarizers were measured in order to high-

light the role coherence plays in lossy processes. A glass plate at Brewster’s

angle to an incident beam is a coherent partial polarizer, as the operation of

the plate maintains the pre-existing phase relationship between the horizontal

component of the light (completely transmitted) and the vertical component

of the light (partially reflected). For the incoherent case, consider inserting a

horizontal polarizer into the beam 50% of the time. Half the time only the

horizontal component of the light will be transmitted, but more importantly,

the transmitted light will have no coherence relationship with the light that

does not pass through the polarizer. For the coherent partial polarizer, pure

states remain pure but slide toward H along the surface of the sphere. In the

incoherent case pure states travel linearly through the sphere to H, becoming

mixed (Figure 4.13).
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Figure 4.12: χ̂-matrices determined from EAPT for (a) unitary and (b) deco-
hering processes, as shown in Figure 4.11.

Figure 4.13: Geometric mappings and χ̂ matrices for (a) coherent and (b) in-
coherent partially polarizing processes. The former was implemented using two
glass microscope slides near Brewster’s angle [TH ∼ 88%, TV ∼ 45%]. The lat-
ter was simulated by inserting a horizontal polarizer 50% of the time. (Real
components shown; imaginary contributions < 1%.)

Notice that for all of the measured results, the data from AAPT appears to

be slightly inconsistent with the data from SQPT and EAPT. Because it has

imperfect correlations between its constituent particles, it requires additional

measurements to receive the same accuracy. (The errors are most evident when

looking at the AAPT measurement of the identity, which looks skewed compared

to the other two methods, and more importantly when compared to the ideal,

unchanged sphere.) If EAPT uses an ensemble of size N , then AAPT must use

an ensemble of size 3N to achieve results of the same precision. For this reason,

it appears that EAPT or SQPT are the optimal choices for process tomography.
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5 State Measurement

Every experiment which utilizes quantum states requires a method to measure

those states, but a plethora of techniques and protocols for state measurement

exist. For tests of nonlocality, which are the focus of this thesis, there are

three options which are particularly intriguing: Bell’s inequalities (fundamental

tests of local realism), entanglement witnesses (quick measurements which give

incomplete information), and complete state tomography (a complete charac-

terization of a quantum state which—the optimal choice for most experiments).

This chapter will describe the theory and experiment of each of these measure-

ment protocols in detail.

Each of these protocols can be realized through sets of separable, projec-

tive measurements on the ensemble of states to be tested. Section 5.1 describes

the experimental details of making these measurements, and more importantly

characterizing and compensating for systematic errors in those measurements.

The next sections detail each of the measurement protocols in detail, both the-

oretically and experimentally. Each protocol has its own advantages, and this

chapter will end with a quantitative comparison of each type of test of nonlo-

cality, and a discussion of error analysis.

5.1 Collecting tomographic measurements

Before discussing the specifics of each measurement protocol, it is necessary to

understand how that experimental data is collected. This chapter outlines the

experimental implementation of measurements on polarization-entangled qubits

generated from spontaneous parametric down-conversion [39]. We filter these

photon pairs using both spatial filters (irises used to isolate a small range of ~k-

vector, necessary because our states are angle-dependent) and frequency filters

(interference filters, typically 5–25 nm wide, FWHM).

After this initial filtering, measurement collection involves two central issues:

projection (into an ideally arbitrary range of states) and systematic error correc-

tion (to compensate for several experimental problems ranging from imperfect

optics to accidental coincidences).

5.1.1 Projection

Any measurement on a quantum system depends on state projection. While

tomography could be simplified by using arbitrary projectors (e.g., joint mea-
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surements on two qubits), this is experimentally difficult. Therefore, for the

purposes of this chapter, these projections will be separable. In particular, we

focus on the ability to create arbitrary single-qubit projectors which we can then

easily chain together to create any separable projector.

Arbitrary single-qubit projection

The following analysis, while framed in terms of waveplates acting on photon

polarization, is directly applicable to other systems, e.g., spin-1
2 particles [23,

35, 69, 40] or two-level atoms [50, 61]. In these systems, measurements in

arbitrary bases are obtained using suitably phased π- and π
2 -pulses (externally

applied electromagnetic fields) to rotate the state to be measured into the desired

analysis basis.

An arbitrary polarization measurement and its orthogonal complement can

be realized using, in order, a quarter-waveplate, a half-waveplate, and a polar-

izing beam splitter. Recall from Example 4.2 that a waveplate whose optic axis

is oriented at angle θ with respect to the horizontal induces a rotation on the

Poincaré sphere about an axis 2θ from horizontal, in the linear plane, and that

the magnitude of this rotation is equal to the waveplate’s retardance (90◦ for

quarter-waveplates and 180◦ for half-waveplates). Additionally, for the remain-

der of this chapter we adopt the convention that polarizing beam splitters trans-

mit horizontally polarized light and reflect vertically polarized light—though for

some types the roles are reversed.

To derive the settings for these waveplates as a function of the projection

state desired, we use the Poincaré sphere (see Figure 5.1). For any state on

the surface of the sphere, a 90◦ rotation about a linear axis directly below it

will rotate that state into a linear polarization (see Figure 5.1b). Assume the

desired projection state is

|ψP 〉 = cos

(
θ

2

)
|H〉 + sin

(
θ

2

)
eiφ|V 〉. (5.1)

Simple coordinate transforms from spherical to Cartesian coordinates reveal that

a quarter-waveplate at θQWP = 1
2acos {sin(θ)tan(φ)} will rotate the projection

state 5.1 into a linear state

|ψ′
P 〉 = cos

(
θ′

2

)
|H〉 + sin

(
θ′

2

)
|V 〉. (5.2)

A half-waveplate at 1
4θ

′ (with respect to horizontal orientation) will then rotate

this state to |H〉.1 Finally, the PBS will transmit the projected state and reflect

its orthogonal complement.

Mathematically, this process of rotation and projection can be described us-

1θ′ = acos {sin(θ)tan(φ)} − acos {cot(θ)cot(φ)}. In practice, care must be taken that
consistent conventions are used (e.g., right- vs. left-circular polarization), and it may be
easier to calculate this angle directly from waveplate operators and the initial state.
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Figure 5.1: (a) A quarter-waveplate (QWP), half-waveplate (HWP), and po-
larizing beam splitter (PBS) are used to make an arbitrary polarization mea-
surement. Next, the step-by-step evolution of the state on the Poincaré sphere
is shown. (b) The quarter-waveplate rotates the projection state (the state we
are projecting into, not the incoming unknown state) into the linear polariza-
tion plane (the equator). (c) The half-waveplate rotates this linear state to
horizontal. The PBS transmits the projection state (now |H〉) and reflects its
orthogonal complement (now |V 〉), which can then both be measured.

ing unitary transformations. The unitary transformations for half- and quarter-

waveplates in the H/V basis are

UHWP (θ) =

[
cos2(θ) − sin2(θ) 2cos(θ)sin(θ)

2cos(θ)sin(θ) sin2(θ) − cos2(θ)

]
,

UQWP (θ) =

[
cos2(θ) + isin2(θ) (1 − i)cos(θ)sin(θ)

(1 − i)cos(θ)sin(θ) sin2(θ) + icos2(θ)

]
, (5.3)

with θ denoting the orientation angle of the waveplate optic axis with respect to

horizontal. Assume that during the course of a tomography, the νth measure-

ment setting requires that the QWP be set to θQWP,ν and the HWP to θHWP,ν .

Therefore, the total unitary2 for the νth measurement setting will be

Uν = UHWP(θHWP,ν)UQWP(θQWP,ν). (5.4)

For multiple qubits, we can directly combine these unitaries such that

Uν = 1Uν ⊗ 2Uν ⊗ . . .⊗ nUν , (5.5)

where qUν denotes the qth qubit’s unitary transform due to waveplates. The

total projection operator for this system is therefore 〈0|Uν , where |0〉 is the first

computational basis state (the state which passes through the beam splitters,

which here we assume is |H〉). The measurement state (the state which will pass

through the measurement apparatus and be measured every time) is therefore

U†
ν |0〉.

Of course, these calculations assume that we are using waveplates with re-

tardances equal to exactly π or π
2 (or Rabi pulses producing perfect phase differ-

ences). Imperfect yet well characterized waveplates will lead to measurements in

2Note the order of the unitary matrices for the HWP and QWP. Incoming light encounters
the QWP first, and therefore UQWP is last when defining Uν .
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slightly different, yet known, bases. This can still yield an accurate tomography,

but first these results must be transformed from a biased basis into the canonical

Stokes parameters using Equation 2.22. As discussed below (see Section 5.5.2),

the maximum-likelihood technique provides a different but equally effective way

to accommodate for imperfect measurements. As a separate alternative, it is

possible in some cases to use imperfect waveplates to make ideal measurements.

For this and other experimental details concerning waveplates, see Appendix C.

Multiple-qubit projections and measurement ordering

For multiple-qubit systems, separable projectors can be implemented by using

in parallel the single-qubit projectors described above. This, by construction,

allows the implementation of arbitrary separable projectors. In practice, de-

pending on the details of a specific tomography, multiple-qubit tomographies

can require a large number of measurements. If the time to switch from one

measurement to another varies depending on which measurements are switched

between (as is the case with waveplates switching to different values for each

projector), minimizing the time spent switching is a problem equivalent to the

traveling salesman problem [22]. A great deal of time can be saved by imple-

menting a simple, partial solution to this canonical problem (e.g., a genetic

algorithm which is not guaranteed to find the optimal solution but likely to find

a comparably good solution).

5.1.2 n vs. 2n Detectors

Before beginning any tomography on an n-qubit system, a fundamental experi-

mental choice must be made: use n or 2n detectors3. The first choice requires an

array of n detectors to measure a single separable projector at a time. While this

is conceptually simple, we shall see below that using an array of 2n detectors to

project every incoming n-qubit state into one of 2n basis states can dramatically

improve the efficiency and accuracy of a tomography. The 2n detector method is

the generalization of simultaneously measuring both outputs in the single-qubit

case (the two detectors used for single-qubit measurement are shown in Figure

5.1a), or all four basis states (HH, HV, VH, and VV) in the two-qubit case; in

the general case 2n detectors will measure in n-fold coincidence with 2n possible

outcomes.

It should be emphasized that these additional detectors are not some ‘trick’,

effectively masking a number of sequential settings of n detectors. If only n de-

tectors are used, then over the course of a tomography most members comprising

the input ensemble will never be measured. For example, consider measuring the

projection of an unknown state into the |00〉 basis using two detectors. While

this will give some number of counts, unmeasured coincidences will be routed

3If instead we are characterizing n d-level systems (qudits), then we must choose between
n and d× n detectors.
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into the |01〉, |10〉, and |11〉 modes. The information of how many coincidences

are routed to which mode will be lost, unless another two detectors are in place

in the ‘1’ modes to measure it.

Returning to the notation of Section 5.1.1, recall that the state which passes

through every beam splitter is U†
ν |0〉; when 2n detectors are employed, the states

U†
ν |r〉 can all be measured, where r ranges from 0 to 2n − 1 and |r〉 denotes the

rth element of the canonical basis (the canonical basis is chosen/enforced by the

beam splitters themselves).

Example 5.1 (The |r〉 notation for two qubits) For two qubits each inci-

dent on separate beam splitters which transmit |H〉 and reflect |V 〉, we can define

the following values of |r〉, the canonical basis:

|0〉 ≡ |HH〉, |1〉 ≡ |HV 〉, |2〉 ≡ |V H〉, |3〉 ≡ |V V 〉. (5.6)

The usefulness of this notation will become apparent during the discussion of

the maximum-likelihood algorithm in Section 5.5.2.

The primary advantage to using 2n detectors is that every setting of the anal-

ysis system (every group of the projector and its orthogonal complements) gen-

erates exactly enough information to determine a single multiple-qubit Stokes

vector (see Equations 2.13 and 2.34). Expanding out the probabilities that a

multiple-qubit Stokes vector (which for now we will limit to those with only

non-zero indices) is based on,

Si1,i2,...in =
(
Pψ1

− Pψ⊥
1

)
⊗
(
Pψ2

− Pψ⊥
2

)
⊗ . . .⊗

(
Pψn

− Pψ⊥
n

)

= Pψ1,ψ2,...ψn
− Pψ1,ψ2,...ψ⊥

n
− . . .± Pψ⊥

1 ,ψ
⊥
2 ,...ψ

⊥
n
, (5.7)

where the sign of each term on the last line is determined by the parity of the

number of orthogonal (⊥) terms.

These probabilities are precisely those measured by a single setting of the

entire analysis system followed by a 2n detector array. Returning to our primary

decomposition of the density matrix from Equation 2.30,

ρ̂ =
1

2n

3∑

i1,i2,...in=0

Si1,i2,...in σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in ,

we need only determine all of the multiple-qubit Stokes parameters to exactly

characterize the density matrix. At first glance this might seem to imply that

we need to use 4n − 1 settings of the analysis system, in order to find all of the

multiple-qubit Stokes parameters save S0,0,...0, which is always one.

While this is certainly sufficient to solve for ρ̂, many of these measurements

are redundant. In order to choose the smallest possible number of settings, note

that the probabilities that constitute some multiple-qubit Stokes parameters

overlap exactly with the probabilities for other multiple-qubit Stokes param-
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eters. Specifically, any multiple-qubit Stokes parameter with at least one 0

subscript is derived from a set of probabilities that at least one other multiple-

qubit Stokes vector (with no 0 subscripts) is also derived from. As an example,

consider that

S0,3 = P|00〉 − P|01〉 + P|10〉 − P|11〉, (5.8)

while

S3,3 = P|00〉 − P|01〉 − P|10〉 + P|11〉. (5.9)

These four probabilities, measured simultaneously, will provide enough informa-

tion to determine both values. This dependent relationship between multiple-

qubit Stokes vectors is true in general, as can be seen by returning to Equa-

tion 5.7. Each S term with a non-zero subscript contributes a term to the

tensor product on the right that looks like
(
Pψi

− Pψ⊥
i

)
. Had there been S

terms with value-zero subscripts, however, they each would have contributed a(
Pψi

+ Pψ⊥
i

)
term; as an aside, terms with zero subscripts are always depen-

dent on terms will all positive subscripts. This reduces the minimum number

of analysis settings to 3n, a huge improvement in multiple qubit systems (e.g.,

9 vs. 15 settings for 2-qubit tomography, 81 vs. 255 for 4-qubit tomography,

etc.). Note that, as discussed earlier, this benefit is only possible if one employs

2n detectors, leading to a total of 6n measurements (2n measurements for each

of 3n analysis settings).4

Because Equation 2.38 can be used to transform any set of non-orthogonal

multiple-qubit Stokes parameters into the canonical form, orthogonal measure-

ment sets need not be used. One advantage of the option to use non-orthogonal

measurement sets is that an orthogonal set may not be experimentally achiev-

able, for instance, due to waveplate imperfections, as discussed in Appendix

C.

5.1.3 Electronics and detectors

Single-photon detectors and their supporting electronics are crucial to any pho-

tonic tomography. Figure 5.2 shows a simple diagram of the electronics used

to count in coincidence from a pair of Si-avalanche photodiodes. An electrical

pulse from a single-photon-generated avalanche in the Silicon photodiode sends

a signal to a discriminator, which, if the pulse has the appropriate amplitude

and width, produces in a fan-out configuration several TTL signals that are

fed into the coincidence circuitry. In order to avoid pulse reflections, a fan-out

configuration is used in preference to repeatedly splitting one signal.

The signals from these discriminators represent physical counts, with the

number of discriminator signals sent to a detector equal to the singles counts

4These measurements, even though they result from the minimum number of analysis
settings for 2n detectors, are over-complete. A density matrix has only 4n−1 free parameters,
which implies that only 4n − 1 measurements are necessary to specify it (see n-detector
tomography). Because the over-complete set of 6n measurements is not linearly independent,
it can be reduced to a 4n − 1 element subset and still completely specify an unknown state.
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Figure 5.2: A simple diagram of the electronics necessary to operate a
coincidence-based photon-counting circuit. While this diagram depicts a two-
detector counting circuit, it is easily extensible to multiple detectors; by adding
additional detectors each fed into a discriminator and a fan-out (shown here as
the double-output of the discriminator), we gain the signals necessary for one
singles counter per detector and an AND gate for each pair of detectors capable
of recording a coincidence.

for that detector. A copy of this signal, after traveling through a variable length

delay line, is input into an AND gate along with a similar pulse (with a static

delay) from a complementary detector. The pulses sent from the discriminators

are typically about 2 ns, producing a 4-ns window in which the AND gate can

produce a signal. (The coincidence window is chosen to be as small as con-

veniently possible, in order to reduce the number of “accidental” coincidences,

discussed below.) This signal is also sent to the counters and is recorded as a

coincidence between its two parent detectors.

As with any system of this sort, the experimenter must be wary of reflected

pulses generating false counts, delay lines being properly matched for correct

AND gate operation, and system dead-time saturation effects due to, e.g., high

count rates from bright sources.

5.1.4 Collecting data and systematic error correction

The projection optics and electronics described above will result in a list of

coincidence counts, each tied to a single projective measurement. Incorporating

the projectors defined earlier in this section, we can now make a first estimate

on the number of counts we expect to receive for a given measurement of the

state ρ̂:

n̄ν,r = I0Tr
{
M̃ν,rρ̂

}
,

M̃ν,r = U†
ν |r〉〈r|Uν . (5.10)

Our eventually strategy (see Section 5.5.2) will be to vary our theoretical guess

for ρ̂ until our expectations optimally match our actual measured counts. Here

n̄ν,r is the expectation value of the number of counts recorded for the νth mea-

surement setting on the rth pair of detectors (this is the pair of detectors which

projects into the canonical basis state |r〉). The density matrix to be measured

is denoted by ρ̂ and I0 is a constant scaling factor which takes into account the
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duration of a measurement and the rate of state production. Note that regard-

less of whether n or 2n detectors are used, each distinct measurement setting

will be indexed by ν. For n detectors, there will be a single value of r for each

value of ν, as each measurement setting projects into a single state. For 2n

detectors, there will be 2n values of r, one for each pair of detectors capable of

registering coincidences.

Throughout this Section we will modify Equation 5.10 to give a more com-

plete estimate of the expected count rates, taking into account real errors and

statistical deviations. In particular, without adjustment, the expected coin-

cidence counts will likely be inaccurate due to experimental factors including

accidental coincidences, imperfect analysis optics, mismatched detector efficien-

cies, and drifts in state intensity. Below we will discuss each of these in turn.

Accidental coincidences

In general, the spontaneous generation of photon pairs from down-conversion

processes can result in more than one pair of photons being generated at the

same time (i.e., within the detector resolution time of ∼ 1ns). These multiple-

pair generation events can lead to two uncorrelated photons being detected as

a coincidence, which will tend to raise all measured counts and lead to state

tomographies resulting in states closer to the maximally mixed state.5

We can model these accidental coincidences for the two-qubit case by con-

sidering the probability that any given singles count will be detected during the

coincidence window of a conjugate photon. This model implies that the acciden-

tal coincidences for the νth measurement setting on the rth detector pair (naccid
ν,r )

will be dependent on the singles totals in each channel (1Sν,r and 2Sν,r), the

total coincidence window (∆tr, approximately equal to twice the pulse width

produced by the discriminators6), and the total measurement time (Tν). When

the singles channels are far from saturation (1,2Sν,r∆tdead ≪ Tν , where ∆tdead

is the dead time of the detectors, i.e., the time it takes after a detector registers a

singles count before it can register another), the percentage of time that a chan-

nel is triggered (able to produce a coincidence) is approximated by
1,2Sν,r∆tr

Tν
.

The probability that the other channel will produce a coincidence within this

time (again in the unsaturated regime) is proportional to the singles counts on

that channel. This allows us to approximate the total accidental coincidence

rate as

naccid
ν,r ≃

1Sν,r
2Sν,r∆tr
Tν

, (5.11)

implying that

n̄ν,r = I0Tr
{
M̃ν,rρ̂

}
+ naccid

ν,r . (5.12)

5There is also a similar but generally smaller contribution from one real photon and a
detector noise count, and a smaller contribution still from two detector noise counts.

6If the pulses are not square, or the AND logic has speed limitations, this approximation
may become inaccurate.
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Because the accidental rate will be necessary for analyzing the data, these ex-

pected accidental counts will need to be calculated from the singles rates for

each measurement and recorded along with the actual measured coincidence

counts.7

Beam splitter crosstalk

In most experimental implementations, particularly those involving 2n detec-

tors, the polarizer used for single-qubit projection will be a beam splitter, either

based on dielectric stacks, or crystal birefringence. In practice, all beam split-

ters function with some levels of crosstalk and absorption, i.e., some probability

of reflecting or absorbing the polarization which should be transmitted and vice

versa. By measuring these crosstalk probabilities and adjusting the measured

counts accordingly, it is possible to recreate the approximate measurement val-

ues that would have resulted from a crosstalk-free system.

We can characterize a beam splitter using four numbers Cr′→r which repre-

sent the probability that state r′ will be measured as state r.

Example 5.2 (A faulty beamsplitter) Assume we have measured a beam

splitter which transmits 90% and absorbs 10% of incident horizontal light (state

0), while reflecting 80% and transmitting 10% of vertical light (state 1). We

would therefore use

C0→0 = 0.9

C0→1 = 0

C1→0 = 0.1

C1→1 = 0.8, (5.13)

to characterize the behavior of this beam splitter.

Example 5.3 (Two-qubit crosstalk) Consider two of the faulty beam split-

ters presented in Example 5.2, with crosstalk coefficients CAr′→r and CBr′→r. As-

suming that we label the two qubit canonical basis |r〉 as |0〉 ≡ |HH〉, |1〉 ≡ |HV 〉,
|2〉 ≡ |V H〉, and |3〉 ≡ |V V 〉, we can derive the general two-qubit crosstalk coef-

ficients Cr′→r by multiplying the single-qubit crosstalk coefficients, according to

the rule:

C(2r′
A

+r′
B

)→(2rA+rB) ≡ CAr′
A
→rA

CBr′
B
→rB

. (5.14)

7It is advisable to initially experimentally determine ∆tr by directly measuring the acci-
dental coincidence rate (e.g., by introducing an extra large time delay into the variable time
delay before the AND gate, shown in Figure 5.2), and using Equation 5.11 to solve for ∆tr.
This should be done for every pair of detectors, and ideally at several count rates, in case
there are nonlinear effects in the detectors or gate electronics.
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Thus, the total crosstalk matrix will be

Cr′→r ≡




0′ 1′ 2′ 3′

→ 0 0.81 0.09 0.09 0.01

→ 1 0 0.72 0 0.08

→ 2 0 0 0.72 0.08

→ 3 0 0 0 0.64



. (5.15)

If we use this notation to modify Equation 5.12 for predicted counts, we find

that

n̄ν,r = I0Tr
{
M̂ν,rρ̂

}
+ naccid

ν,r

M̂ν,r ≡
∑

r′

(Cr′→r) M̃ν,r′ . (5.16)

Detector-pair efficiency calibration

Because single-photon detectors will in general have different efficiencies, it may

be necessary to measure the relative efficiencies of any detector pairs used in

the course of a tomography. For the n-detector case, this is unnecessary, as all

recorded counts will be taken with the same detectors and scaled equally. For

the 2n-detector configuration, this can be a noticeable problem, with each of

the n2 measurement bases using a different combination of detectors, with a

different total coincidence efficiency. By measuring the relative efficiencies of

each combination, it is possible to normalize the measured counts by dividing

them by the appropriate relative efficiency.

Note that it is not necessary to know the absolute efficiency of each detec-

tor combination, but only the relative efficiencies. Knowing only the relative

efficiencies leaves a single scaling factor that is applied to all counts, but as

the error on a set of counts is dependent on the measured counts, rather than

the total number of incident quantum states, this ambiguity does not affect the

tomography results.

The tomography process itself may be used to conveniently determine the

full set of relevant relative efficiencies. By performing enough measurements

to perform an n-detector tomography while using 2n detectors, it is possible

to perform a tomography for each detector combination, using only the results

of that detector combination’s measurements. Each of these sets will be suffi-

cient to perform a tomography, and the tomography algorithm (see Section 5.5)

will necessarily determine the total state intensity. The ratios between these

state intensities (one for each detector combination) will provide the relative ef-

ficiencies of each detector combination. In the two-qubit case, this means using

four detectors and 36 measurement settings, for a total of 144 measurements to

calibrate the relative efficiencies.

In order to continue to update our equation for n̄ν,r, we define an efficiency
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Êr which describes the relative efficiency of the rth detector combination. This

allows us to correct our previous equation to

n̄ν,r = I0E0ErTr
{
M̂ν,rρ̂

}
+ naccid

ν,r , (5.17)

where E0 is a constant scalar, which combined with the easier to measure relative

efficiency Er, gives the absolute efficiency of each detector pair.

Intensity drift

In polarization experiments based on down-conversion sources, a major cause

of error can be drift in the intensity (or direction) of the pump, which causes a

drift in the rate of down-conversion state production. If this intensity drift is

recorded, then the prediction of the expected number of counts can be adjusted

to account for this additional information. Alternatively, if 2n detectors are

used, the sum of the counts from each of the detectors will automatically give

the normalized intensity for each measurement setting, since the sum of the

counts in orthonormal bases must add up to the total counts (assuming no

state-dependent losses, e.g., in the polarizing beam splitters). However, when

summing the counts from a complete basis like this, the measurements should

be taken at the same time, and the summed counts must take other sources of

error, like detector inefficiency, accidental counts, and beam splitter crosstalk

into account.

By whatever method it is measured, assume that the relative size of the

ensemble subject to the νth measurement setting is given by Iν . Then

n̄ν,r = I0E0IνErTr
{
M̂ν,rρ̂

}
+ naccid

ν,r . (5.18)

Now it becomes clear that I0 is the factor (not necessarily the total number of

pairs produced) which, combined with the relative efficiency Iν , gives the total

number of incident states for the νth measurement setting.

Measuring probabilities

As we shall see in Section 5.5, Equation 5.18 is sufficient for the reconstruction

of a density matrix; it can be used to quantify how likely it is that a given

state will give an arbitrary set of data. However, there are many experimental

tests (see Sections 5.2 and 5.3 and 5.4) which require probabilities, rather than

count rates. The formalism of the last few subsections can be used to directly

calculate probabilities from count rates.

In a crosstalk-free system,

P|ψ〉 =
nν,r − naccid

ν,r

I0E0IνEr
, (5.19)

where nν,r represents the actual measured data counts. The other variables will
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have to be measured, though the details of this will vary from system to system.

For our photonic system, for example, the product I0IνE0Er is measured by

using the sum of the counts from a complete orthonormal basis, weighted for

detector pair efficiencies, to find the average intensity of incident photon pairs.

In a system with crosstalk, Equation 5.19 becomes incorrect because the

counts nν,r are the counts after crosstalk has affected the system. The correct

equation becomes

P|ψ〉 =
n′ν,r′

I0E0IνEr
,

n′ν,r′ = C−1
r′→r

(
nν,r − naccid

ν,r

)
, (5.20)

where n′ν,r′ are the counts that would have been measured in a system with no

accidental rates and no crosstalk. Notice that the crosstalk matrix Cr′→r has

been inverted in this equation, which will only be possible when it is possible to

calculate the counts before the crosstalk. Imagine for example, a beam splitter

which absorbs all light. All measured counts will be zero, and the crosstalk

matrix will be noninvertible. Also notice that calculating crosstalk-corrected

probabilities is only easily accomplished using 2n detectors, as Equation 5.20

requires measurements in a full set of r bases to mathematically reverse the

crosstalk effect.

5.2 Bell inequalities

Historically, one of the first uses for sequences of projective measurements was

the Bell inequality [26]. First proposed in 1964 [12], the Bell inequality provides

a limit on measurement correlations obtainable by any local realistic model.

Here, “local realistic model” refers to any model which obeys both locality and

realism. Locality is the constraint that a nearby system be completely describ-

able without reference to distant systems. Realism requires that a complete

description of a system be sufficient to predict the result of any measurement

that is made upon it (even if it is not possible for an experimenter, even in

principle, to have access to the complete description of a system).

5.2.1 The CHSH inequality

These assumptions eventually lead to a paradox, which is commonly written as

an inequality. To see how this inequality is derived, let us define a quantity

E(Ai, Bj) ≡ M(Ai) ×M(Bj) (5.21)

which represents the correlation between a measurement in basis Ai on particle

A, and a measurement Bj on particle B. These measurements are assumed to

give a value of either M = 1 (the measurement succeeded) or M = −1 (the
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measurement failed). For photon polarization, this corresponds to subjecting

one half of a photon pair (photon A) to a projective measurement (such as a

unitary transform followed by a polarizing beam splitter) in basis |ψAi
〉, and

the other half of the photon pair (photon B) to a projective measurement in

basis |ψBj
〉. If photon A is transmitted through the first unitary operation and

polarizing beam splitter, then M(Ai) = 1, and if is reflected, then M(Ai) = −1.

Similarly, if photon B is transmitted through the second unitary operation and

polarizing beam splitter, then M(Bi) = 1, and if is reflected, then M(Bi) = −1.

Together, these allow a pair of separable projections on an input photon pair to

give a measurement of E(Ai, Bj).

For a single pair of photons, therefore, E(Ai, Bj) = ±1, regardless of the

specific bases Ai or Bj that are used for the measurement. Bell’s inequalities,

however, are applied to ensembles of photon pairs (more generally, ensembles of

any correlated measurements), rather than single pairs of photons. The value E

then becomes an expectation value of this measurement applied on an ensemble,

taken by averaging all results.

Local hidden variable theories, by definition, require that

E(Ai, Bj) = E(Ai) × E(Bj), (5.22)

where E(Ai) and E(Bj) are expectations of the results of measurements on

only one particle. This assumption allows us to derive a bound on an equation

involving terms of this type:

E(A1, B1) + E(A1, B2) + E(A2, B1) − E(A2, B2)

= E(A1)E(B1) + E(A1)E(B2) + E(A2)E(B1) − E(A2)E(B2)

= E(A1)(E(B1) + E(B2)) + E(A2)(E(B1) − E(B2))

≤ |E(A1) {E(B1) + E(B2)} + E(A2) {E(B1) − E(B2)}|
≤ |E(A1) {E(B1) + E(B2)}| + |E(A2) {E(B1) − E(B2)}|
≤ |E(B1) + E(B2)| + |E(B1) − E(B2)|
≤ 2. (5.23)

This inequality must be observed in all systems where the results of a mea-

surement on particle A give no information about an impending measurement

on particle B. Quantum mechanics predict violations of this inequality, and,

for the right measurements, maximally entangled states are predicted to give a

violation of up to 2 ×
√

2.

To measure this violation using probabilities measured from separable pro-

jectors, it is possible to rewrite the CHSH inequality using the convention of

[21]:

PA1B1
+ PA2B1

+ PA1B2
− PA2B2

− PA1
− PB1

≤ 0. (5.24)

Here PAi,Bj
is defined as the probability that photons A and B will be projected
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into states Ai and Bj , respectively. It is this type of CHSH inequality that

is shown in Figure 5.3 and Table 5.2, in comparison with the Collins-Gisin

inequality, described below.

Experimental violations of the CHSH inequality

Since the first experimental violation of Bell’s inequality [26], there has been

significant improvement in the accuracy and precision of Bell measurements.

Using the phase-compensated ultra-bright source described in Chapter 3, vio-

lations of Bell’s inequality were measured on ensembles of larger size than ever

measured before, leading to violations of:

2.7260 ± 0.0034 (216σ) in 0.8 s

2.7252 ± 0.00058 (1239σ) in 28 s

2.7392 ± 0.00031 (2417σ) in 120 s. (5.25)

The total experimental time to collect these violations is listed above. While

the statistical violations (number of σ) for these measurements are large, they

are not very accurate. By taking into account imperfections in waveplates,

imperfections in measurement polarizing beam splitters, accidental counts, and

detector inefficiencies (all of these are detailed in Section 5.1), we were able to

make a much more accurate absolute measurement of Bell’s inequalities:

2.826 ± 0.005 (165σ) in 4 hours. (5.26)

Note that for all of these measurements the statistical errors are extremely low;

the true errors are almost certainly dominated by uncharacterized systematic

effects.

5.2.2 The Geneva inequality

If the Bell-type argument is extended to three measurement bases in each arm

( {A,B}1,2 ⇒ {A,B}1,2,3), Collins and Gisin from Geneva have shown that it

is possible to construct another inequality [21]:

PA1B1
+ PA2B1

+ PA3B1
+ PA1B2

+ PA2B2
+

PA1B3
− PA3B2

− PA2B3
− PA1

− 2PB1
− PB2

≤ 0. (5.27)

What is most interesting about this Geneva inequality is that it is inequivalent

to the CHSH inequality; there exist states which violate the Geneva inequality

but do not violate the CHSH inequality and vice versa.

In order to experimentally show this difference, we prepared a class of states

which lie on the border of violating the CHSH inequality, within a very small
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region of Hilbert space. These states are of the form [21]

ρ̂CG (θ) = λ|ψ (θ)〉〈ψ (θ) | + (1 − λ) |HV 〉〈HV |
|ψ (θ)〉 = cos(θ)|HH〉 + sin(θ)|V V 〉. (5.28)

For each state ρ̂CG (θ), λ is chosen such that the CHSH violation of ρ̂CG (θ)

is theoretically predicted to be exactly equal to 0. These states range from

pure to mixed and from entangled to separable, and together exemplify the

inequivalency between the Geneva and the CHSH inequalities (see Figure 5.3a

for experimental results and Section 4.2.4 for information on how to create

Collins-Gisin states).

The primary advantage of either the CHSH or the Geneva inequality is

their function as a test of local realism. Both require previous knowledge of

the state in order to choose measurement settings that maximize the value of

the inequalities. For both the CHSH and the Geneva inequalities, we used a

numerical search to find the optimal measurement settings (although in the case

of the CHSH inequality, a simple analytic proscription for the optimal settings

has been found—see [32]).

The Geneva and CHSH inequalities are experimentally compared in Figure

5.3 and Table 5.2.

5.3 Entanglement witnesses

Recently, entanglement witnesses [45] have been suggested as a use for projec-

tive measurements, and more specifically, as a test for entanglement. Their

advantage over complete tomography is speed—they require few measurement

settings. As we shall see in Section 5.5, however, this does not make up for

the incomplete information they provide: only when successful do entanglement

witnesses reveal if a state is entangled; when unsuccessful, they reveal nothing.

5.3.1 Standard entanglement witnesses

Technically, an entanglement witness W (which must be hermitian and non-

positive) is an operator whose overlap with product states is non-negative, i.e.,

for any separable state |αβ〉,

〈αβ|W |αβ〉 ≥ 0. (5.29)

This behavior guarantees a useful quality: if Tr (Wρ̂) < 0, then ρ̂ must be

entangled. Unfortunately, however, if Tr (Wρ̂) ≥ 0, no information about the

state is gained, as there are both entangled and separable states in this category.

The usefulness of an entanglement witness, relative to other entanglement

detection techniques is not immediately clear. Entanglement witnesses detect

more states than a Bell inequality (for each entangled two-qubit state, there
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Figure 5.3: Experimentally measured values for four different entanglement de-
tection methods, each applied to the same set of states. These states were all
of the form ρCG (θ) (see equation 5.28). In all cases the solid lines represent
theoretical values for ideal states, calculated numerically. In practice, the exper-
imental states deviated slightly from the exact form of ρCG (they all maintained
> 99% fidelity with the target). The error bars indicate the state tomography’s
1-σ error region for these experimentally created states, and so for outliers may
fail to bound the experimentally measured violations. (a) Measured violations
of the Geneva and CHSH inequalities, which are manifestly inequivalent. ρCG is
intentionally constructed so that the theoretical value of the CHSH violation is
always exactly zero. Both the CHSH and Geneva inequalities have been renor-
malized so that 0 represents the border between a violation and nonviolation.
The renormalized range of the Geneva inequality is -2 to 0.25 and the range of

the CHSH inequality is -1 to
(2

√
2−2)
4 . (b) Experimentally measured values for

an entanglement witness based on the negativity, as explained in Section 5.3.1.
Negative values indicate entanglement. (c) Experimentally measured values of
the Hefei inequality (see Section 5.3.2, a nonlinear Bell-type inequality based
on the negativity. Because of a fundamental similarity, the value of curve 5.3c
is equal to 1 minus four times curve 5.3b.

exists a witness which can detect its entanglement [45]). They use fewer mea-

surements than a full tomography (the exact number depends upon the specific

witness). Unfortunately, because a specific witness only functions for specific

entangled states, it is necessary to tailor a specific witness for each entangled

state if it is to be used as a reliable entanglement detection method. See section
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5.6 for a more detailed comparison between these methods.

Example 5.4 (Constructing an entanglement witness) Here we construct

a witness that is capable of detecting the entanglement for all ρCG (θ) (see Sec-

tion 4.2.4). Consider the spectrum of the partial transposition [52, 32] ρTA of

the state ρCG (θ). Denote by λmin (θ) its minimum eigenvalue and by |en (θ)〉
the corresponding eigenvector. Since ρCG (θ) is entangled when 0 < θ < π,

λmin (θ) is negative in the same range [32] (the value of this eigenvalue is lin-

early related to the negativity). Moreover, |en (θ)〉 turns out to be independent

of θ, i.e., |en (θ)〉 = |en〉. It follows that W = |en〉〈en|TA is an entanglement

witness, with Tr [Wρ] ≥ 0 for all separable states.

5.3.2 The Hefei inequality

While entanglement witnesses are based on the linear overlap between a density

matrix and an operator, it is possible to construct nonlinear inequalities based

on the same types of measurements. Consider two sets of mutually unbiased

observables, {Ai} and {Bi}, having identical orientation (A1A2A3 = B1B2B3).

In other words, {Ai} is a set of three measurements, the axes of which are

mutually perpendicular in Poincaré space (the same is true for {Bi}). Having

identical orientation means that the right-hand rule applies to both sets or to

neither.

The Hefei Group proved [74] that a two qubit state is separable if and only

if √
〈A1B1 +A2B2〉2ρ + 〈A3 +B3〉2ρ − 〈A3B3〉ρ ≤ 1 (5.30)

for all Ai, Bi where 〈O〉ρ = Tr [ρO]. Moreover, the maximal value of the above

inequality is equal to 1 − 4λmin with λmin equal to the minimal eigenvalue of

the partial transpose of the density matrix.

The results of a measurement of this Hefei inequality—which once again

requires one to choose the correct measurement bases to match the state—are

shown in figure 5.3c. The y-axis in Figure 5.3 shows the value of the violation:

a value greater than one indicates entanglement, a value of three can only be

obtained by a maximally entangled state.

5.4 Tomography of ideal systems

Bell inequalities and entanglement witnesses each provide methods for state

characterization, but only state tomography can completely characterize a state,

providing the density matrix which can be used to calculate the results of any

measurements made on the state.

The goal of tomography is to reconstruct the density matrix of an ensemble

of particles through a series of measurements. In practice, this can never be

performed exactly, as an infinite number of particles would be required to elim-
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inate statistical error. If exact measurements were taken on infinite ensembles,

each measurement would yield an exact probability of success, which could then

be used to reconstruct a density matrix. Though unrealistic, it is highly illus-

trative to examine this exact tomography before considering the more general

treatment. Hence, this Section will treat all measurements as yielding exact

probabilities, and ignore all sources of error in those measurements.

5.4.1 Single-qubit tomography

Although reconstructive tomography of any size system follows the same general

procedure, beginning with tomography of a single qubit allows the visualization

of each step using the Poincaré sphere, in addition to providing a simpler math-

ematical introduction.

Visualization of single-qubit tomography

Exact single-qubit tomography requires a sequence of three linearly independent

measurements. Each measurement exactly specifies one degree of freedom for

the measured state, reducing the free parameters of the unknown state’s possible

Hilbert space by one.

As an example, consider measuring R, D, and H on the partially mixed state

ρ̂ =

(
5
8

−i
2
√

2
i

2
√

2
3
8

)
. (5.31)

Rewriting the state using Equation 2.10 as

ρ̂ =
1

2

(
σ̂0 +

1√
2
σ̂2 +

1

4
σ̂3

)
(5.32)

allows us to read off the normalized Stokes parameters corresponding to these

measurements:

S1 = 0, S2 =
1√
2
, and S3 =

1

4
. (5.33)

As always, S0 = 1 due to normalization. Measuring R (which determines S2)

first, and looking to the Poincaré sphere, we determine that the unknown state

must lie in the z = 1√
2

plane (as S2 = 1√
2
). A measurement in the D basis

(with the result PD = PA = 1
2 ) further constrains the state to the y = 0 plane,

resulting in a total confinement to a line parallel to and directly above the x

axis. The final measurement of H pinpoints the state. This process is illustrated

in Figure 5.4a. Obviously the order of the measurements is irrelevant: it is the

intersection point of three orthogonal planes that defines the location of the

state.

If instead measurements are made along non-orthogonal axes, a very similar

picture develops, as indicated in Figure 5.4b. The first measurement always
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Figure 5.4: A sequence of three linearly independent measurements isolates a
single quantum state in Hilbert space (shown here as an open circle in the
Poincaré sphere representation). The first measurement isolates the unknown
state to a plane perpendicular to the measurement basis. Further measure-
ments isolate the state to the intersections of non-parallel planes, which for the
second and third measurements correspond to a line and finally a point. The
black dots shown correspond to the projection of the unknown state onto the
measurement axes, which determines the position of the aforementioned planes.
(a) A sequence of measurements along the right-circular, diagonal, and hori-
zontal axes. (b) A sequence of measurements on the same state taken using
non-orthogonal projections: elliptical light rotated 30◦ from H towards R, 22.5◦

linear, and horizontal. Taken from [5].

isolates the unknown state to a plane, the second to a line, and the third to a

point.

Of course, in practice, the experimenter has no knowledge of the unknown

state before a tomography. The set of the measured probabilities, transformed

into the Stokes parameters as above, allow a state to be directly reconstructed.

A mathematical look at single-qubit tomography

Using the tools developed in the Chapter 2, single-qubit tomography is rela-

tively straightforward. Recall Equation 2.10, ρ̂ = 1
2

∑3
i=0 Siσ̂i. Considering

that S1, S2, and S3 completely determine the state, we need only measure them

to complete the tomography. From Equation 2.14, Sj>0 = 2P|ψ〉 − 1; there-

fore, three measurements in the |0〉, 1√
2

(|0〉 + |1〉) , and 1√
2

(|0〉 + i|1〉) bases will

completely specify the unknown state. If instead measurements are made in

another basis, even a non-orthogonal one, they can be easily related back to the

Si parameters, and therefore the density matrix, by means of Equation 2.22.

While this procedure is straightforward, there is one subtlety which will be-
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come important in the multiple-qubit case. Projective measurements generally

refer to the measurement of a single basis state and return a single value be-

tween zero and one. This corresponds, for example, to an electron beam passing

through a Stern-Gerlach apparatus with a detector placed at one output. While

a single detector and knowledge of the input particle intensity will – in the one-

qubit case – completely determine a single Stokes parameter, one could collect

data from both outputs of the Stern-Gerlach device. This would measure the

relative probability of projecting not only onto the state |ψ〉, but also onto |ψ⊥〉,
and without needing to know the input intensity. All physical measurements

on single qubits, regardless of implementation, can in principle be measured

this way (though in practice measurements of some qubit systems may typically

detect a population in only one of the states, as in [37]). We will see below

that although one detector functions as well as two in the single-qubit case, this

situation will not persist into higher dimensions.

5.4.2 Multiple-qubit tomography

The same methods used to reconstruct an unknown single-qubit state can be

applied to multiple-qubit systems. Just as each single-qubit Stokes vector can be

expressed in terms of measurable probabilities—Equation 2.13, each multiple-

qubit Stokes vector can be measured in terms of the probabilities of projecting

the multiple-qubit state into a sequence of separable bases—Equation 2.34.

Using the most naive method, an n-qubit system, represented by 4n Stokes

parameters, would require 4n × 2n probabilities to reconstruct (2n probabil-

ities for each of 4n Stokes parameters). Of course, because an n-qubit den-

sity matrix contains 4n − 1 free parameters, the 4n × 2n measured probabil-

ities must be linearly dependent. As expected, by using the extra informa-

tion that measurements of complete orthogonal bases must sum to one (e.g.,

PHH + PHV + PV H + PV V = 1, PHH + PHV = PHD + PHA), we find that only

4n − 1 probability measurements are necessary to reconstruct a density matrix.

While we can easily construct a minimum measurement set for an n-qubit

system by measuring every combination of {H,V,D,R} at each qubit, i.e.,

{M} = {H,V,D,R}1 ⊗ {H,V,D,R}2 ⊗ . . . {H,V,D,R}n , (5.34)

this is almost never optimal (see Section 5.6). See Section 5.4.4 for a formal

method for testing whether a specific set of measurements is sufficient for to-

mography.

Example 5.5 (An ideal 2-qubit tomography of photon pairs) Consider

measuring a state in nine complete four-element bases, for a total of 36 mea-

surement results. These results are compiled below, with each row representing
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a single basis, and therefore a single two-qubit Stokes parameter.

S1,1 = +PDD
1
3

−PDA
1
6

−PAD
1
6

+PAA
1
3

=
1

3

S1,2 = +PDR
1
4

−PDL
1
4

−PAR
1
4

+PAL
1
4

= 0

S1,3 = +PDH
1
4

−PDV
1
4

−PAH
1
4

+PAV
1
4

= 0

S2,1 = +PRD
1
4

−PRA
1
4

−PLD
1
4

+PLA
1
4

= 0

S2,2 = +PRR
1
6

−PRL
1
3

−PLR
1
3

+PLL
1
6

= −1

3

S2,3 = +PRH
1
4

−PRV
1
4

−PLH
1
4

+PLV
1
4

= 0

S3,1 = +PHD
1
4

−PHA
1
4

−PV D
1
4

+PV A
1
4

= 0

S3,2 = +PHR
1
4

−PHL
1
4

−PV R
1
4

+PV L
1
4

= 0

S3,3 = +PHH
1
3

−PHV
1
6

−PV H
1
6

+PV V
1
3

=
1

3
(5.35)

The six remaining required parameters, listed below, are dependent upon the

same measurements.

S0,1 = +PDD
1
3

−PDA
1
6

+PAD
1
6

−PAA
1
3

= 0

S0,2 = +PRR
1
6

−PLR
1
3

+PRL
1
3

−PLL
1
6

= 0

S0,3 = +PHH
1
3

−PHV
1
6

+PV H
1
6

−PV V
1
3

= 0

S1,0 = +PDD
1
3

+PDA
1
6

−PAD
1
6

−PAA
1
3

= 0

S2,0 = +PRR
1
6

+PLR
1
3

−PRL
1
3

−PLL
1
6

= 0

S3,0 = +PHH
1
3

+PHV
1
6

−PV H
1
6

−PV V
1
3

= 0

(5.36)

These terms will not in general be zero, as in Equation 2.39, when for the state

|HH〉, S0,3 = S3,0 = 1. Of course, S0,0 = 1. Taken together, these two-qubit

Stokes parameters determine the density matrix:

ρ̂ =
1

4

(
σ̂0 ⊗ σ̂0 +

1

3
σ̂1 ⊗ σ̂1 −

1

3
σ̂2 ⊗ σ̂2 +

1

3
σ̂3 ⊗ σ̂3

)
(5.37)

=
1

6




2 0 0 1

0 1 0 0

0 0 1 0

1 0 0 2




=
1

6




1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1




+
1

6




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



.

This is the final density matrix, a Werner State, as defined in Equation 2.29.
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5.4.3 Tomography of non-qubit systems

By making use of the qudit extensions to the Stokes parameter formalism—

Equations 2.54–2.58, we can reconstruct any qudit system in exactly the same

manner as qubit systems. For a single particle d-level system, a single Stokes

parameter is dependent on d − 1 independent probabilities, and d + 1 Stokes

parameters are necessary to reconstruct the density matrix. Therefore a total

of (d+ 1)(d− 1) = d2 − 1 measurements are required.

Multiple-qudit systems can be reconstructed by using separable projectors

[65] upon which the multiple qudit Stokes parameters are dependent (these

dependencies were laid out in Section 2.50). Likewise, the following Section on

general tomography, while specific to qubits, can be easily adapted to qudit

systems.

5.4.4 General qubit tomography

As discussed earlier, qubit tomography will require 4n− 1 probabilities in order

to define a complete set of Ti parameters. In practice, this will mean that 4n

measurements are necessary in order to normalize counts to probabilities. By

making projective measurements on each qubit and only taking into account

those results where a definite result is obtained (e.g., the photon was transmitted

by the polarizer), it is possible to reconstruct a state using the results of 4n

measurements.

Our first task is to represent the density matrix in a useful form. To this

end, define a set of 2n × 2n matrices which have the following properties:

Tr
{
Γ̂ν · Γ̂µ

}
= δν,µ

Â =
∑

ν

Γ̂νTr
{

Γ̂ν · Â
}

∀Â, (5.38)

where Â is an arbitrary 2n × 2n matrix. A convenient set of Γ̂ matrices to use

are tensor-products of the σ̂ matrices used throughout this paper:

Γ̂ν = σ̂i1 ⊗ σ̂i2 ⊗ . . .⊗ σ̂in , (5.39)

where ν is simply a short-hand index by which to label the Γ matrices (there

are 4n of them) which is more concise than i1, i2, . . . in. Transforming Equation

2.30 into this notation, we find that

ρ̂ =
1

2n

4n∑

ν=1

Γ̂νSν . (5.40)

Next, it is necessary to consider exactly which measurements to use. In par-

ticular, we now wish to determine the necessary and sufficient conditions on the
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4n measurements to allow reconstruction of any state.8 Let |ψµ〉 (µ = 1 to 4n)

be the measurement bases, and define the probability of the µth measurement

as Pµ ≡ 〈ψµ|ρ̂|ψµ〉.
Combining this with Equation 5.40,

Pµ = 〈ψµ|
1

2n

4n∑

ν=1

Γ̂νSν |ψµ〉 =
1

2n

4n∑

ν=1

Bµ,νSν , (5.41)

where the 4n × 4n matrix Bµ,ν is given by

Bµ,ν = 〈ψµ|Γ̂ν |ψµ〉. (5.42)

Immediately we find a necessary and sufficient condition for the completeness

of the set of tomographic states {|ψµ〉}: if the matrix Bµ,ν is nonsingular, then

Equation 5.41 can be inverted to give

Sν = 2n
4n∑

µ=1

(
B−1

)
µ,ν

Pµ. (5.43)

While this provides an exact solution if exact probabilities are known, it leads

to a number of difficulties in real systems. First, it is possible for statistical errors

to cause a set of measurements to lead to an illegal density matrix. Second, if

more than the minimum number of measurements are taken and they contain

any error, they will over-define the problem, eliminating the possibility of a

single analytically calculated answer. To solve these problems it is necessary to

analyze the data in a fundamentally different way, in which statistically varying

probabilities are assumed from the beginning and optimization algorithms find

the state most likely to have resulted in the measured data (Section 5.5.2).

5.5 Experimental tomography of real data

As discussed earlier, any real experiment will contain statistical and systematic

errors which preclude the use of the ideal tomography described in Section 5.4.

Instead, it is necessary to use an algorithm (the maximum-likelihood technique)

which assumes some uncertainty or error in measurement results, and returns a

state which is the most likely to have produced the measured results.

In order to describe real tomography, we will first discuss the types of errors

which are present in an experiment, the maximum-likelihood algorithm, and

some details of the optimization of the entire process using numerical search

techniques. We first list in Table 5.1 the information that should have been

gathered during the experimental phase, followed by the formulae used to deter-

8If exact probabilities are known, only 4n − 1 measurements are necessary. However, often
only numbers of counts (successful measurements) are known, with no information about the
number of counts which would have been measured by detectors in orthogonal bases. In this
case an extra measurement is necessary to normalize the inferred probabilities.
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mine the expected number of measured counts for the νth measurement setting

on the rth detector combination.

Uν Measurement settings

nν,r Counts recorded

naccid
ν,r Accidental counts

Cr′→r Crosstalk coefficients

Er Relative efficiencies

Iν Relative intensities
(not used with 2n detectors)

n̄ν,r ≡ I0E0IνErTr
{
M̂ν,rρ̂

}
+ naccid

ν,r

M̂ν,r ≡
∑
r′ (Cr′→r) M̃ν,r′

M̃ν,r ≡ U†
ν |r〉〈r|Uν

Table 5.1: Summary of data and relations required for implementing the
maximum-likelihood technique for analyzing experimental data.

Given this information, we are able to numerically estimate which state was

most likely to return the measured results. Note that the relative intensities Iν

are optional, and can be included as data for an n-detector tomography. For a 2n

detector tomography, the Iν parameters will be varied as part of the optimization

algorithm, and do not need to be provided as part of the experimental data.

5.5.1 Types of Errors and State Estimation

Errors in the measurement of a density matrix fall into three main categories:

errors in the measurement basis, errors from counting statistics, and errors

from experimental stability. The first problem can be addressed by increasing

the accuracy of the measurement apparatus (e.g., obtaining higher tolerance

waveplates, better controlling the Rabi pulses, etc.) while the second problem

is reduced by performing each measurement on a larger ensemble (counting for

a longer time). The final difficulty is drift which occurs over the course of the

tomography.9 This drift occurs either in the state produced (in the state itself,

9These are the main sources of error that are likely to be present to some degree in any

qubit implementation. In addition, each implementation may have its own unique errors,
such as the wedged waveplates described in Appendix C or accidental background counts
from noisy detectors. Here we neglect such system-specific difficulties.
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(a) (b)

Figure 5.5: Graphical representation of errors in a single-qubit tomography. (a)
Basis errors. Errors in the setting of measurement apparatus can result in an
accurate measurement being taken in an unintended basis. Shown graphically
is the effect that an uncertainty in the measurement basis can have on the
reconstruction of a state. Instead of a single axis on the Poincaré sphere, the
possible measurement axes form uncertainty cones touching at the center, since
all possible measurement axes pass through the origin. This uncertainty in axis
is then translated into an uncertainty in the state (shown on the right). Instead
of isolating the state to a plane, all possible measurement axes trace out a volume
with large uncertainty near the surface of the sphere and low uncertainty near
the center. (b) Counting errors. Even if the measurement basis is exactly
known, only a limited number of qubits can be measured to gain an estimate
of a state’s projection onto this axis (taken directly from the probability of a
successful measurement). This uncertainty results in an unknown state being
isolated to a one-dimensional Gaussian (approximately) in three-dimensional
space, rather than to a plane.

or in the rate of state production) or the efficiency of the detection system, and

can constrain the data-collection time.

Figure 5.5a shows what a basis error looks like on the Poincaré sphere and

how that error affects the ability to isolate a state in Poincaré space. This

picture indicates that a basis error is more pronounced when measuring a pure

state, but actually has no effect when measuring a totally mixed state (because

all bases give the same answer).

Figure 5.5b shows the same analysis of errors in counting statistics. Any

real measurement can only be carried out on a limited size ensemble. Though

the details of the statistics will be dealt with later, the detection events are

accurately described by a Poissonian distribution, which for large numbers of

counts is well approximated by a Gaussian distribution. This will cause the

resultant knowledge about the unknown state to change from a plane (in the

exact case) to a thick disk (uniformly thick for pure and mixed states), a one-

dimensional Gaussian distribution plotted in three-dimensional space.

After all sources of error are taken into account, a single measurement results

in a distribution over all possible states describing the experimenter’s knowledge

of the unknown state. This distribution represents the likelihood that a par-

ticular state would give the measured results, relative to another state. When

independent measurements are combined, these distributions are multiplied,

and ideally the knowledge of the unknown state is restricted to a small ball in

Poincaré space, similar to a three-dimensional Gaussian (as a large uncertainty

in any one direction will lead to a large uncertainty in the state). State isolation
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Figure 5.6: Isolation of a quantum state through inexact measurements. Al-
though a series of real measurements (those with uncertainties) will never be
able to exactly isolate an unknown quantum state, they can isolate it to a re-
gion of Hilbert space that is far more likely than any other region to contain
the unknown state. Consider a series of three measurements, each containing
counting errors, along orthogonal axes. From left to right, the area of Hilbert
space containing the unknown state is truncated from a one-dimensional Gaus-
sian probability distribution (the disk in the left figure) to a two-dimensional
Gaussian (the cylinder in the middle figure) and finally to a three-dimensional
Gaussian (the ball in the right figure). This results in an ‘error ball’ which ap-
proximates the position of the unknown state. The global maximum, however,
can often be outside allowed Hilbert space (outside the Poincaré sphere), which
is one reason a maximum-likelihood technique must be used to search over only
allowed quantum states.

occurs regardless of which measurements are taken, as long as they are linearly

independent, and is shown graphically in Figure 5.6 for a set of orthogonal

measurements.

In contrast to the ideal case in the previous section, for which the accuracy

of a reconstructed state did not depend on whether mutually unbiased measure-

ments were made, with real measurements the advantage of mutually unbiased

measurement bases becomes clear. In contrast to the measurements shown in

Figure 5.6, mutually biased measurements result in a non-symmetric error ball,

increasing the error in state estimation in one direction in Hilbert space.

Even after tomography returns a distribution of likelihood over Poincaré

space, one final problem remains. It is very possible, especially with low counts

or with the measurement of very pure states, that state estimation will return

an “illegal” state. For example, in Figure 5.6, the measurements seem to place

the error ball just on the edge of the sphere and slightly outside it. As all legal

states have a radius of less than or equal to one in Poincaré space, it is necessary

to find a way to return the most likely legitimate state reconstructed from a set

of measurements.

5.5.2 The maximum-likelihood technique

The problem of reconstructing illegal density matrices is resolved by selecting

the legitimate state most likely to have returned the measured counts [34, 33].

In practice, analytically calculating this maximally likely state is prohibitively

difficult, and a numerical search is necessary. Three elements are required: a

manifestly legal parametrization of a density matrix, a likelihood function which
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can be maximized, and a technique for numerically finding this maximum over

a search of the density matrix’s parameters.

The Stokes parameters are an unacceptable parametrization for this search,

as there are clearly combinations of these parameters which result in an illegal

state (e.g., S1 = S2 = S3 = 1). In this context, a legitimate state refers to a

non-negative definite Hermitian density matrix of trace one. The property of

non-negative definiteness for any matrix Ĝ is written mathematically as

〈ψ|Ĝ|ψ〉 ≥ 0 ∀|ψ〉. (5.44)

Any matrix that can be written in the form Ĝ = T̂ †T̂ must be non-negative

definite. To see that this is the case, substitute into Equation 5.44:

〈ψ|T̂ †T̂ |ψ〉 = 〈ψ′|ψ′〉 ≥ 0, (5.45)

where we have defined |ψ′〉 = T̂ |ψ〉. Furthermore, (T̂ †T̂ )† = T̂ †(T̂ †)† = T̂ †T̂ ,

i.e., Ĝ = T̂ †T̂ must be Hermitian. To ensure normalization, one can simply

divide by the trace. Thus the matrix ĝ given by the formula

ĝ = T̂ †T̂ /Tr{T̂ †T̂} (5.46)

has all three of the mathematical properties required for density matrices.

For the one-qubit system, we have a 2×2 density matrix with 3 independent

real parameters (although we will search over 4 in order to fit the intensity of the

data). Since it will be useful to be able to invert relation 5.46, it is convenient

to choose a tri-diagonal form for T̂ :

T̂ (~t ) =

(
t1 0

t3 + it4 t2

)
, (5.47)

where ~t is a vector containing each ti. The multiple-qubit form of the same

equation is given by:

T̂ (~t ) =




t1 0 . . . 0

t2n+1 + it2n+2 t2 . . . 0

. . . . . . . . . 0

t4n−1 + it4n t4n−3 + it4n−2 t4n−5 + it4n−4 t2n



. (5.48)

The manifestly ‘physical’ density matrix ρ̂p is then given by the formula

ρ̂p(~t ) = T̂ †(~t )T̂ (~t )/Tr{T̂ †(~t )T̂ (~t )}. (5.49)

This satisfies the first criterion for a successful maximum-likelihood search,

by providing an explicitly physical parametrization for ρ̂. The second criterion,

a likelihood function, will in general depend on the specific measurement appa-
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ratus used and the physical implementation of the qubit (as these will determine

the statistical distributions of counts, and therefore their relative weightings).

If we assume Gaussian counting statistics, then we can easily provide a suitable

likelihood function.

Let nν,r be the result for the νth measurement setting on the rth detector

combination. Let n̄ν,r be the counts that would be expected from the state ρ̂,

given all information about the system:

n̄ν,r ≡ I0E0IνErTr
{
M̂ν,rρ̂

}
+ naccid

ν,r (5.50)

M̂ν,r ≡
∑

r′

(Cr′→r) M̃ν,r′ (5.51)

M̃ν,r ≡ U†
ν |r〉〈r|Uν . (5.52)

Given that we wish to search over the parameters of ~t , rather than ρ̂, we will

rewrite this equation as

n̄ν,r = IνErTr
{
M̂ν,rT̂

† (~t
)
T̂
(
~t
)}

+ naccid
ν,r . (5.53)

Notice that the unknown scalars I0 and E0 have been absorbed into the un-

normalized T̂ † (~t
)
T̂
(
~t
)
, allowing our numerical search to discover what their

combined effect is without ever knowing their individual values.

Given these definitions, the probability of obtaining the νth measurement on

the rth set of detectors, nν,r, from the search parameters ~t is proportional to

exp

[
− (n̄ν,r − nν,r)

2

2σ̂2
ν,r

]
, (5.54)

where σ̂ν,r is the standard deviation of the νth measurement (given approx-

imately by
√
n̄ν,r). Therefore, the total probability of ρ̂ yielding the counts

{nν,r} is given by:

P (nν,r) =
1

Norm

∏

ν,r

exp

[
− (n̄ν,r − nν,r)

2

2n̄ν,r

]
, (5.55)

where Norm is the normalization constant. In order to find the ideal ~t , and

therefore the ideal ρ̂, we need to maximize the probability function above. This

is equivalent to maximizing the log of the same function, or equivalently, min-

imizing its negation, giving us our final likelihood function (notice that the

normalization constant is ignored for this function, as it will not affect the min-

imum):

L
(
~t
)

=
∑

ν,r

(n̄ν,r − nν,r)
2

2n̄ν,r
. (5.56)

The final piece in the maximum-likelihood technique is an optimization rou-

tine, of which there are many available. Our implementation will be discussed
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in the next subsection10. After a minimum is found, ρ̂ can be reconstructed

from the values of ~t .

Example 5.6 (A single-qubit tomography) Photon pairs generated via spon-

taneous parametric down-conversion from a nonlinear crystal can be used to gen-

erate single-photon states. Measuring a photon in one arm collapses the state of

its partner to a single-qubit Fock state [31]. An ensemble of these photons can be

characterized using the maximum-likelihood technique. The following data was

taken from an experiment in “Remote State Preparation” [58]:

H = 6237 D = 5793

V = 8333 R = 6202.

For this first example we will assume that no intensity normalization or

crosstalk compensation needs to occur (see Example B.1 for a more thorough

example). After minimizing the likelihood function, we obtain the following T̂

matrix

T̂ =

(
73.4 0

−29.0 − 1.2i 77.1

)
, (5.57)

from which we can derive the density matrix,

ρ̂ =
T̂ †T̂

Tr
{
T̂ †T̂

} =

(
0.5121 0.1837 + 0.0075i

0.1837 − 0.0075i 0.4879

)
. (5.58)

Note that the maximum-likelihood technique easily adapts to measurements

in mutually biased bases (e.g., due to imperfect yet well characterized wave-

plates) and over-complete measurements (taking more measurements than is

necessary). In the first case the set of |ψ〉 is mutually biased (i.e., not in the

canonical bases), though still governed by the mathematics of tomography we

have laid out; in the second case the sum in Equation 5.56 is extended beyond

the minimum number of measurement settings.

5.5.3 Optimization algorithms

In order to complete a tomography, the likelihood function L
(
~t
)

must be min-

imized. A number of optimization programs exist which can search over a large

number of parameters (e.g., ~t ) in order to minimize a complex function. We

use the Matlab 7.0 function lsqnonlin, which is optimized to minimize a sum

of squares. This type of optimized algorithm is more efficient than a generic

search, such as the Matlab function fminunc. In order for this minimization to

work most effectively, it takes as parameters f(~t ) and ∂f(~t )
∂ti

, where L
(
~t
)

is of

the form

L
(
~t
)

=
∑

x

[
fx(~t )

]2
. (5.59)

10For freely available code and further examples, see:
http://www.physics.uiuc.edu/research/QI/Photonics/Tomography/.
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For the problem of tomography, we can write

fν,r ≡ n̄ν,r − nν,r√
2n̄ν,r

(5.60)

=
IνErTr

{
M̂ν,rT̂

† (~t
)
T̂
(
~t
)}

+ naccid
ν,r − nν,r

√
2
(
IνErTr

{
M̂ν,rT̂ † (~t

)
T̂
(
~t
)}

+ naccid
ν,r

)
.

. (5.61)

With some effort, we can analytically derive the partial derivatives of these

terms, allowing the optimization algorithm to not only run much faster, but to

converge quickly regardless of the initial search condition:

∂fν,r
∂ti

=

[
∂
∂ti

(n̄ν,r − nν,r)
]√

n̄ν,r − (n̄ν,r − nν,r)
(
∂
∂ti

√
n̄ν,r

)

√
2n̄ν,r

=

(
∂n̄ν,r

∂ti

)
(n̄ν,r)

1
2 − (n̄ν,r − nν,r)

[
1
2 (n̄ν,r)

− 1
2
∂n̄ν,r

∂ti

]

√
2n̄ν,r

=
1

2
√

2n̄ν,r

∂n̄ν,r
∂ti

(
1 +

nν,r
n̄ν,r

)
. (5.62)

Note that it is impossible for this function to go to zero unless
∂n̄ν,r

∂ti
goes to zero,

important when considering whether or not the maximum-likelihood function

will have several local minima. (We believe that there is a single local minimum

for tomographies on real sets of data, though this is unproven.) Because T̂ is a

linear function, we can easily write down

∂n̄ν,r
∂ti

= IνEr
∂

∂ti
Tr
{
M̂ν,rT̂

† (~t
)
T̂
(
~t
)}

= IνErTr
{
M̂ν,r

[
T̂ † (~t

)
T̂
(
~δij

)
+ T̂ †

(
~δij

)
T̂
(
~t
)]}

, (5.63)

where ~δij is a j-element vector whose ith element is equal to one. All other

elements of ~δij are equal to zero. (Here j is the length of ~t .)

Even using these derivatives (and especially if they are not used), it is im-

portant to choose an initial condition for the search which is as close as possible

to the correct answer. This amounts to making the best analytic guess possible

using the ideal tomographic techniques presented in Section 5.4. It is possible

that those ideal techniques will result in an illegal density matrix, i.e., some

of its eigenvalues will be negative. If this happens (indeed, this happening is

the reason we need the maximum-likelihood technique), we simply set those

negative eigenvalues to zero, renormalize the positive eigenvalues, and use this

truncated state as the starting condition for the search.

105



5.6 Comparing entanglement detection

methods

This chapter has presented several options for detecting entanglement using

separable projective measurements, but no strong comparisons between these

methods. In order to choose between them, a theoretical and experimental

comparison which takes into account their response to systematic and statistical

errors would be ideal.

To that end, this section describes the preparation of a set of states near the

entangled-separable border in Hilbert space (the CG states described in Section

4.2.4) and their measurement using each of the aforementioned entanglement

detection techniques discussed in this chapter. These experiments were the first

implementations of the inequalities proposed by Collins et al. [21] and Yu et

al. [74], referred to as the Geneva (Section 5.2.2) and Hefei (Section 5.3.2) in-

equalities, respectively (so named for the cities from which they were proposed).

While analyzing each method, it is important to consider the information the

test provides (e.g., quantification of entanglement, information about local re-

alism, complete state determination), how many distinct measurement settings

are required to perform the test (important if changing bases is experimentally

costly), and how the test is affected by both statistical uncertainty and sys-

tematic errors (statistical factors will primarily determine the time necessary

to make a measurement). This section concludes with a table quantifying the

differences between these methods.

The experiments were carried out using pairs of polarization-encoded entan-

gled photons of the type described in Chapter 3 (see Figure 5.7). The states

used for experimentally testing these methods are the ρ̂CG, described in Section

4.2.4.

The first two entanglement detection methods discussed (Bell inequalities

and entanglement witnesses) share two disadvantages: they require previous

knowledge of the state to be effectively applied and they fail to quantify the

amount of entanglement present. These problems can be overcome by taking a

complete state tomography, which through a series of separable measurements

reconstructs the full density matrix. While tomography requires no prior knowl-

edge of the state and allows any of the above quantities to be derived from the

density matrix, it does not necessarily provide a test of local realism11 and

requires a minimum of 16 separable measurements settings [71, 5].

Table 5.2 shows the number of measurements and the total number of state

copies per measurement necessary to accurately measure, using each method,

four representative two-qubit states: I/4, ρCG
(
π
8

)
, |ψ+〉 = 1√

2
(|HH〉 + |V V 〉),

11It is possible for tomography data which is explainable by a local hidden variable model
to predict an entangled state which could violate local-realism. This is because the data
necessary for a state tomography can be from any complete set of linearly independent data.
Data for Bell inequalities must instead come from very specific bases tailored for each state
to be measured.
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Figure 5.7: Experimental setup for the entanglement detection methods dis-
cussed. (a) State creation. A 351-nm pump beam down-converts inside two
orthogonally oriented 0.6-mm BBO crystals. These crystals are designed such
that the superposed down-conversion from both crystals produces the state
ψ (ǫ, φ) = cos (ǫ) |HH〉 + eiφsin (ǫ) |V V 〉, where ǫ and φ are respectively deter-
mined by the rotation of the ǫ-HWP (half waveplate) and the tilt of the φ-QWP
(quarter waveplate) about its optic axis, oriented vertically. Specially designed
245-µm BBO plates compensate for any angular dependence in the phase factor
eiφ (as discussed in Section 3.4). Two HWP’s transform this state into a state
with arbitrary diagonal values in the H/V basis. Finally, as discussed in Exam-
ple 4.5, two 1-cm decohering quartz crystals destroy all coherence terms in the
density matrix except for |HH〉〈V V | and |V V 〉〈HH| [38]. (b) Measurement.
In each arm, a QWP-HWP-PBS (polarizing beam splitter) combination allows
projection into any single-qubit basis. Silicon avalanche photodiodes and coin-
cidence electronics allow the results of separable, two-qubit measurements to be
recorded. (c) For some experiments, it is advantageous to add an additional de-
tector at each of the remaining PBS ports, in order to collect not just the results
of a single separable projector, but an entire four-element basis measurement.

and |HH〉. The number of measurements were minimized in each case, which

for the 2-detector case leads to a substantially larger necessary ensemble size,

exemplified by the factor of 2.6 (≈ [8800× 16]/[1500× 9× 4]) increase in neces-

sary state copies between 36 and 16 measurement, 2-detector tomographies of

ρCG
(
π
8

)
.

This point merits special attention. Quite counterintuitively, this implies

that increasing the number of measurement settings decreases the total mea-

surement time. This is possible because each measurement setting can operate

on a smaller size ensemble of particles. Because the 36-measurement tomogra-

phy uses nine complete bases, instead of just the single complete basis used in a

16-measurement tomography, every measurement taken reduces the error in the

state intensity. This redundant measurement on the state intensity translates

into a far more accurate tomography for the same size ensemble when using 36

as opposed to 16 measurement settings. For more information on this effect, see

[8].

These results are a numerical upper bound that is highly dependent not only

on the state to be measured, but the particular measurement settings that are

107



(a) Single Projector / 2 Detectors

Method M# I/4 ρCG
(
π
8

)
ψ+ |HH〉

CHSH 7 6800 4400 12400 200
Geneva 11 7000 5400 2600 200
Ent. Witness 8 800 400 200 500
Hefei 8 12300 2500 400 200
Tomography‡ 16 23500 8800 900 900

(b) Four Projectors / 4 Detectors

Method M# I/4 ρCG
(
π
8

)
ψ+ |HH〉

CHSH 4 3400 1000 2100 200
Geneva 8 2300 2200 1600 200
Ent. Witness 3 800 400 200 500
Hefei 3 5500 1600 400 100
Tomography‡ 9 4000 1500 400 200

Table 5.2: This table compares five different entanglement detection methods
using two different experimental configurations. For each detection method, the
second column (M#) indicates the number of necessary measurement settings.
Each additional column shows, for each of four two-qubit states, the minimum
number of distinct two-qubit systems that need to be used, per measurement, in
order to attain a ±1% statistical error. Here, a ±1% error is measured relative
to the entire range of the measured quantity. For example, the CHSH inequality
ranges from -1 to ∼ 0.207, making a ±1% error equal to a ±0.01∗1.207 error in
the violation. The minimum state copies necessary were numerically estimated
using a Monte-Carlo simulation of the expected data, the results of which agreed
with analytic estimates. The third through sixth columns respectively show the
state copies per measurement necessary for the states I/4, ρCG

(
π
8

)
, |HH〉, and

|ψ+〉 = 1√
2

(|HH〉 + |V V 〉). (a) Results for a single projector (2-detector) setup,

where each two-qubit state is measured using only a single separable two-qubit
projector. (b) Results for a full basis measurement (4-detector) setup, where
each two-qubit state is measured simultaneously by four mutually orthogonal
projectors (see figure 5.7c). (‡) Tomography returns a density matrix, from
which the results of each other test can be derived. The tomography entries on
this chart show the minimum state copies necessary to attain a density matrix
precise enough to reduce the error on each of these derived quantities to less
than ±1%.

chosen (for any given state there may be many equivalent ways to measure a

maximal violation of an inequality or a maximally efficient tomography). This

is exemplified by the 2-detector CHSH results for |ψ+〉, which appear to be

quite high, and |HH〉, which are quite low. The maximally entangled state re-

quires very specific measurements, and leaves little freedom to optimize for low

errors. The violation for |HH〉, however, is theoretically zero, allowing mea-

surement settings to be chosen which are all orthogonal to |HH〉, all resulting

in probability zero, and all with low errors.

Comparing these five methods, we find that the CHSH and Geneva inequal-

ities are useful for performing tests of local realism, the Hefei inequality and the

entanglement witness can be used to quickly bound λmin, and the tomography

appears to be the most attractive option in general; each other method first re-
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quires a tomography to choose its measurement settings—a tomography which

can be used to derive any information about a state. In the 4-detector case, the

tomography actually outperforms several other methods for entangled states,

the states most likely to be measured using entanglement detection techniques.

5.7 Error Analysis

Error analysis of state characterization methods is in practice a non-trivial pro-

cess. The traditional method of error analysis involves analytically solving for

the error in each measurement due to each source of error, then propagat-

ing these errors through a calculation of any derived quantity. In the photon

case, for example, errors in counting statistics and waveplate settings were ana-

lyzed in some detail in reference [34], giving errors in both density matrices and

commonly derived quantities, such as the tangle and the linear entropy12. In

practice, however, these errors appear to be too large: We have experimentally

repeated some of our measurements many times, and observed a spread in the

value of derived quantities which is approximately an order of magnitude smaller

that the spread predicted from an analytic calculation of the uncertainty. Ob-

viously, the correctness of the analytic calculation is questionable. Thus it is

worthwhile to discuss alternate methods of error analysis.

One promising numerical method is the ‘Monte Carlo’ technique, whereby

additional numerically simulated data is used to provide a statistical distribution

over any derived quantity. Once an error distribution is understood over a single

measurement (e.g., Gaussian for waveplate setting errors, or Poissonian over

count statistics), a set of ‘simulated’ results can be generated. These results are

simulated using the known error distributions in such a way as to produce a full

set of numerically generated data which could feasibly have come from the same

system. These data are numerically generated (at the measured counts level),

and each set is used to calculate a density matrix via the maximum likelihood

technique. This set of density matrices is then used to calculate the standard

error on any quantity implicit in or derived from the density matrix.

As an example, consider the application of the Monte Carlo technique to the

down-conversion results from Example B.1. Two polarization-encoded qubits

are generated within ensembles that obey Poissonian statistics, and these en-

sembles are used to generate a density matrix using the maximum likelihood

technique. In order to find the error on a quantity derived from this density

matrix (e.g., the tangle), 36 new measurement results are numerically gener-

ated, each drawn randomly from a Poissonian distribution with mean equal to

the original number of counts. These 36 numerically generated results are then

fed into the maximum likelihood technique, in order to generate a new den-

12Beware. The error analysis and some of the gamma matrices are incorrectly calculated
in this reference. See http://www.physics.utoronto.ca/ dfvj/publications.html for a list of
corrections.
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sity matrix, from which, e.g., the tangle may be calculated. This process is

repeated many times, generating many density matrices and a distribution of

tangle values, from which the error in the initial tangle may be determined. In

practice, additional sets of simulated data must be generated until the error on

the quantity of interest converges to a single value. For the data in Examples

5.6 and B.1, a total of 100 simulations were used.
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6 Conclusions

Taken as a whole, the research presented here represents a dramatic shift in

what is possible for experimental quantum information, and in many cases is

the limit of the current technology (e.g., state brightness, state entanglement,

Bell violations, precision of state creation). These advances would not have been

possible without the simultaneous development of an intuitive sense of how the

quantum mechanical world works, at least for two qubits. This intuition is far

from complete, however, and there are many things still to be done.

While phase compensation has been extremely successful at generating bright,

pure states, there are still unexplained second-order effects in the experimental

data. Pushing state brightness and fidelity to the next level will require explor-

ing these both theoretically and experimentally. Additionally, the theory of the

construction and measurement of quantum processes is far behind what exists

for states. It is, at this point, unclear if it is even possible to apply a maximum

likelihood algorithm to processes without serious assumptions about the type of

process being measured. State tomography of two qubits has a separate prob-

lem: if it is to be incorporated into technologically useful systems, tomography

must be performed using an algorithm that can use incremental adjustments to

a density matrix rather than using an optimization which can only be performed

after all the data has been collected.

The true frontier of this research, however, is the exploration of larger Hilbert

spaces. For the work presented here, state tomography provided the exquisite

precision necessary to improve every other aspect of the system. When Hilbert

spaces grow to only a few more qubits, tomography will simply not be feasible,

and smarter characterization methods will need to be developed. These methods

hold the promise of facilitating continual experimental improvements to the first

stages of working quantum computers. And as for whether those computers

will use photonic qubits? It is not yet clear if photons will be utilized as the

basic qubits in real quantum computers. However, it is almost certain that

the connections between distant quantum systems will use photonic quantum

information, and take advantage of the strange nonlocal properties which it

exemplifies. It is my hope that the work presented here has brought such a

system a little closer to realization.
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A Measures for Characterizing

Quantum Systems

A.1 Measures on quantum states

A.1.1 Fidelity

Fidelity is a measure of state overlap:

F (ρ1, ρ2) =

(
Tr

{√√
ρ1ρ2

√
ρ1

})2

, (A.1)

which - for ρ1 and ρ2 pure - simplifies to Tr {ρ1ρ2} = |〈ψ1|ψ2〉|2 [36]1.

A.1.2 Tangle

The concurrence and tangle are measures of the non-classical properties of a

quantum state [73, 20]. For two qubits2, concurrence is defined as follows:

consider the non-Hermitian matrix R̂ = ρ̂Σ̂ρ̂TΣ̂ where the superscript T denotes

transpose and the ‘spin flip matrix’ Σ̂ is defined by:

Σ̂ ≡




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0



. (A.2)

If the eigenvalues of R̂, arranged in decreasing order, are given by r1 ≥ r2 ≥
r3 ≥ r4, then the concurrence is defined by

C = Max {0,√r1 −
√
r2 −

√
r3 −

√
r4} . (A.3)

The tangle is calculated directly from the concurrence:

T ≡ C2. (A.4)

1Note that some groups use an alternate convention of fidelity, equal to the square root of
the formula presented here.

2The analysis in this thesis applies, in large part, to the two-qubit case only. Measures of
entanglement for mixed n-qubit systems are a subject of on-going research: see, for example,
[64] for a recent survey. In some restricted cases it may be possible to measure entanglement
directly, without quantum state tomography; this possibility was investigated in [60]. Also,
one can detect the presence of non-zero entanglement, without quantifying it, using so-called
“entanglement witnesses” [45]. Chapter 5 describes the trade-offs associated with these other
entanglement characterization schemes.
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The tangle (and the concurrence) range from 0 for product states (or, more

generally, any incoherent mixture of product states) to a maximum value of 1

for Bell states.

A.1.3 Entropy and linear entropy

The Von Neumann entropy quantifies the degree of mixture in a quantum state,

and is given by

S ≡ −Tr {ρ̂ln [ρ̂]} = −
∑

i

piln {pi} , (A.5)

where the pi are the eigenvalues of ρ. The linear entropy [71] is a more analyti-

cally convenient description of state mixture. The linear entropy for a two-qubit

system is defined by:

SL =
4

3

(
1 − Tr

{
ρ̂2
})

=
4

3

(
1 −

4∑

a=1

p2
a

)
, (A.6)

where pa are the eigenvalues of ρ. Note that for pure states, ρ̂2 = ρ̂, and Tr [ρ̂]

is always 1, so that SL ranges from 0 for pure states to 1 for the completely

mixed state.

A.2 Measures on quantum processes

A.2.1 Process fidelity

The standard state fidelity is insufficient for comparing two processes. Instead,

we define the process fidelity F [17]:

F(E1, E2) ≡
∫
dψF (E1(|ψ >< ψ|), E2(|ψ >< ψ|)). (A.7)

For the results presented in this work, we calculated this sum numerically, as

an analytic solution is prohibitively difficult.
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B A Complete Example of

Tomography

In order to demonstrate how the concepts presented in Chapter 5 are actually

applied, we have included an example which from start to finish uses labora-

tory parameters and data, taken from a two-qubit entangled photon source.

Throughout this example we will use our standard convention for the canonical

basis: |0〉 ≡ |HH〉, |1〉 ≡ |HV 〉, |2〉 ≡ |V H〉, and |3〉 ≡ |V V 〉.

Example B.1 (A complete two-qubit tomography) Before collecting to-

mography data, there are several measurement parameters that must be mea-

sured. After experimentally determining that each of our beam splitters has neg-

ligible absorption, a 0.8% chance to reflect |H〉, and a 0.5% chance to transmit

|V 〉, we can determine that

Cr′→r ≡




0′ 1′ 2′ 3′

→ 0 0.9842 00049 0.0049 0.0000

→ 1 0.0079 0.9871 0.0000 0.0050

→ 2 0.0079 0.0000 0.9871 0.0050

→ 3 0.0001 0.0079 0.0079 0.9901



. (B.1)

Rather than measuring intensity fluctuations by picking off a part of the

pump laser, we will choose during this tomography to fit the intensity parameters

Iν as part of the maximum likelihood technique (we use four detectors, which

will allow us to fit a relative intensity to each measurement setting by using the

measured counts from each of four orthogonal projectors).

Because this particular tomography will use a total of nine measurement set-

tings (the minimum number required), there will not be enough information to fit

for the detector-pair efficiencies. A previous tomography (using 36 measurement

settings and not shown here) was used to solve for the Er, using a two-detector

tomography applied to the 36 measurement results from each of the four pairs

of detectors:

E1 = 0.9998 E3 = 0.9195

E2 = 1.0146 E4 = 0.9265 .

To simplify the example, we will make all measurements in the canonical bases

(this could be accomplished using either ideal waveplates or, in some cases, im-

perfect waveplates—see Appendix C.

With these parameters recorded, we can now take the data. The following

counts were recorded for a slightly mixed Bell state (close to 1√
2

(|HH〉 + i|V V 〉)):
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n1,r: HH = 3708 HV = 77 VH = 51 VV = 3642

n2,r: HD = 1791 HA = 1987 VD = 2096 VA = 3642

n3,r: HR = 2048 HL = 1854 VR = 1926 VL = 1892

n4,r: DH = 1766 DV = 1914 AH = 2153 AV = 1741

n5,r: DD = 1713 DA = 1945 AD = 2208 AA = 1647

n6,r: DR = 3729 DL = 91 AR = 102 AL = 3662

n7,r: RH = 2017 RV = 1709 LH = 1917 LV = 1955

n8,r: RD = 3686 RA = 102 LD = 109 LA = 3651

n9,r: RR = 2404 RL = 1474 LR = 1712 LL = 2209,

with the corresponding accidental counts (calculated using the measured singles

rates and the previously determined coincidence window ∆tr (c.f., Equation

5.11).

naccid
1,1 = 5.4 naccid

1,2 = 5.6 naccid
1,3 = 5.9 naccid

1,4 = 6.0

naccid
2,1 = 5.2 naccid

2,2 = 5.5 naccid
2,3 = 5.6 naccid

2,4 = 6.0

naccid
3,1 = 5.3 naccid

3,2 = 5.5 naccid
3,3 = 5.6 naccid

3,4 = 5.9

naccid
4,1 = 5.2 naccid

4,2 = 5.3 naccid
4,3 = 6.0 naccid

4,4 = 6.1

naccid
5,1 = 5.2 naccid

5,2 = 5.4 naccid
5,3 = 5.9 naccid

5,4 = 6.2

naccid
6,1 = 5.2 naccid

6,2 = 5.3 naccid
6,3 = 5.9 naccid

6,4 = 6.1

naccid
7,1 = 5.3 naccid

7,2 = 5.4 naccid
7,3 = 5.9 naccid

7,4 = 6.1

naccid
8,1 = 5.4 naccid

8,2 = 5.9 naccid
8,3 = 6.1 naccid

8,4 = 6.6

naccid
9,1 = 5.3 naccid

9,2 = 5.4 naccid
9,3 = 6.0 naccid

9,4 = 6.2.

After minimizing the likelihood function, we obtain the following T̂ matrix

T̂ =




0 0 0 0

2.401 + 3.167i 2.372 0 0

−6.381 − 2.649i 3.919 − 0.897i 2.674 0

−8.975 + 58.630i 1.356 − 2.106i 1.685 − 1.514i 60.08



, (B.2)

from which we can derive the density matrix,

ρ̂ =
T̂ †T̂

Tr
{
T̂ †T̂

}

=




0.50 −0.02 − 0.01i −0.02 − 0.01i −0.07 − 0.49i

−0.02 + 0.01i 0.00 0.00 + 0.00i 0.01 + 0.02i

−0.02 + 0.01i 0.00 − 0.01i 0.00 0.01 + 0.01i

−0.07 + 0.49i 0.01 − 0.02i 0.01 − 0.01i 0.50



.

(B.3)

Our search algorithm returned this density matrix because it minimized not only

the main search parameters ~t , but the intensities Iν :

I1 = 7647 I2 = 7745 I3 = 7879

I4 = 7725 I5 = 7669 I6 = 7754

I7 = 7751 I8 = 7716 I9 = 7967,
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allowing us to calculate the expected counts n̄ν,r (for the final density matrix):

n̄1,1 = 3792 n̄1,2 = 81 n̄1,3 = 67 n̄1,4 = 3544

n̄2,1 = 1794 n̄2,2 = 1956 n̄2,3 = 2106 n̄2,4 = 1735

n̄3,1 = 2046 n̄3,2 = 1787 n̄3,3 = 1933 n̄3,4 = 1956

n̄4,1 = 1815 n̄4,2 = 1895 n̄4,3 = 2108 n̄4,4 = 1758

n̄5,1 = 1618 n̄5,2 = 2050 n̄5,3 = 2247 n̄5,4 = 1604

n̄6,1 = 3792 n̄6,2 = 97 n̄6,3 = 103 n̄6,4 = 3594

n̄7,1 = 2032 n̄7,2 = 1699 n̄7,3 = 1901 n̄7,4 = 1966

n̄8,1 = 3758 n̄8,2 = 103 n̄8,3 = 105 n̄8,4 = 3583

n̄9,1 = 2271 n̄9,2 = 1580 n̄9,3 = 1751 n̄9,4 = 2206,

Using the error analysis techniques presented in Section 5.7, we can estimate

this state’s fidelity with the Bell state 1√
2

(|HH〉 + i|V V 〉) to be 98.4 ± 0.2%.
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C Waveplates

Waveplates are birefringent optics which perform unitary transformations on

the polarization of input light. The optic axis of a waveplate is parallel to its

surface, guaranteeing that input light which is normal to the surface, regardless

of its polarization, will exit with an unchanged spatial mode. Because the wave-

plate is birefringent, it possesses a different index of refraction for ordinary and

extraordinary polarizations, which we will denote with no and ne, respectively.

If the thickness of the waveplate is d, then the optical path length of the optic

is d × no,e. The optical phase (in radians) that a photon accumulates inside a

waveplate is therefore

φo,e ≡ 2πno,e
d

λ
. (C.1)

Written in terms of a unitary transformation, the action of a waveplate is

Ûwp ≡ eiφo |o〉〈o| + eiφe |e〉〈e|, (C.2)

where |o〉 and |e〉 represent the ordinary and extraordinary polarizations of pho-

tons inside the waveplate which therefore make up an orthonormal polarization

basis. Because a global phase can always be ignored, the defining characteristic

of a waveplate is therefore the phase difference, or retardation,

∆φ ≡ (φo − φe) mod 2π. (C.3)

The most common forms of waveplates are half waveplates (∆φ = π
2 ) and

quarter waveplates (∆φ = π
4 ).

More information on waveplates as state manipulation tools can be found

in Example 4.2, and additional information on waveplates as used in state pro-

jections can be found in Section 5.1.1. The remainder of this Appendix details

strategies for dealing with imperfect waveplates.

Compensating for Imperfect Waveplates

While the previous Chapters showed that it was possible using a quarter- and

half- waveplate to project into an arbitrary single qubit state, perfect quarter-

and half-waveplates are experimentally impossible to obtain. More likely, the

experimenter will have access to waveplates with known retardances slightly

different than the ideal values of π (HWP) and π
2 (QWP). Even in this case, it is

often possible to obtain arbitrary single-qubit projections. (Note that this is the
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second solution to the problem of imperfect waveplates. Imperfect waveplates

could be used at virtually any angles during a tomography—such as the same

angles at which perfect waveplates would be used to measure in the canonical

basis—resulting in a set of biased bases. The tomography mathematics have

already been shown to function for either mutually biased or unbiased bases, as

long as the set of bases is complete. In contrast, this section describes how—even

using imperfect waveplates—one can still measure in the canonical, mutually

unbiased bases.)

Analytically finding the angles where this is possible proves to be incon-

venient and, for some waveplates, impossible. Rather than solve a system of

equations based on the unitary waveplate matrices, we will examine the effect

of these waveplates graphically using the Poincaré sphere. For the remainder of

this discussion, we will assume that the experimenter has access to two wave-

plates, WP1 and WP2, which will respectively take the place of the QWP and

HWP normally present in the experimental setup. We constrain the retardances

of these waveplates to be 0 ≤ φ1 ≤ φ2 ≤ π.

In order to project into an arbitrary state |ψ〉, WP1 and WP2 must together

rotate the state |ψ〉 into the state |H〉 (assuming a horizontal polarizer is used

after the waveplates—any linear polarizer is equivalent). Taking a piecewise

approach, first consider which states are possible after acting on the input state

|ψ〉 with WP1. Figure C.1a shows several example cases on the Poincaré sphere,

each resulting in curved band of possible states that can be reached by varying

the orientation of WP1. Next consider which states could be rotated by WP2

into the target state |H〉. Figure C.1b shows several examples of these states,

which also take the form of a curved band, traversed by varying the orientation

of WP2. In order for state |ψ〉 to be rotatable into state |H〉, these two bands

of potential states (shown in Figures C.1a and C.1b) must overlap.

Briefly examining the geometry of this system it appears that for most states

this will be possible as long as the waveplate phases do not differ too much from

the ideal HWP and QWP. Further consideration reveals that it is sufficient to

be able to project into the states on the H-R-V-L great circle. There are two

conditions under which this will not occur. First, if WP2 is too close to a HWP,

with WP1 far from a QWP, the states at the poles (close to |R〉 and |L〉) will

be unreachable from |H〉 (see Figure C.1c). Quantifying this condition:

2
∣∣∣
π

2
− φ1

∣∣∣ ≤ π − φ2. (C.4)

Put another way, the error in the QWP must be less than half the error in the

HWP. Second, the combined retardances from both waveplates can be insuffi-

cient to reach |V 〉 (see Figure C.1c):

φ1 + φ2 ≥ π. (C.5)

118



(a)

(b)

(c)

Figure C.1: Possible projectors simulated by waveplates and a stationary po-
larizer, graphically shown on Poincaré spheres. (a) WP1, depending on its
orientation, can rotate an incoming state into a variety of possible output
states. Shown here on three Poincaré spheres are an initial incoming state
(represented by a solid dot) and the set of all output states that WP1 can
rotate it into (represented by a dark band on the surface of the sphere).
From left to right, the spheres depict |R〉 transformed by a π

2 -waveplate,
|γ〉 = cos

(
π
8

)
|H〉 + isin

(
π
8

)
|V 〉 transformed by a π

3 -waveplate, and |γ〉 trans-
formed by a 2π

3 -waveplate. (b) WP2, depending on its orientation, can rotate a
variety of states into the target state |H〉. Shown here from left to right are the
states able to be rotated into |H〉 by a 11π

12 -waveplate, a 3π
4 -waveplate, and a

π
2 -waveplate. (c) The possible projectors able to be produced by two waveplates
and a horizontal polarizer. A series of arcs blanketing the Poincaré sphere show
the areas of the sphere representing achievable projectors for each waveplate
combination. From left to right, the spheres show the states (in this case, all of
them) accessible from an ideal QWP and HWP, the states accessible using π

3 -
and 11π

12 -waveplates (groups of states near the poles are inaccessible), and the
states accessible using π

3 - and 3π
5 -waveplates (states on the equator are inacces-

sible). Note that the spheres shown in (c) are not simply combinations of the
spheres above it, but include retardance values chosen to illustrate the possible
failure modes of imperfect waveplates.
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Given these two conditions, numerical simulations confirm that arbitrary single-

qubit projectors can be constructed with two waveplates.

To clarify, as discussed previously, one does not require arbitrary single-qubit

projectors, since an accurate tomography can be obtained with any set of lin-

early independent projectors as long as they are known. In fact, one advantage

to this approach is that the exact same tomography measurement system can

be used on photons with different wavelengths (on which the waveplates’ bire-

fringent phase retardances depend), simply by entering in the analysis program

what the actual phase retardances are at the new wavelengths [58].

Wedged Waveplates It is an experimental reality that all commercially

available waveplates have some degree of wedge (i.e., the surfaces of the wave-

plate are not parallel). This leads to a number of insidious difficulties which the

experimenter must confront, grouped into two categories: (1) The thickness of

the waveplate will change along its surface, providing a corresponding change in

the phase retardance of the waveplate. This means that during a tomography

when the waveplate is routinely rotated to different orientations, its total phase

after rotation will change according to a much more complex—and often very

difficult to calculate—formula. (In fact, if a large collection aperture is used,

then different parts of the beam will experience different phase shifts.) (2) The

direction (k-vector) of a beam will be deflected after passing through a wedged

waveplate. This deflection will again depend on waveplate orientation, therefore

changing throughout a tomography. This can have the effect of changing detec-

tor efficiencies (if, as in our case, a lens is used to focus to a portion of a very

small detector area, different pieces of which have different efficiencies). This

deflection will also affect any interferometric effects that depend on the beam

direction being stable under waveplate rotation. Some of these problems can

be mitigated (e.g., by taking care to pass through the center of the waveplate),

but the best solution is to select waveplates with faces very close to parallel.
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D Notes on Other

Experimental Equipment

This Appendix contains notes on specific equipment used during the described

experiments, and is intended mainly as a personal reference.

Counting electronics

We use NIM (nuclear instrumentation modules) for coincidence counting. From

ORTEC, we obtained the NIM bin (powers and holds most of the electronics,

part number 4001C), the inverting transformers (part number IT100), the quad

counters (part number 974), and the dual counters (part number 994). From

Phillips Scientific we obtained the discriminator (part number 711), the dual

delay line (part number 792), and the octal logic unit which contains the actual

coincidence logic (part number 758). We typically used coincidence windows

between 1 and 10 ns.

Detectors

We used SPCM-CD 2801 (also known as AQR 13 or AQR 14, where the number

indicates the dark count rate of the detector) Silicon avalanche photodiodes as

detectors. They typically have a quantum efficiency of ∼ 65%. They have a

typical dead-time of between 30 and 50 ns, after which there is after-pulsing.

The probability of after-pulsing can vary widely between individual detectors,

but should be less than 1%. The four-channel power supply for the detectors is

the Agilent 6627A. The two-channel version of the same supply is the Agilent

E3646A.

Down-conversion crystals

Necessary for our entanglement production, we have used a variety of down-

conversion crystals. Almost all have been β-Barium Borate (BBO), purchased

from Casix, NewLight Photonics, Eksma, Photox, and Cleveland Crystals. New-

Light Photonics appear to be the best, with the lowest background coatings com-

ing from MLD. BiBO is a new material we are just starting to switch to, which

appears to have up to 2.5 times brighter output (13400 coincidences/s/mW as

opposed to 5400 coincidences/s/mW). Unfortunately, BiBO appears to have

higher background singles. BiBO has 1.5% background and BBO has 0.75%

background, measured as the percentage of emitted singles counts which are
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not associated with coincidences and not dependent on input pump polariza-

tion.

The typical dimensions for BBO crystals are 0.6mm × 8mm × 8mm, with

an optic axis 33.9◦ degrees from crystal normal. The BiBO crystals (which are

biaxial) are cut at θ = 140.97◦ and φ = 90◦. Both of these cuts are for a 3◦ half

opening angle in free space for the down-converted cone.

Waveplates

Because wedged waveplates have been a consistent problem, we have ordered

waveplates from several companies, including: Casix, CVI, Meadowlark New-

port, OFR, Special Optics, and Tower Optics. By far the best results were

obtained with Special Optics waveplates. This may be due in part to the Spe-

cial Optics waveplates being air-spaced instead of glued, which we believe con-

tributes to a low wedge angle.
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