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ABSTRACT

Low insertion loss is a critical requirement for some newly emerging applications,

such as optical quantum computing. We have demonstrated improved free-space

to single-mode fiber coupling via wavefront correction using an adaptive-optic

(AO) mirror. By introducing AO correction paired with a three-step optimiza-

tion algorithm, we have obtained 97.3 ± 0.3% of the Fresnel-reflection-limited

mode-coupling efficiency. Our optimization scheme utilizes wavefront sensing for

close-loop correction of wavefront aberrations, followed by evolutionary and con-

vex maximization of coupled power. We have further shown a 9-nm RMS wave-

front flatness through close-loop correction, limited only by the AO mechanical

tolerances, as well as similar flatness utilizing only coupled-power optimization.
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CHAPTER 1

INTRODUCTION

Low insertion loss has long been a desired characteristic of most fiber- and

integrated-optic components. Such losses are unacceptable for some newly emerg-

ing applications. For example, practical implementation of optical quantum com-

puting will require integrated optics with fully optimized components and low-loss

interconnects. When dealing with waveguides such as single-mode optical fibers

and integrated optics, interconnection losses can become rather significant and

result primarily from mode-alignment and mode-mismatch issues. It is therefore

necessary to ensure that all losses are accounted for and minimized. For fault-

tolerant operation of quantum computing, cascaded error correction is necessary

to reach a given accuracy [1, 2]. As the reliability of transmission throughout an

optical system is reduced, the necessary resources for these cascaded operations

increase rapidly.

While alignment losses can be straightforwardly addressed, mode-mismatch

losses generally require more difficult correction techniques, such as ball-lens cou-

pling [3], waveguide end tapering [4], or adaptive-optic (AO) mode-correction

[5, 6]. Black-box solutions such as lens coupling typically suffer losses of 20-50%,

while solutions like tapering boast losses as low as 1.5-4% with the caveat of

requiring modified components and much higher cost. Here we present an AO ap-

proach for minimizing the coupling losses between two single-mode optics, e.g., a

free-space Gaussian beam and a single-mode fiber (SMF), through both alignment

and wavefront corrections. We achieved the latter through evolutionary-algorithm
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optimization of a deformable-membrane mirror. Accounting for Fresnel losses in

the optics, we were able to reduce coupling losses in an aligned system from 5.6%

to 2.7%.

This work serves as a partial demonstration of the limits of correction possible

through the utilization of adaptive optics for mode coupling. However, it is cer-

tainly not practical to implement an AO system at every interconnect. Rather,

it is necessary to know the bounds which are limiting system performance, so

that we might establish practical and realistic expectations. In light of this need,

the system presented here has been designed to operate with wavefront-limited

performance. Total mode correction (including the transverse intensity profile)

is a significantly more complex problem, as will be discussed in Chapter 3, and

represents the next phase of our experiment.

It is necessary to make use of a number of tools and techniques in order to

accomplish the task of implementing AO wavefront correction. The first set of

techniques to be discussed here involve wavefront sensing, or the measurement of

optical fields which are not directly observable. Without such information there

is no way of definitively showing that a coupling system is wavefront limited, and

that any AO correction is indeed working. There are a number of methods and

applications of wavefront sensing within AO, and we will provide an overview

in Chapter 2. Equally important to the recognition of a need for correction is

an understanding of the problem of coupling light between propagating modes.

Chapter 3 provides an overview of the optics and optical issues relevant to mode

coupling and AO optimization.

In order to develop a successful AO system, we must assess the correction

needs and available components. Chapter 4 provides an overview of the numerous

types of optics, as well as techniques, available for adaptive control. It is essential

for single-mode coupling that the components and design be chosen carefully for
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successful implementation. Although AO correction provides the capability to

compensate for many practical shortcomings, it is useless without proper place-

ment and control. We discuss the experimental layout and testing in Chapter

5, which serves as an overall summary of our demonstration. There are a num-

ber of potential modifications and extensions to this work, which are reviewed

in Chapter 6, e.g., systems that are limited by intensity rather than wavefront

mismatch.

Since the first introduction of AO correction in astronomy, the technology has

been evolving to meet new challenges and specifications. Only recently, however,

have components become available which are scaled to a practical size for bulk-

optics interfacing at visible wavelengths, rather than in the infrared or longer

regimes appropriate for astronomy and satellite communication. This work shows

the potential for utilizing this new generation of AO components to improve sys-

tems that are otherwise operating at the practical limit. An AO approach repre-

sents a generic solution to such problems, and can provide valuable and needed

insight into a system’s ultimate practical potential.
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CHAPTER 2

OPTICAL WAVEFRONT SENSING

2.1 Introduction

It is possible, through proper experimental setup (e.g., alignment, optimized coat-

ings, etc.), to restrict losses in a coupling system to only those caused by wavefront

mismatch. Wavefront mismatch is a measure of how well a field’s wavefront, as de-

fined by a chosen plane of constant phase, matches that of another field or mode.

Unfortunately, there are no antennae appropriately scaled for optical wavelengths,

and thus no direct method for measuring an optical field or wavefront.

As mentioned earlier, it is partly the goal of this work to demonstrate the

proof-of-principle operation of an adaptive-optic mirror’s correction of wavefront

mismatch. This begs the question, how does one evaluate the correction of a

system limited by an immeasurable field? The answer lies in the heart of optical

wavefront sensing, in which an optical field can be inferred from how it behaves.

There are a number of different methods for obtaining this information, and it is

important to consider each in proper context as none is a direct measurement.
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2.2 Wavefronts

2.2.1 Optics by the book

In order to properly introduce the concepts involved in wavefront sensing, it is

necessary to first discuss the theory upon which wavefront sensing is founded. Like

so many discussions of electromagnetics, ours begins with Maxwell’s equations.

Our formulation follows that of Born and Wolf in [7], which presents a detailed

analysis tailored for optics, though this analysis is presented in many texts in

various forms. For electromagnetic fields, we have the following relationships (in

Gaussian units):

∇×H− 1

c

d

dt
D =

4π

c
j, (2.1)

∇× E− 1

c

d

dt
B = 0, (2.2)

∇ ·D = 4πρ, (2.3)

∇ ·B = 0. (2.4)

Equations (2.1)-(2.4) comprise Maxwell’s equations in differential form, where E,

H, D, and B are the electric and magnetic fields and flux-densities, respectively.

Also included in this representation are the electric charge and current densities,

which act as sources. This set of equations explicitly defines the behavior of,

and balancing between, all electromagnetic fields. However, deriving analytical

solutions for any given situation from this point can be difficult to potentially

impossible. In the interest of solving practical problems, it is often necessary to

account for material properties and specific wavelengths, from which another set

of equations, the constitutive relations, arise. To first order, we have:
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j = σ̂E, (2.5)

D = ε̂E, (2.6)

B = µ̂H, (2.7)

where we have introduced σ̂, ε̂, and µ̂, respectively the conductivity, electric per-

mittivity (or dielectric constant), and magnetic permeability. In a general sense,

each parameter is defined based on an applicable medium and frequency, and need

not be scalar. A more complete analysis would include higher order terms as well,

to account for high-intensity fields. Fortunately, in low-intensity free-space optics

we can greatly simplify our analysis without sacrificing accuracy through a few

assumptions. For our purposes we can safely assume that we are dealing with

source-free, isotropic, nonconducting media, for which j = ρ = σ̂ = 0, and both

ε̂ and µ̂ become direction-independent scalars ε and µ. It should be emphasized

that although such assumptions are valid for a wide array of problems (e.g., ge-

ometrical optics), this is not a thorough treatment of optical theory. From this

basis, however, we can proceed to develop a suitable representation of an optical

field for our work.

2.2.2 The complex-amplitude representation

If we reconsider Maxwell’s equations in light of the assumptions made in the

previous section, it can be seen that the electric and magnetic vector components

possess conveniently symmetric forms. It now becomes possible to derive the

Helmholtz wave equation through a series of clever manipulations. By appropriate

substitutions and application of time-derivative and curl operators, Eqs. (2.1)-

(2.7) can be written:

6



∇2H− εµ

c2
d2

dt2
H + (∇lnε)× (∇×H) +∇(H · ∇lnµ) = 0, (2.8)

∇2E− εµ

c2
d2

dt2
E + (∇lnµ)× (∇× E) +∇(E · ∇lnε) = 0. (2.9)

Equations (2.8) and (2.9) can be further simplified by recalling that an isotropic

medium implies scalar permittivities and permeabilities, i.e., ∇lnε = ∇lnµ = 0,

which yields the wave equation as promised:

∇2H− εµ

c2
d2

dt2
H = 0, (2.10)

∇2E− εµ

c2
d2

dt2
E = 0. (2.11)

From this point on we dispense with discussing in particular either the electric

or magnetic fields, as Eqs. (2.10) and (2.11) are quite symmetric for both fields

and a generalized vector field would suffice. Assuming a Cartesian coordinate

system, however, we can also dispense with any further vector analysis, as the

Laplacian operator acts upon each dimension independently. We can thus proceed

to consider only a generalized scalar field, V , which satisfies the wave equation

as in Eq. (2.12), and can be extrapolated to any component of the electric or

magnetic field.

∇2V − εµ

c2
d2

dt2
V = 0. (2.12)

We can now develop a convenient form for a solution to Eq. (2.12) which is relevant

to our work. If we consider real-valued monochromatic fields, one solution which

can be obtained is

V (r, t) = a(r)cos[ωt− φ(r)] (2.13)

for a real scalar amplitude, a(r) > 0, and real phase, φ(r). This can now be

7



rewritten taking advantage of complex exponentials for a monochromatic har-

monic field.

V (r, t) = Re[U(r)e−iωt], (2.14)

U(r) = a(r)eiφ(r). (2.15)

Similar to the vector treatment of the field, it is no longer necessary to con-

sider the explicit time dependence of the field. It is possible to remove this from

our analysis by reminding ourselves that we are considering only monochromatic

and real fields, and only linear materials. The time dependence can be included

as a final step as shown in Eq. (2.14). We are then left with the so-called

complex-amplitude representation of the generalized field in Eq. (2.15) which

fully describes a field of known wavelength.

It is worthwhile to briefly discuss the intuitive structure of the complex-

amplitude representation given in Eq. (2.15). In this form we have conveniently

separated the amplitude and phase of a field. Though the actual measurement of

such a field proves more difficult in the optical regime, as will be discussed, this

structure allows both amplitude and phase components to be determined simulta-

neously from the real and imaginary parts of a field. If we then consider fixed val-

ues for the phase, φ(r) = const ., there are surfaces periodic in phase which provide

an identical contribution to the field, i.e., φ(r) = φ0 = φ0 + 2π = . . . = φ0 + 2πn.

An example of this is illustrated in Fig. 2.1 for an arbitrary phase distribution.

These surfaces are commonly referred to as wavefronts, or isophase planes, and

are analogous to the peaks and troughs of physical waves.
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Figure 2.1: Illustration of wavefronts for an arbitrary phase distribution.

2.3 Detecting Wavefronts

If a tree falls in the woods, and no one is around, does it make a sound?

– Anonymous

Yes, indirect observation can establish that a falling tree is accompanied by

quite a racket. With light, only the intensity of a field is typically observable, leav-

ing us blind to the subtleties hidden within the phase; this can impact problems

such as mode-coupling. However, there are ways of “chopping down” the field

and forcing its inherent properties to reveal wavefront information. Two methods

are discussed here — namely, interferometric and Shack-Hartmann — which have

both developed hand-in-hand with the maturing of AO systems.

2.3.1 Interferometers

Perhaps the most direct methods for measuring wavefront information are those

which involve interferometry. Interference phenomena appear in a broad class of

systems, and many other interesting behaviors such as diffraction and imaging can

be broken down in terms of collective interference from many sources [7]. We are

concerned with a straightforward view of interference, in which the magnitude of

two quasi-monochromatic interacting fields differs from the sum of the magnitudes
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of the independent fields [8]. For example, consider the intensity resultant from

the sum of two fields [9], and the complex-amplitude representation of the fields:

I(r) = |U(r)|2 = |U1(r) + U2(r)|2, (2.16)

Un(r) =
√
In(r)eiφn(r). (2.17)

Substituting Eq. (2.17) into Eq. (2.16) and simplifying (note the explicit posi-

tional dependence has been dropped for brevity) gives

I = U∗1U1 + U∗2U2 + U∗1U2 + U∗2U1

= I1 + I2 + 2
√

(I1I2)cos(φ2 − φ1). (2.18)

Equation (2.18) implies that the measurable intensity now has a phase dependence

due to interference. Also, we must know both the independent intensities a priori

in order to calculate the phase relationship at any given point.

This direct approach has proven vital for a number of applications, e.g., to

characterize detailed surfaces rather than wavefronts. Phase-shift interferometry

(PSI – see Appendix A) and Twyman-Green interferometers are typical examples

of such an application [8]. With these techniques, light is partially transmitted

through a beamsplitter, reflected off or through an object, and recombined with

the diverted portion of the light which has propagated an identical distance. The

change in the intensity pattern generated is due entirely to the phase accumulated

in the transmitted path; i.e., it is due to the object.

Here, we are interested in wavefronts, not objects or surfaces. The above-

mentioned techniques effectively remove wavefront information for well-matched

path lengths by the nature of the relative phase relationship. Other applications

based on this approach will yield wavefront information, however, by making two
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simple changes: removing any wavefront-altering objects, and requiring different

paths such that the beams are slightly displaced relative to one another. This is

the basis for shearing interferometry, and represents a measurement of the local

phase-gradient along the direction of displacement. For equivalent but displaced

fields, Eq. (2.18) becomes Eq. (2.19).

I(r) = U∗(r1)U(r1) + U∗(r)U(r) + U∗(r1)U(r) + U∗(r)U(r1)

= I(r1) + I(r) + 2
√

(I(r1)I(r)cos(φ(r)− φ(r1)). (2.19)

Again, we have that for known intensity distributions we can back out the

phase change over a known displacement: the interference patterns relate to the

phase-gradient, which can then be used to reconstruct the wavefront via integra-

tion. In theory, two orthogonal scans are necessary and sufficient for a complete

reconstruction, although more scans [10] or further modifications such as the use

of diffraction gratings [11] can be used to create a more robust reconstruction.

2.3.2 Shack-Hartmann sensors

Another way of obtaining wavefront information is the use of a Shack-Hartmann

sensor, which is a device designed to analyze the behavior of small sections of a

wavefront within the regime of geometrical optics. To build up this analysis, we

assume the paraxial approximation, in which all propagating light is sufficiently

parallel to the optical axis. As pointed out by many [7, 8, 12], this is equivalent

to assuming that all relevant incidence angles with the optical axis satisfy the

small angle approximation (sin(θ) ≈ θ). Under this assumption, all light passing

through a lens focuses within the same plane, though the position on the plane is

determined directly by the angle of incidence (Fig. 2.2).

In order to extend this concept to the domain of wavefront sensing, first con-
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Figure 2.2: Focusing of light under the paraxial approximation.

sider the position of the focal point as a measurement of a flat wavefront with

a constant tilt perpendicular to the rays drawn (and very poor sampling!). Al-

though any fluctuations in the wavefront will undoubtedly distort the focal point,

we must consider the tilt as an average of the wavefront over the aperture (or

pupil) of the lens. By assuming that there are negligibly small aberrations other

than tilt, we have effectively created a tilt-detecting wavefront sensor with a tilt

perpendicular to the angle of incidence: θ = tan−1(σ/f) ≈ (σ/f).

Finally, consider the curved wavefront shown in Fig. 2.3, where we can increase

the resolution and create a basic Shack-Hartmann sensor (SHS) by introducing

additional lenses. Each lens samples a small portion of the wavefront to obtain a

local tilt, equivalent to the local phase-gradient. From this point, reconstructing

the wavefront is a matter of integration and appropriate interpolation. It is im-

portant to note that there are important limits associated with an SHS, as well

as a number of details which have been discussed here in principle rather than

rigorously. A discussion of these details is provided at the end of the chapter.

2.4 Using Wavefronts for Feedback

Given the ability to determine propagating wavefronts in a system, the question

of how to best use this information arises. For real-time AO systems, wavefront

sensing is often implemented as part of active feedback for control over an adap-

tive element. In systems which require peak performance, or Strehl Ratios (SRs)
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Figure 2.3: In-principle operation of a Shack-Hartmann sensor.

greater than ∼0.95, wavefront characterization is a useful tool for testing perfor-

mance before and after correction. A hybrid of the two methods is also possible,

with the wavefront sensor providing active feedback as an initial step, followed by

some metric-based optimization scheme.

The distinction between each implementation of wavefront feedback ultimately

depends on the required accuracy and speed. Wavefront analysis can simultane-

ously provide information about the action of each degree of freedom related to

an adaptive element as quickly as the information can be processed. However,

the information is bound by tolerances associated with the sensor, such as physi-

cal alignment, sampling, and reconstruction quality. Blind-optimization schemes,

e.g., those which optimize a performance metric and need no knowledge of a sys-

tem, can correct an AO system to within the true performance limit of the optics,

and sometimes with a more simplistic design. Furthermore, such schemes are ca-

pable of correcting situations in which an optimal target is not known. Without a

priori knowledge or wavefront feedback, however, blind optimization schemes are

dramatically slower and require a proper control algorithm designed to guarantee

global convergence.

There are many AO systems that make use of one or both of these approaches

for wavefront feedback. Fernández et al. [13] and Li et al. [14] demonstrate two
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examples in which wavefront analysis is used as part of the correction scheme with

very good performance (average reported SRs of 0.94 and 0.92, respectively). In

experiments involving single-mode optical coupling, such as those performed by

Gonté [5] and Plett [6], wavefront sensing is used to characterize the initial and

settled systems, and optimization algorithms are used for correction. Coupling

experiments are very susceptible to small alignment errors and are difficult to

compare to pure wavefront correction. Since wavefront measurements are per-

formed in the image plane of an “object” on the scale of 5 µm, the required large

magnifications – fast lenses – increase the potential for error.

Our own work serves as an example of the differences between the two men-

tioned strategies. As we discuss in greater detail in Chapter 5, we have utilized

active feedback for wavefront correction to obtain a calculated SR (from the RMS

wavefront) of 0.98; however, the measured SR (from the single-mode coupling)

was 0.94. Through blind optimization, we are able to obtain a calculated SR

of 0.96 and measured SR of greater than 0.97; however, much more run-time is

required. Despite careful optical alignment, there are still appreciable differences

between the two techniques, especially considering the order of magnitude differ-

ence in the convergence times. Ultimately, we mostly employ blind optimization

as our primary concern is efficiency, not speed.

2.5 Capabilities and Limitations

As there are many different wavefront sensing systems available, it is not appro-

priate to discuss specific device characteristics at this point. However, there are

theoretical assumptions which apply to most wavefront sensors which we can now

discuss. Although we have presented a reasonable and accurate approach, it is

important to consider the practical limitations imposed by such assumptions. In
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some cases a robust design can compensate for pushing a system beyond these

limits. We are concerned with Shack-Hartmann sensors, though interferometric

methods are not without limitations, of course. Briefly, many difficulties with in-

terferometric measurements arise when considering the sensitivity of interference

patterns to optical vibrations and alignment, as well as measurement sensitivities

with CCD cameras. In order for interferometric sensors to reach the accuracy

of Shack-Hartmann sensors, typically λ/100 or better, more complex implemen-

tations than described previously are necessary. Such improvements also involve

additional measurements and mechanical systems [10, 11], thus reducing the ca-

pability to operate the device in real-time.

For Shack-Hartmann sensors, we consider the assumption that we are oper-

ating within the limits of geometrical optics, e.g., wavelengths which are much

smaller than the scale of the optical system (λ → 0), which is very well satis-

fied for our work. Small perturbations which arise in practical systems can be

treated within the realm of geometrical optics [7], and will be discussed in Chap-

ter 3. An additional consideration is the impact of these fluctuations on the

performance of a wavefront sensor. Shack-Hartmann sensors are typically suscep-

tible to wavefront aberration errors, due to averaging over lens apertures. In this

case, high-frequency perturbations are washed out due to sampling, and the focal

plane is distorted. Many recent advances in SHS have been in the development

of “microlenses” to alleviate the sampling concerns. To account for focal plane

distortion, high-density CCD arrays are used to measure the distribution of the

focal point, or the centroid. There are numerous algorithms dedicated to analyz-

ing centroids [15], though a simple first-moment calculation is sufficiently accurate

for most scenarios. Regardless of the centroiding technique, we must take care to

assure that the measured wavefronts are adequately sampled for the averaging to

be representative.
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We consider the paraxial approximation next, which was necessary to back

out local slopes in an SHS for wavefront reconstruction. Two issues relating to

the sensor design and field behavior arise near the limits of this approximation.

As mentioned earlier, high-density lens arrays are used to assure sufficient sam-

pling in modern sensors. As the incident local slope increases (larger tilt), the

focal point distribution begins to overlap the CCD sensors for adjacent lenses,

wreaking havoc on centroid algorithms. To avoid such a problem it is common

to install irises which reduce stray light, as well as to develop alignment-failure

tests within SHS control software. Another consideration when nearing the limit

of paraxial propagation is the introduction of aberrations due to the lenses; how-

ever, this falls within the distortions correctable via centroiding. As a note, the

paraxial restriction can be greatly relaxed with more complex implementations

and processing schemes [16, 17], though this is unnecessary for our work.

The remaining approximations applicable to Shack-Hartmann sensors involve

the device construction and wavefront reconstruction. A typical SHS consists of

an array of lenses and a CCD camera which are carefully calibrated for any me-

chanical errors. This calibration is often performed using a well-defined wavefront

[15], such as that out of a single-mode fiber, and the residual error is often pro-

vided as part of a device’s specifications. The resulting reconstructed wavefronts,

on the other hand, vary depending on software and preference. In the simplest

form, reconstructed wavefronts are rough interpretations, as seen in Fig. 2.3.

Such a linear reconstruction is not physical, as propagating fields have continu-

ous wavefronts. Alternative reconstruction methods such as Zernike polynomial

fitting, however, offer valuable physical insight into optical systems, at the cost

of accuracy. In general the reconstruction process is only as accurate as the ex-

perimental raw data, and any alternative reconstruction methods should be used

cautiously.
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CHAPTER 3

MODE COUPLING

3.1 Introduction

The concept of modes in optics evolved from attempts to describe propagating

fields, be they in free space or well-defined structures, although the term “mode”

is more closely related to eigenmodes and the broad subject of linear systems. An

eigenmode is any input with fundamental properties which remain unchanged after

passing through a given system, while modes are superpositions of eigenmodes. In

a broad sense, the music through a quality audio system and the image through a

camera lens are collections of modes. Similarly, there are modes for many optical

systems which have very practical applications. For example, satellite systems

utilize free-space modes to communicate, and fiber-optic communications rely on

modes to carry information unchanged across continents and under oceans.

The modes involved in various systems can have a profound impact on overall

efficiency when such systems are combined. Simply because an input is an eigen-

mode for one system, it is not necessarily an eigenmode for another. The ability

to couple light between different systems can be fully described in terms of how

well the eigenmodes for one overlap that of another. Here we present an overview

of optical modes and their relationship to coupling efficiencies.
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3.2 Free Space, Fibers, and Waveguides

As stated above, there are a number of different systems which occur often in op-

tics and photonics, each of which is accompanied by a unique set of eigenmodes.

For our current and future work, we are concerned with the modes for free space

and waveguides (of which fibers are a relevant example). We work with single-

mode systems, or those in which only one eigenmode is present. For example,

the structure and properties of waveguides can be designed to only allow a single

propagating eigenmode, always the lowest-order or “fundamental” mode. Beyond

the paraxial approximation, as described in Chapter 2, there are no such restric-

tions in free space, and we must take care to prevent more than one eigenmode

from becoming excited.

3.2.1 Free-space modes

Consider the paraxial Helmholtz equation, as written in Eq. (2.12), which de-

scribes the propagation of light in free space. We can rewrite this relationship for

a scalar field by accounting for the implicit time dependence in Eq. (2.14):

(∇2 + εµk2)U = 0, (3.1)

where k = ω/c is the wavenumber for the field, and we can assume ε = µ = 1 in

free space. We are concerned with fields that not only propagate, e.g., those of

the form in Eq. (2.15), but that reproduce themselves throughout propagation.

One recognizable example is that of the Gaussian beam, so named because its

intensity distribution is that of a Gaussian function (see Fig. 3.1). The derivation

of the Gaussian form can be found in many places [8, 9, 18], and is little more

than creatively expanding on a paraboloidal solution to Eq. (3.1). From such an
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(a) (b)

Figure 3.1: Contour plots of the intensity of a Gaussian beam.

approach, the spatial dependence of the field takes the form

U(r) = a0

[
w(0)

w(z)

]
e
− (x2+y2)

w2(z) e−ikz−ik
(x2+y2)

2R(z)
+iζ(z). (3.2)

We have expressed the field in terms of common beam parameters w(z), R(z), and

ζ(z), or the beamwaist, radius of curvature, and Guoy phase, respectively. The

beamwaist describes the radius at which the field amplitude drops to 1/e of the

peak value, with w(0) usually defined as the minimum beamwaist. The curvature

describes the spherical shape of the wavefront, and the Guoy phase represents

the phase delay of the field compared to a plane wave. These few properties are

sufficient to fully describe the field throughout propagation, and thus Eq. (3.2) is

a mode of free space.

The Gaussian beam is not the only solution to the paraxial Helmholtz equa-

tion; it is possible to describe any field distribution in terms of modes. Much as

any spatial coordinate can be completely described in a chosen orthogonal basis,

such as (x, y, z) or (ρ, φ, θ), we can describe any paraxial field in terms of a num-

ber of complete sets, or bases. That is, any paraxial field can be expressed as a

sum of eigenmodes, and a set of eigenmodes which can describe any field is con-

sidered to be complete. It is necessary to use infinitely many modes to construct

such a basis, unfortunately, though a number of solutions are readily available.
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Hermite-Gauss (HG) modes, for example, form one possible complete set [9]:

Ul,m(r) = al,m

[
w(0)

w(z)

]
Gl

[√
2x

w(z)

]
Gm

[√
2y

w(z)

]
e−ikz−ik

(x2+y2)
2R(z)

+i(l+m+1)ζ(z), (3.3)

Gn(u) = Hn(u)e−
u2

2 ,

where Hn(u) are the Hermite polynomials, and we have assumed propagation

along the ẑ direction. For the fundamental mode, l = m = 0, we again have

the Gaussian beam described in Eq. (3.2), though the field quickly becomes

complicated as the order increases. The intensity distributions of some lower-

order Hermite-Gauss modes can be seen in Fig. 3.2. It is essential to avoid

higher-order modes for our work, as there is nothing inherent to free space to

prevent such modes from being propagating solutions to the wave equation.

Figure 3.2: Example contour plots of the intensities for HG modes.

3.2.2 Guided modes

We return to the paraxial Helmholtz equation to describe guided modes, only

now we assume a coordinate system appropriate to the guiding structure. Here

we provide an overview – more rigorous treatments can be found in Chuang [19]

and Saleh and Teich [9]. The derivation of guided modes follows that of free-space

modes, expanding the description to include material and symmetry changes. For

example, fiber modes are most easily derived in a cylindrical coordinate system.
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We can simplify the problem of solving the Helmholtz equation by including the

guiding direction and any inherent symmetry in the general form of the field:

U(r) = a(r)e−ilφe−iβz, (3.4)

where l is an integer and we have assumed a cylindrically periodic field propagating

in the ẑ direction. By introducing two additional parameters, kT and γ, we can

find an expression for the amplitude of a guided field after substitution into Eq.

(3.1):

a(r) ∝

 Jl(kT r) , r < a

Kl(γr) , r > a
, (3.5)

k2
T = n2

1k
2
0 − β2, (3.6)

γ2 = β2 − n2
2k

2
0, (3.7)

where Jl is the Bessel functions of the first kind and Kl is the modified Bessel

function of the second kind, both of order l. As discussed in [9], the field is guided

so long as both kT and γ are positive. Although the form of the field provided

by Eqs. (3.4) and (3.5) provides a picture of fiber modes in a general sense,

there is still a great deal of complexity involved in solving for all components of

the field when considering boundary conditions. A more common and practical

approach involves the weakly guiding fiber approximation, in which the index

change between the core and cladding is assumed to be very small (∆n � 1),

as is the case for modern fiber optics. In this regime, any longitudinal field

components become insignificant, and the supported fields can be considered TEM

waves with two orthogonal polarizations. Since we have only transverse fields, the

boundary conditions need only be applied to the magnitude of the field, which

reduces the problem to solving a single characteristic equation with a number
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Figure 3.3: Example contour plots of the intensities for LP modes.

of transcendental solutions. The solutions to this approach yield the so-called

linear-polarization (LP) modes [20], although there is no particular restriction

to linear polarizations. The LP modes have a structure defined by both the

azimuthal parameter l mentioned earlier, and the order of the transcendental

solution, denoted m. The intensity distributions of LP and HG modes are very

similar for low orders (compare Figs. 3.2 and 3.3), though the similarities vanish

quickly as the order increases.

The general waveguide modes can always be determined by following the pro-

cess outlined for fibers. Unfortunately, elegant solutions such as LP modes are an

exception to the typical waveguide problem. Still, there are known solutions to

most common waveguide structures, such as the rectangular waveguide outlined

by Chuang in [19], even if the form is more complicated. The simplest solutions

reflect the guiding symmetry: circular waveguides result in Bessel modes, while

rectangular waveguides have two-dimensional sinusoidal modes, both with guid-

ing in the core and exponential decay in the cladding. Further analysis becomes

a matter of applying material properties to a particular geometry.

3.3 Modal Analysis of Coupling

Once we have obtained expressions for the modes of various optical systems, it

is important to understand the limitations of coupling between different systems.
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Consider the modal expansion of a normalized field:

U(r) =
∑
m

cmum(r), where (3.8)

∫
dr |um(r)|2 = 1, and (3.9)

∑
m

cm = 1. (3.10)

As mentioned earlier, we cannot describe a mode, um, by any collection of other

(orthogonal) modes in the same basis. However, it is possible to describe a mode

in one basis in terms of the modes in another basis. If we consider a guiding

medium in terms of a possibly incomplete set of modes, the coupling efficiency

can be thought of as the overlap between the input and guiding modes. For

example, a collection of HG modes passing through a spatial filter will only couple

the modes which are supported by the spatial filter, e.g., the fundamental mode.

However, any paraxial system will couple with maximum efficiency to free space,

which supports all propagating modes as discussed earlier.

We can now write the coupling efficiency in terms of a given set of basis

functions, {bn(r)}; the modal expansion of the field is then

η({cmum}, {bn}) =

∣∣∣∣∣∑
n

∑
m

cm

∫
dr um(r)b∗n(r)

∣∣∣∣∣
2

. (3.11)

When the basis functions are equivalent to the modes of the starting medium, the

integral in Eq. (3.11) becomes equivalent to Eq. (3.9), and η = 1. Also, if the

set {bn} is complete, the summation over n is guaranteed to converge to unity.

Lastly, we have defined the efficiency based on measurable power, which requires

that we work with the square of the field.

The modal approach is a powerful tool for understanding the requirements for
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coupling into a certain medium, as well as for manipulating the field algebraically.

However, modal analysis can easily become overly complicated if care is not taken

to choose the proper set of basis functions; a field which requires an infinite

expansion in the HG basis might be described by a single mode in another, for

example.

3.4 Aberrations and Apodizations

It is of particular interest to our work to understand the impact that small per-

turbations of the field can have on coupling, especially to evaluate AO correction

in the high-efficiency limit. Although it is possible to experimentally limit the

intensity apodizations, the wavefront aberrations are inherent to the optics in

use. Since these perturbations to the field may require a very large number of

eigenmodes to be accurately described, it is not convenient to consider the general

case of coupling efficiency in terms of modal decompositions. For two complex-

amplitude scalar fields (Eq. (2.15)), we can redefine the coupling efficiency from

Eq. (3.11) for the case when m = n = 1:

U(r) = a(r)Φ(r), (3.12)

η(U1(r), U2(r)) =

∣∣∫ dr U1(r)U∗2 (r)
∣∣2∫

dr |U1(r)|2
∫
dr |U2(r)|2

. (3.13)

Note that the modes do not need to be normalized in this definition. Substituting

Eq. (3.12) into Eq. (3.13)and multiplying by a convenient form of one, we can
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rewrite the efficiency in terms of the Strehl ratio (SR):

η(U1(r), U2(r)) =

∣∣∫ dr a1Φ1 a2Φ
∗
2

∣∣2∫
dr |a1Φ1|2

∫
dr |a2Φ2|2

, (3.14)

=

∣∣∫ dr a1Φ1 a2Φ
∗
2

∣∣2∫
dr |a1|2

∫
dr |a2|2

·
∣∣∫ dr a1 a2

∣∣2∣∣∫ dr a1 a2

∣∣2 , (3.15)

=

∣∣∫ dr a1 a2

∣∣2∫
dr |a1|2

∫
dr |a2|2

·
∣∣∫ dr a1Φ1 a2Φ

∗
2

∣∣2∣∣∫ dr a1 a2

∣∣2 , (3.16)

= η(a1, a2) · SR(U1 · U2). (3.17)

The Strehl ratio is a measure of the peak intensity of aberrated beams when

perfectly focused. The SR can be written many ways; here we adapt a form

similar to that from Born and Wolf [7]:

SR(U(r)) =

∣∣∫ dr U(r)
∣∣2∫

dr |U(r)|2
. (3.18)

3.4.1 Wavefront perturbations

We have made no assumptions about aberrations at this point, and we can now

consider two limiting cases. First, when the two modes possess perfect wavefront

matching, i.e., SR(U1 · U2) = 1, we have a coupling efficiency purely dependent

on the magnitude overlap of the two modes. Second, and of more interest to

our work, if we have perfect intensity overlap, i.e., η(a1, a2) = 1, the coupling

efficiency takes on an interesting dependence on both magnitude and phase:

η(U1(r), U2(r)) =

∣∣∫ dr a2(r)Φ1(r) Φ∗2(r)
∣∣2∣∣∫ dr a2(r)

∣∣2 . (3.19)

It is possible to further simplify this relationship by making the assumption

that the coupling efficiency is sufficiently high (η > 0.8). We follow an example
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similar to that laid out in Born and Wolf for aberrated plane waves, which was

further elaborated by Mahajan in [21]. We begin by rewriting Eq. (3.19) to

include the explicit phase dependence:

η(U1(r), U2(r)) =

∣∣∣∫ dr a2(r)e
i2πφ1(r)

λ e
−i2πφ2(r)

λ

∣∣∣2∣∣∫ dr a2(r)
∣∣2 , (3.20)

=

∣∣∣∫ dr a2(r)e
i2π(φ1(r)−φ2(r))

λ

∣∣∣2∣∣∫ dr a2(r)
∣∣2 =

∣∣∣∫ dr a2(r)e
i2π(∆φ(r))

λ

∣∣∣2∣∣∫ dr a2(r)
∣∣2 .

We can rewrite the denominator of Eq. (3.20) as a normalization term, A2, and

rewrite the exponential via a truncated Taylor series:

≈

∣∣∣∣∣
∫
dr

a2(r)

A

{
1 + i

2π

λ
∆φ(r) +

1

2

(
i
2π

λ
∆φ(r)

)2
}∣∣∣∣∣

2

, (3.21)

≈
∣∣∣∣∫ dr a2(r)

A
+ i

2π

λ

∫
dr

a2(r)

A
∆φ(r)

−1

2

(
2π

λ

)2 ∫
dr

a2(r)

A
(∆φ(r))2

∣∣∣∣∣
2

. (3.22)

If we first consider a(r) to be constant, a close inspection of Eq. (3.22) reveals

that each integral yields the spatial average of the integrand. If we include the

normalized intensity, this instead yields an intensity-weighted spatial average of

the integrand [21]. Rewriting Eq. (3.22) in terms of the average values gives

η(U1(r), U2(r)) =

∣∣∣∣∣1 + i
2π

Aλ
a2(r)∆φ− 1

2A

(
2π

λ

)2

a2(r)(∆φ)2

∣∣∣∣∣
2

, (3.23)

= 1−
(

2π

λ

)2(
Aa2(r) (∆φ)2 −

(
Aa2(r)∆φ

)2
)
, (3.24)

= 1−
(

2π

λ

)2

σ2, (3.25)
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Figure 3.4: Coupling-efficiency dependence on RMS mismatch for uniform inten-
sity.

where we have used { } to indicate the average of a function over the integrating

area, and σ to indicate the intensity-weighted root-mean-square (RMS) wavefront

mismatch over the aperture defined by a(r). Note that we have dropped any terms

higher than second order and applied a standard definition of the RMS value of

a function to arrive at Eq. (3.25). Noting the similarity of Eq. (3.25) to the

Taylor expansion of an exponential, we can make one final approximation within

the high-efficiency limit, after which the coupling efficiency takes the following

form (Fig. 3.4):

η(U1(r), U2(r)) ≈ e−( 2πσ
λ

)2 . (3.26)

Equation (3.26) allows us to quickly interpret an aberrated wavefront’s im-

pact on the coupling efficiency, without the need for performing any intensive

calculations. Interestingly, it has been shown that although nearly equivalent for

SR ≥ 0.8, the approximation of the Strehl ratio in Eq. (3.26) is more accurate

than Eq. (3.25) for estimating the Strehl ratio for SR ≥ 0.3 [21] (though only

accurate to within 10% for SR ≤ 0.8).
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3.4.2 Zernike aberration modes

Lastly, we discuss a modal formulation for wavefronts, in which it is possible to ex-

press any wavefront through one of an infinite number of different complete bases

[7]. It is of particular interest to highlight the Zernike polynomials, which are the

widely accepted standard for describing aberrations over a circular aperture. The

popularity of the Zernike basis follows from its usefulness in describing common

optical aberrations, as well as its being fundamentally invariant to rotations and

having many known applications from early work developed by Zernike, Nijoboer,

Wolf, and others.

The lower-order Zernike polynomials, i.e., focus, astigmatism, coma, and

spherical aberration, approximately represent the primary, or Seidel aberrations

(see Fig. 3.5), although a strict definition would also include intensity as well as

the distortion aberration. It is convenient to consider the primary aberrations

as part of a complete basis, although each can be derived through a power-series

expansion of a wavefront [7]. For our purposes, we work with the Zernike aberra-

tions, and references to the primary aberrations refer to the corresponding Zernike

modes.

Also, the primary aberrations are common to typical optical systems; tilt and

focus are parameters for ideal optical components such as lenses and mirrors,

for example. Spherical aberration results from the deviation between the ideal

parabolic and realistic spherical shapes in lenses and mirrors. Astigmatism and

coma aberrations are common to physical systems with slight alignment errors,

and can often be corrected with symmetric balancing. Since the Zernike basis is

complete, it is possible to describe an arbitrary wavefront to any desired accu-

racy while simultaneously revealing important properties about an optical system.

Overall, we have a number of tools at our disposal which provide insight not only
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into the problem of coupling, but also into the potential for AO correction.

Figure 3.5: Example Zernike aberration plots up to fifth order. The com-
mon/primary aberrations are named and highlighted in blue.
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CHAPTER 4

ADAPTIVE OPTICS

4.1 Introduction

As shown in Chapter 3, we are fundamentally limited by how well we can match

the intensities and wavefronts of two sets of supported modes. Given a system

which requires maximum performance, we must evaluate just how well we can

compensate for any aberrations and apodizations. If we can modify the wavefront

with high efficiency, we can straightforwardly correct any aberrations. Apodiza-

tions, however, requires a more complicated process. Consider the magnification

of a mode with a planar wavefront, shown in Fig. 4.1, as an example of an apodiza-

tion correction. The imaging system should perform two functions: modify the

wavefront to reshape the mode through propagation, and adjust the wavefront to

correct the mode after propagation. Within the diffraction limit, we suspect that

any apodization can be corrected with high efficiency by introducing an appro-

priate number of wavefront adjustments, though our example required only two.

We thus have a potential method for total mode correction by introducing only

wavefront perturbations.

Since our goal of performing mode correction is to increase the coupling ef-

ficiency between two modes, it is essential that the correction process itself be

highly efficient. There are a number of different kinds of optics which can effi-

ciently alter the wavefront of a mode: lenses, mirrors, phase plates, etc. However,

unlike adaptive optics, none of these offers a dynamic solution for the problem
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Figure 4.1: 4-f type imaging system with magnification.

of mode correction. There are a number of different adaptive elements available

such as acousto-optic modulators (AOMs), liquid-crystal spatial-light modulators

(SLMs), reflective microelectromechanical systems (MEMS) segmented mirrors,

as well as deformable-membrane mirrors (DMs).

We can eliminate AOMs and SLMs from consideration due to the high-

efficiency requirements of our system. Acousto-optic devices rely on very small

index changes, which makes for excellent diffraction properties under Bragg con-

ditions [9], but poor local phase control. SLMs, which are arrays of liquid-crystal

cells with voltage-dependent phase delays, have yet to become highly efficient

— commercial SLMs are typically below 90% efficient [22, 23], despite innovative

modifications to reduce fill-factor and polarization effects [24]. Alternatively, both

segmented and membrane mirrors rely only on a reflective surface, making them

ideal candidates for mode correction.

4.2 Adaptive Mirrors

Adaptive-optic mirrors possess the unique simplicity of reflective surfaces for the

implementation of wavefront correction. By utilizing appropriate reflection coat-

ings, the upper limit on adaptive-mirror performance is set only by design and

manufacturing quality. The two fundamental classes of adaptive mirrors are seg-

mented mirrors, which use arrays of independently controlled mirrors, and mem-
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brane mirrors, which utilize a deformable and continuous reflective surface. Mod-

ern segmented mirrors are almost exclusively built up from MEMS technology,

while membrane mirrors are often hybrids of MEMS structures and larger optical

components.

4.2.1 Segmented mirrors

MEMS technology encompasses a broad class of devices and techniques which

implement micron-scale mechanical structures via micromachining. Manufactur-

ing techniques are based on current semiconductor technologies, allowing for a

wide range of processes from deposition and etching to lithography and substrate

bonding [25]. Segmented mirrors have a number of advantages over deformable-

membrane mirrors. Manufacturing costs are typically much lower for MEMS

technology [26], with the entire process supported by standard fabrication tech-

niques. The utilization of state-of-the-art facilities also allows for intricate designs

and high actuator densities, as well as surface fill-factors approaching 100%. The

design of the mirrors further allows for independent control of each segment, which

reduces control-scheme complexities by virtually eliminating cross-talk across the

mirror surface.

We have evaluated the performance of a segmented MEMS mirror for possi-

ble incorporation in a mode-correction system. The device, pictured in Fig. 4.2,

was a 61-element polysilicon mirror with piston/tip/tilt actuation on each ele-

ment, and was provided by Sandia National Labs (see [26]). Unfortunately, our

testing indicated that such segmented mirrors are not yet a sufficiently mature

technology for high-efficiency coupling, for a number of reasons. As discussed

by Dagel et al. [26], the manufacturing process creates individual elements with

slight residual curvatures (60-nm bow per element), which by itself eliminates
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Figure 4.2: 61-element segmented MEMS mirror.

this particular device from consideration. We could either impose a permanent

focus, matching the element curvature, to compensate, or allow a minimum of

at least 30-nm RMS aberrations (see Fig. 3.4), neither of which is an accept-

able option for our purposes. Additionally, each individual element is driven by

cantilever-piezo actuators, which leads to significant nonlinearity and hysteresis,

as well as a performance change when reflective coatings are added, due to ad-

ditional element curvature and more sluggish responses due to the sensitivity of

the cantilever design. Although there are other commercial segmented mirrors

available, such as that by IrisAO, performance evaluations of these have revealed

similar shortcomings with residual RMS error [27].

The high densities and low cost of segmented mirrors make the technology a

very attractive prospect for many applications such as beam steering and beam

splitting in higher-speed, lower-SR systems. However, for future applications in

high-efficiency coupling, segmented mirrors remain only a possibility. Immediate

drawbacks such as residual RMS error and actuator nonlinearities need to be

overcome in order to realize high enough efficiencies for coupling systems.

4.2.2 Deformable-membrane mirrors

In contrast to segmented mirrors, there are numerous manufacturing techniques

and technologies currently in use for membrane mirrors. It is possible to sim-
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ply cover a piezo-based structure with a continuous surface, as is done for some

mirrors by OKO Technologies [27]. Piezoelectric mirrors are further separated by

actuator densities and layouts, with hexagonal and rectangular structures com-

monly available. Similar to piezo structures, bio-inspired (or “biomorph”) mirrors

by AOptix utilize electroresistive layers to form a deformable surface driven by

arrays of electrodes [28]. Membrane mirrors are based on an array of electrodes

pushing and pulling a membrane via its electrostatic response, e.g., from AgilOp-

tics and Boston Micromachines. Lastly, Imagine Optic has implemented a unique

magnetic-coil design to provide the necessary actuation via magnetic induction.

Two arrays of magnets, one made of permanent magnets fixed to the membrane,

the other made of electromagnets fixed to driving circuitry, are used to drive the

mirror.

(a) Mirror unit. (b) Actuator layout.

Figure 4.3: The Mirao52D membrane deformable mirror.

For our work, we have made use of the Mirao52D by Imagine Optic (Fig. 4.3),

which has 52 actuators positioned in a grid over a circular area. The Mirao52D is

the best available AO mirror with respect to specified RMS errors, as confirmed

by Devaney et al. [27], who measured the performance of several AO mirrors.

Compared to other available mirrors with RMS errors on the order of 50 to 100

nm, the Mirao52D can obtain better than 10-nm RMS flatness and 20-nm RMS

error for the generation of up to fifth-order Zernikes [29] (see Chapter 3). Recalling
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Figure 4.4: Reflectivity spectrum for the Mirao52D mirror.

Eq. (3.26), these errors result in a theoretical upper limit of η ≈ 96.5% for

arbitrary wavefront correction at visible wavelength. We are further restricted by

the intrinsic reflectivity of the protective silver membrane itself (see Fig. 4.4),

although the reflectivity is better than 98% over the range 560− 850 nm.

4.3 Mirror Control Algorithms

Beyond simply having a deformable mirror, we also require a method for control-

ling the mirror in our adaptive system. As mentioned earlier, we can perform

any arbitrary mode correction through appropriate wavefront modifications. We

must therefore understand how well we can perform a single wavefront correction

in order to predict how well we can scale such a process, as discussed in Chapter

1. We have developed a three-step process effective for wavefront correction using

wavefront-feedback and metric-based optimization techniques.

4.3.1 Close-loop algorithm

Close-loop operation is intended to be a first correction of the aberrations in an

optical system. Although there are many techniques for “closing the loop,” as

discussed in Chapter 2, we use a Shack-Hartmann sensor (SHS) for providing

the necessary feedback to our system. For optimal performance, it is necessary
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to image any aberration-inducing optics onto the surface of the DM, as well as

to image the DM onto the SHS. In this way, any aberrations present can be

corrected by adjusting the mirror, and any deformations of the mirror can be

measured by the SHS. If care is not taken in this process, aberrations of field will

induce apodizations during propagation, which in turn will interfere with both the

SHS measurements and the coupling efficiency. For example, aberrations due to

a grating-like surface would form a diffraction pattern during propagation, which

cannot be corrected in a single-step wavefront adjustment. However, imaging such

a grating onto the DM surface enables the mirror to cancel any diffraction effects,

assuming the mirror can exactly match the conjugate shape of the grating.

Our close-loop process is implemented via the CASAO software suite, provided

by Imagine Optic [29], though the general process is a straightforward application

of linear algebra. First, we choose a set of command voltages, represented by an

n-dimensional column vector, vk, where each element of vk relates to one of the

n = 52 degrees of freedom for the Mirao52D. We can also measure the wavefront

resultant from the set of command voltages, represented by m-dimensional column

vector, φk, where each element of φk relates to a component of the output wave-

front, i.e., a coordinate on the wavefront sensor or a modal amplitude in a chosen

basis. In general, n, the number of accessible degrees of freedom of the mirror,

will be different than the number of parameters characterizing the wavefront. We

can express this relationship, illustrated in Fig. 4.5, in matrix form:

φk


m×1

=
A


m×n

vk


n×1

, (4.1)

where A, also referred to as the influence function, is a linear operator which

represents the action of the command voltages on the wavefront, and is initially

unknown.
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Figure 4.5: Visual of AO response to command voltages.

It is possible to determine A by “mapping” each command voltage element

onto a measured wavefront. For example, in order to characterize our mirror, we

need to apply 52 sets of command voltages and measure 52 wavefronts. We can

express this process as

 φ1 · · · φn


m×n

=
A


m×n

 v1 · · · vn


n×n

, (4.2)

where the collection of command voltages should test each mirror degree of free-

dom independently, i.e., the collection should form an orthonormal basis. The

wavefronts are typically sampled at a much higher resolution than the input

(m � n), so it can be useful to first project the wavefront onto a finite basis

(m′ . n) to reduce the calculation intensity. For example, our Shack-Hartmann

wavefront sensor has a default resolution of 1280 elements which we could project

onto a finite basis of 52 Zernikes without losing significant accuracy. To calculate

this projection, we must determine the operator, B, which best maps a set of

Zernike basis-function coefficients, Zk′ , onto a given wavefront, φk′ . We begin

with the relationship between the basis functions and wavefronts:

φk′


m×1

=
B


m×m′

Zk′


m′×1

, (4.3)
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where the primed indices are included to emphasize the limitations of the finite

basis, which may not produce a perfect wavefront fit. Note the similarity between

Eqs. (4.1) and (4.3). Since we have closed-form expressions for each of the basis

functions, we can calculate the mapping of the basis functions onto the wavefronts,

and subsequently determine the operator B before ever making any measurements:

B

m×m′

=

 φ1′ · · · φm′


m×m′

 Z1′ · · · Zm′

−1

m′×m′
. (4.4)

It is now possible to calculate the basis coefficients, Zm′ , which best fit a given

input wavefront, φk:

Zk′


m′×1

=
B

+

m′×m

φk


m×1

, (4.5)

where we have projected the wavefront, φk, onto the finite Zernike basis, Z, via

the “pseudo-inverse” of the operator B, denoted B+. We will discuss the pseudo-

inverse in the context of wavefront correction; suffice it to say, this projection

results in the best-fit modal amplitudes for the chosen basis. Although this may

not seem to reduce calculation time at first glance, we can calculate B+ ahead

of time since we know B ahead of time, thus reducing the real-time calculation

intensity when the finite basis is much smaller than the wavefront resolution.

Since it is our goal to apply some arbitrary wavefront correction, φ0, we need

to determine an appropriate set of command voltages, v0, for the mirror. One

could (naively) consider Eq. (4.1) to be sufficient information for determining v0:

v0


n×1

=
A

−1

n×m

φ0


m×1

. (4.6)

Unfortunately, it is easy to construct situations in which Eq. (4.6) fails, e.g., when

A is not a square matrix, or when the wavefront does not respond to a particular
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set of commands, that is, φk = {0} in Eq. (4.2). The first situation occurs

anytime the wavefront images are over- or undersampled compared to the input

(m 6= n), which may be due to the choice of basis functions or a voluntary removal

of particular modes. For unresponsive modes, the zero-amplitude terms in the

influence function would cause A−1 and subsequently v0 to blow up. Since infinite

values are obviously a poor choice for command voltages, a more robust approach

to inverting the influence function is to apply a singular-value decomposition

(SVD) to calculate its pseudo-inverse, which removes any issues with the problems

mentioned. Briefly, SVD is a tool which rewrites a noninvertible rectangular

matrix as the product of two unitary matrices and a rectangular matrix with

the so-called singular values along the diagonal [30]. This technique was used

by Devaney et al. and Dalimier et al. in [27, 28] to perform the mirror testing

mentioned earlier, and occurs frequently in AO control [14, 29, 31]. We can

calculate A from Eq. (4.2), and proceed to write the equivalent form via SVD:

Am×n =

 φ1 · · · φm


m×n

 v1 · · · vn

−1

n×n
(4.7)

⇒ USVT, where (4.8)

Um×m = Eigv.
[
Am×nA

T
n×m

]
, (4.9)

Sm×n =



σ1

. . .

σr

0


, (4.10)

Vn×n = Eigv.
[
AT
n×mAm×n

]
. (4.11)

The columns of U and V, called the left- and right-singular vectors of A, are

the eigenvectors (Eigv.) of the normal operators AAT and ATA. The singular

values, σk, which are along the diagonal of S, are the mutual eigenvalues of the
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singular vectors, and can be calculated from any of the following relationships:

A

m×n

vk


n×1

= σk

uk


m×1

, (4.12)A
T

n×m

uk


m×1

= σk

vk


n×1

, (4.13)

σk = ‖Avk‖ = ‖ATuk‖. (4.14)

Although it may be less than intuitive from this formulation, an SVD essen-

tially separates what can and cannot be inverted. In other words, we have mapped

a collection of command voltages, weighted by the singular values, onto a basis

of wavefronts and vice versa. Furthermore, if the weight relating an input and

output is zero, we have no control over that output, and should ignore it entirely.

If we wish to solve the inverse problem, we only need to invert the nonzero singu-

lar values. We can now determine the best set of command voltages to attain a

desired wavefront according to what we have calculated the mirror can generate.

In contrast to Eq. (4.6), the SVD method provides a reliably invertible solution

in the absence of noise (the “pseudo-inverse”):

v0”


n×1

=
A

+

n×m

φ0


m×1

, (4.15)

where the primed index is included on v0” to remind us of the approximate nature

of the inverse problem, similar to the limitation of using a finite Zernike basis to

describe a wavefront (Eq. (4.3)). The pseudo-inverse, A+, is defined as the inverse
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of Eq. (4.8) treating S−1 as the transpose of S inverted over the nonzero diagonal:

A
+

n×m
= VS−1UT, where (4.16)

S−1
n×m =



σ−1
1

. . .

σ−1
r

0


. (4.17)

We are thus left with a set of voltages, v0”, that produce the best possible

deformation of the mirror to generate a target wavefront. The best-fit wavefront

can be determined by the projection of the desired wavefront mode onto the modes

determined in the SVD:

φ0”


m×1

=
A


m×n

A
+

n×m

φ0


m×1

, (4.18)

= USS−1UTφ0. (4.19)

The power of the SVD is to invert the otherwise uninvertible; using this tech-

nique we determine the voltage settings that lead to the smallest deviation (as

determined by a least-squares fit) between the desired correction and that actu-

ally produced by the deformable mirror. Lastly, by imposing additional criteria

in Eq. (4.15), we can create a system which is also robust to noise. Including

noise in the formulation introduces small perturbations to the singular matrix,

which renders the σk 6= 0 criteria nearly useless. Alternatively, we can impose

a threshold (σk > σ0), or filtering techniques such as Tikhonov regularization,

which is equivalent to weighting the inverse singular values by a fixed parameter

(σ−1
k →

σk
σ2
k+λ

) [32, 33].

The close-loop optimization technique is a very fast process, and can provide a
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great deal of insight into the aberrations present. Practically speaking, however,

we need to divert the propagating light in order to measure the system aberrations,

which introduces two problems: we must have a different optical path to the

wavefront sensor, and we must remove the wavefront sensor and its associated

optics before evaluating the coupling efficiency. The first problem arises from the

fact that we cannot, in general, use the same coupling optics for imaging onto

the sensor. In both cases, the aberrations corrected during the close-loop process

slightly differ from those present when coupling, and a fully optimal system will

require further correction, as we discuss below.

4.3.2 Evolutionary-based algorithm

We now consider further optimization of the system through evolutionary adapta-

tion, which is the first of two blind-optimization techniques used in our setup. By

design, blind techniques only have knowledge of the behavior of a system through

performance metrics determined by the system output. It is our goal to correct for

arbitrary wavefront aberrations, which are directly responsible for any coupling

losses in our system (see Fig. 3.4). Since we can directly measure the coupling

efficiency, we use coupled power as the performance metric for the RMS wavefront

mismatch we wish to correct.

Although nearly any optimization strategy can be applied to blind optimiza-

tion, we have opted for an evolutionary algorithm for a number of reasons. Evo-

lutionary schemes are robust to many types optimizational landscapes, i.e., the

problem need not be strictly convex, and such schemes generally converge rapidly

from arbitrary starting points. Also, we can design the algorithm to allow the

solution to “walk” around the optimization space, which makes it less susceptible

to local maxima. The general robustness and searching abilities of evolutionary
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schemes make this strategy ideal for high-dimensional and nonlinear problems

such as adaptive-optic optimization. Furthermore, in studies comparing gradient

and evolutionary techniques, evolutionary optimizations have been confirmed to

converge faster to near-optimal settings [5]. It should be noted that the tendency

of the algorithm to wander also implies that it may find the neighborhood of the

best solution quickly, but can have difficulty locating the precise maximum within

a neighborhood. For this reason, we can improve the evolutionary scheme with a

final step, as described in the next section.

An evolutionary algorithm, shown schematically in Fig. 4.6 for our system, is

founded on the idea of survival-of-the-fittest, which we describe here in the context

of our work. With little a priori information about the behavior of the mirror or

system aberrations, we choose a number of different sets of command voltages in

order to initialize our algorithm. If we are continuing after close-loop operation,

we can choose voltages similar to the optimal close-loop solution; otherwise, we

choose voltages close to zero (i.e., close to the initial alignment conditions). Each

set of command voltages is referred to as an individual within the population

formed by all the sets combined. We can evaluate each individual’s fitness, i.e.,

coupling efficiency, and rank individuals accordingly:

V0
pop =

 v0
1, · · · , v0

k

 , and F0 =

 f 0
1 , · · · , f 0

k

 . (4.20)

In accordance with the evolutionary principle, we form a new population, giv-

ing preference to the best-fit individuals, sometimes referred to as breeding. After

testing a few breeding techniques, we have implemented a purely mutation-based
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Figure 4.6: Block diagram of the evolutionary algorithm for our setup.

algorithm which renews the entire population based on the most fit individual.1

The mutation-based scheme effectively “shakes” the mirror around the previous

best settings, re-evaluating the fitness for each new control set:

V1
pop =

 v0
1 + δ11, · · · , v0

1 + δ1k

 , and F =

 f 1
1 , · · · , f 1

k

 . (4.21)

As mentioned earlier, it is possible for the evolutionary behavior to cause the

population to wander away from the neighborhood of the global maximum. For

each iterative step, we keep track of the historically best-fit individuals for later

use, such that we can return to these points for better optimization. We can

choose to stop the algorithm after reaching a particular coupling efficiency, or

after a predetermined amount of time has passed. In order to fully optimize the

coupling efficiency, we exclusively use the run-time as the stopping criterion in

order to encourage the wandering nature of the algorithm. Lastly, we are currently

investigating alternative “wandering” algorithms, such as annealing and guided-

evolutionary simulated annealing (GESA) algorithms. Such schemes, especially

1It is also possible to have multiple individuals competing, either “asexually,” or breeding via
chromosomal-based mixing. In the latter case, also known as genetic evolution [34], the best-fit
individuals can swap control parameters during breeding. Genetic breeding is appropriate for
when the control parameters are entirely independent, which is not typically the case in our
system.
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Figure 4.7: Block diagram of convex algorithm.

GESA, are very similar to evolutionary techniques and may provide an additional

speed increase, as discussed in Chapter 6.

4.3.3 Convex-based algorithm

As the third and final step in our optimization process, we implement a convex-

based algorithm to fully optimize the command voltages, assuming the evolu-

tionary stage has provided a set of commands which are in the same convex-

neighborhood of the global maximum. Since convergence speed in this last step

is not a large concern in the performance of our system, we use a straightforward

gradient-chasing algorithm as shown in Fig. 4.7.

The goal of our algorithm is to estimate the gradient of the optimization space

through changes in the performance metric. Our algorithm evaluates the gradient

by making small steps in each degree of freedom (DoF), and assumes that each

DoF is effectively independent:

vi+1 = vi + λ(∇ηvi), where (4.22)

∇ηvi = ηvi+δI − ηvi , (4.23)

and we have introduced δ and λ as additional control parameters; δ determines the

testing step size, and λ determines the associated change to the command voltages.

Note that although the assumption of independent actuators is certainly not true
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in a general case, we can reduce δ until each DoF is approximately independent.

Also, since we have to evaluate each degree of freedom for the mirror during every

iteration, the convex algorithm is very slow compared to either the close-loop or

evolutionary stages, primarily due to the mirror settling time.

This technique is similar to parallel gradient-descent algorithms, like that used

by Plett et al., for fiber coupling [6, 35]; however, we have opted for a fixed step

size to reduce actuator cross-talk. Similar to the evolutionary stage, we impose

a fixed run time on the convex scheme. Provided that the evolutionary stage

has returned an optimized position within a convex neighborhood containing the

global solution, there are textbooks dedicated to the number of ways by which we

could find the global maximum [36]. Our algorithm has proven effective thus far,

though speed improvement remains a consideration for future implementations.

46



CHAPTER 5

IMPLEMENTATION OF ADAPTIVE OPTICS

5.1 Introduction

In this chapter, we describe our implementation of wavefront correction and

demonstration of high Strehl-ratio adaptive optics. Wavefront correction rep-

resents the upper limit of mode correction, and we have designed our system

to maximize intensity overlap in order to isolate wavefront correction. We have

shown AO-limited performance of the system, which is likely the maximum achiev-

able correction currently possible given that we have used what we believe is the

best AO mirror commercially available.

5.2 Experimental Setup

Our implementation of wavefront correction can be broken down into three types

of components: mode-mismatch sources, wavefront-analysis tools, and adaptive-

correction elements. Our setup, pictured in Fig. 5.1, has incorporated each of

these parts for maximizing wavefront correction.

5.2.1 Mode-(mis)matching

Our goal is to understand the practical limits of wavefront correction. We restrict

our analysis to correcting aberrations, not apodizations, and must therefore match

the intensity profiles of the coupling modes; this is accomplished by using the “free-
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Figure 5.1: Wavefront-correction experimental layout.

space” source and single-mode coupling components shown in Fig. 5.1. Here we

use single-mode fibers as the sources for the two modes to be coupled (free-space

and fiber-optic), which would couple with maximum efficiency in the absence of

aberrations (see Eqs. (3.17-3.19)). Although the LP01 mode of a fiber is not an

exact mode of free space, the theoretical overlap with the optimal free-space HG00

mode is very high, as can be qualitatively seen by comparing Figs. 3.3 and 3.1.

We have calculated that the LP01/HG00-mode overlap is on the order of 99.5%,

though it is dependent on fiber-index properties. Considering the high calculated

overlap, we assume that the LP mode is maintained throughout propagation, and

that our emulated free-space mode is approximately a single mode in free space.

Despite being assured the coupling modes have similar intensity profiles, we are

not guaranteed wavefront matching, due to the use of collimation, expansion, and

coupling optics that will introduce aberrations into our system. These aberrations
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can reduce the coupling efficiency into single-mode optics, are common among all

nonideal optical systems, and are exactly what we correct for by introducing the

deformable mirror. We thus have a system that matches the intensity profiles of

two modes and, without adaptive optics, provides wavefront-limited performance.

5.2.2 Wavefront analysis

Perhaps as important as the correction itself, we need to be able to show that

the system is working, i.e., that there are aberrations being corrected. We have

three tools for testing wavefront correction: measurements of coupling efficiency,

interferometry, and wavefront analysis.

Measuring the coupling efficiency can reveal the magnitude of wavefront aber-

rations, provided that we have optimal alignment and high efficiency (see Fig.

3.4). Our alignment techniques provide us with a reliably well-aligned system.

In short, we have provided each of the optical mounts with the necessary pre-

cision and degrees of freedom to first optimize the alignment without the AO

mirror. This feature is especially useful for fine-tuning the alignment of the cou-

pling optics, since small alignment errors will induce aberrations such as coma

and astigmatism.

In our system, we included two optical paths through the use of a 50:50 beam-

splitter (BS), primarily to directly evaluate the impact of the AO mirror’s pres-

ence, as will be discussed in the next section. An additional feature of this design

is the fact that, if both paths are unblocked, we also have a Michelson interfer-

ometer with a flat mirror in one arm and the deformable mirror in the other. The

fringes generated by the interferometer will reveal the surface shape of the mirror

if the reference mirror is aligned on-axis (Eq. (2.18)). We thus have a method for

quickly separating wavefront aberrations due to the optics from the corrections
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applied by the deformable mirror itself, though this is at present only a qualitative

method.

Finally, we have included an additional path in our system which allows us

to sample the wavefront before, during, and after correction. As mentioned in

Chapter 4, we designed the wavefront-sensing path to be removable so that we

could establish the total system efficiency. Our wavefront-sensing components

consist of a beamsplitter, an imaging lens, and a Shack-Hartmann sensor. Also,

we match the imaging and coupling lenses whenever possible to minimize the

differences in reference path. Unfortunately, we are only able to do so for focal

lengths longer than 30 mm due to the housing of the SHS; for beam diameters

smaller than 5 mm, we are susceptible to additional wavefront-measurement error

from the difference in optical components between the reference and coupling

paths.

5.2.3 AO mode-correction

The final part of our scheme for demonstrating AO correction utilizes the two

mirror paths in the system. In particular, we have made use of a deformable mirror

as well as a reference flat mirror to test the system with and without correction.

Although we reduce our total system efficiency by a factor of four by adding the

reference path, its inclusion is vital to an accurate demonstration of wavefront

correction, and can be removed from the calculations via normalization. The

reference mirror path allows us to characterize the coupling limitations without

correction. This is an important feature of our system, since the DM itself will

introduce aberrations from its unbiased state, and we must demonstrate that

any uncorrectable features of the mirror are negligible compared to the inherent

aberrations of the coupling optics. Without a reference path, there would be no
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way to separate the aberrations introduced by the DM from those of the other

optics.

More importantly, we have also included the AO correction path in our design,

which provides the source of correction within our system. After experimenting

with a few configurations, we settled on the normal-incidence design shown, simi-

lar to that in [5, 37], which we found performed the best under our initial testing.

It is also possible to use the mirror at slight angles, which would remove the

need for a beamsplitter, as discussed in Chapter 6. We could also replace the

beamsplitter with a polarizing beamsplitter and quarter-wave plate combination,

effectively removing the reference path without modifying the rest of the layout

(see Chapter 6). In fact, one must do this to achieve absolute high coupling effi-

ciencies. Here, where we focused on understanding the wavefront corrections, we

used the simple beamsplitter.

5.3 Results

We have chosen to characterize our system based on four performance metrics:

mirror utilization, command repeatability, wavefront correction and, of course,

coupling efficiency. Also, we have tested several variations of our system which

we will discuss here: coupling with and without ideal optics, and coupling with

and without beam expansion. For near-ideal coupling optics, we used a microscope

objective (MO), which only introduced minor aberrations when aligned properly

(on the order of 4 nm RMS). When coupling without near-ideal optics, we utilized

achromatic lenses, which introduced significantly larger aberrations depending on

beam diameter, focal length, and alignment, but which have significantly higher

transmission than the multielement MO.
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5.3.1 Coupling efficiency

The most important aspect of our AO technique is the ability to optimize a

wavefront-limited system. To truly evaluate this ability, we have considered the

problem of coupling a free-space beam to a single-mode fiber, in which the free-

space and fiber modes differ only by respective wavefronts (i.e., the transverse

intensity profiles are nearly identical, as discussed at the beginning of the chapter).

While the free-space mode is susceptible to aberrations during propagation, the

fiber mode is determined by the quality of the cleaved and polished surface, which

is reliably flat for our considerations. The coupling efficiency is therefore a direct

indicator of RMS flatness as well as correction capabilities for the AO system.

Since there are a number of ways to quantify AO correction, we first consider the

coupling efficiency for measured power immediately before and after the coupling

fiber, after dividing out reflection losses.1 Table 5.1 provides an overview of our

results for three cases: with a nearly ideal microscope objective (MO) with and

without expansion, as well as with the nonideal achromats we described earlier,

which use a fixed beam diameter depending on the coupling lens focal length.

We measured the coupling efficiencies with a flat mirror to distinguish what is

the best possible coupling with a given set of optics, using only manual alignment

and aberration balancing, from what is possible by including the DM. When test-

ing the AO correction, we aligned all optics with normal incidence, and made no

effort to balance aberrations. It is clear from our results that the starting aber-

rations play an important role in determining AO correction, since the inherent

aberrations of the DM itself may negate any benefits. However, for systems which

are appreciably wavefront-limited (σ & 20 nm), an AO approach can improve the

1For example, we determined the Fresnel loss off each end of the fiber to be 2.3% per surface.

The efficiency is then given by η = Pout

Pin

(
1

1−2.3%

)2

. For focal lengths shorter than 25 mm,
we measured the incident power before the coupling lens and fiber, changing the efficiency to

η = Pout

Pin

(
1

1−2.3%

)2 (
1

1−Rlens

)2

.
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Table 5.1: Summary of normalized efficiencies for tested configurations.

Configuration
Mirror Efficiency Change Iterations
Type η (%) (∆σ ≈) (# itr)

Beam diameter: 4 mm Flat 97.5± 0.3
-0% < 250

Coupling element: MO AO 97.3± 0.3
Optimization: Evolutionary

Beam diameter: 10 mm Flat 96.1± 0.3
17% < 2500

Coupling element: MO AO 97.3± 0.3
Optimization: Evolutionary

Beam diameter*: 6 mm Flat 87.8± 0.15
45% < 5000

Coupling element: Achromat AO 96.2± 0.15
Optimization: Evol. and convex
*Beam diameter is fixed by the focal length of the coupling optics

system performance.

Finally, we briefly discuss the normalization considerations. We have not yet

gone to great lengths to reduce all system losses, primarily since it should be

a straightforward process to obtain antireflection (AR) coatings and wavelength-

dependent components optimized for our system. The fundamental losses, or those

which would appear in any version of our system, are due to Fresnel reflections

off the lenses and fiber, as well as the losses (transmission and scattering) at the

deformable mirror. Since one cannot easily AR-coat many multielement optics

such as a microscope objective, common lenses possess a unique advantage for

our system. Table 5.2 summarizes the coupling efficiencies with the current losses

included, as well as the minimum coupling efficiencies expected if one includes

available AR coatings for the fibers and achromat lenses (but not the MO).

Table 5.2: AO-corrected coupling efficiencies including reflection losses.

Configuration
AR Coating Efficiency

No/Yes η (%)
Beam diameter: 4 mm or 10 mm No 86.0

Coupling element: MO Yes 91.5
Beam diameter: 6 mm No 87.7

Coupling element: Achromat Yes 95.2
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We have included our measured reflection losses in Table 5.2, assuming the

fiber and achromats can be coated such that Rloss < 0.25%. Despite the slightly

lower normalized coupling efficiency for the achromat coupling, the potential to

AR-coat the optics makes the simpler lens configuration a very attractive alter-

native, as can be seen in the table, with the achromat achieving the highest true

coupling efficiency.

5.3.2 Wavefront correction

The ability to characterize aberrations is a fundamental necessity for illustrating

wavefront correction, and we have made a number of wavefront measurements to

demonstrate the successful implementation of our system. As mentioned earlier,

we have evaluated AO correction in the limits of making no attempts to fill the

mirror surface (beam diameter = 4 mm), as well as filling the mirror surface with

negligible clipping (beam diameter = 10 mm). Figure 5.2 shows the results of our

measurements, before and after running our hybrid of evolutionary and convex

optimization.

For the uncorrected systems, seen in Figs. 5.2(a) and 5.2(c), we can project the

wavefronts onto the Zernike basis and see that the strongest aberrations are due to

coma and astigmatism (see Fig. 3.5 for example Zernike modes). The use of beam

expansion also appears to introduce slight spherical aberration. These results

are to be expected since we are introducing aberrations through simple lenses, as

discussed in Chapter 3.4, and only the collimation optics and microscope objective

are designed to compensate for spherical aberrations. As mentioned earlier, we

could manually compensate for some of the coma, astigmatism, and spherical

aberration through intentional misalignment of the optics; we discuss this at the

end of the section.

54



(a) Beam diameter: 4 mm
Optimization: None.

(b) Beam diameter: 4 mm
Optimization: Evolutionary.

(c) Beam diameter: 10 mm
Optimization: None.

(d) Beam diameter: 10 mm
Optimization: Evolutionary/convex.

Figure 5.2: Wavefront measurements before and after correction. σ is the standard
deviation of the measured wavefront.

In Figures 5.2(b) and 5.2(d), we can see a dramatic reduction in the RMS

wavefronts after correction, as well as a significant difference between the systems

with and without beam expansion. Again, these results confirm the intuitive

expectation that using the full mirror surface provides better wavefront correction

for the primary aberrations. The lack of significant spherical or higher-order

aberrations in the system without expansion allows for limited correction, though

the final RMS flatness is still too large for our purposes. Also, for the 4 mm beam

we have assumed that there is no measurable difference between evolutionary and

hybrid-evolutionary/convex optimizations: given the small number of actuators

exposed, evolutionary optimization converged to what we believe is the same

solution that a hybrid scheme would have attained, and without excessive run
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time as might be necessary if the full mirror were to be used.

We have also observed minor disagreements between the close-loop and the

blind-optimization solutions (Chapter 4.3), as shown in Fig. 5.3. The slightly

different optical paths and imaging optics most likely contribute to this small

difference.

(a) Beam diameter: 10 mm
Optimization: Evolutionary/Convex

(b) Beam diameter: 10 mm
Optimization: Close-loop

Figure 5.3: Comparison of blind-optimization and close-loop solutions.

Despite the seemingly better solution through close-loop, we have consistently

observed better coupling efficiency via blind optimization. However, the close-loop

process is significantly faster than blind optimization, as discussed in Chapters 2

and 4, making it an ideal starting point for our evolutionary and convex schemes.

We have tested this three-step process of close-loop, evolutionary, and convex

optimization, and found it to perform as well as or better than any combination

of the individual algorithms with respect to coupling efficiency.

Lastly, we have found the DM to perform within its 10-nm RMS flatness

specification, though not by much. Typical settled solutions range from 9-nm

to 25-nm RMS flatness after correction, with the flatness largely dependent on

the magnitude of correction needed. The RMS flatness sets the upper limit on

the performance of the system under ideal conditions, as shown in Chapter 3,

and we can only correct an arbitrary wavefront to within 10-nm RMS at best.
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If the system is already close to this point, there is little to be gained from AO

correction, as illustrated in Fig. 5.4 for a system for which most of the aberrations

present could be removed via aberration balancing before any AO correction.

(a) Beam diameter: 10 mm
Optimization: None (manual balancing)

(b) Beam diameter: 10 mm
Optimization: Close-loop

Figure 5.4: Wavefront correction near the performance limit of the DM.

5.3.3 Mirror utilization

In order to make optimal use of our system, it is necessary to make optimal

use of the deformable mirror. Since we are dealing with a system limited by

the amplitude-weighted RMS wavefront-mismatch (see Eq. (3.26)), it would seem

that we should concentrate on correcting the highest intensity region of the beam.

However, we must avoid introducing apodizations due to clipping once we fill the

aperture of the mirror; such efforts reduce the coupling efficiency according to

Eq. (3.17). We have studied the coupling properties over the range from “no

expansion” to the limit of maximal expansion without measurable clipping, i.e.,

from a beam diameter of 4 mm to 10 mm. At the smallest and largest diameters

we have 99% of the incident power filling 16% and 100% of the 15-mm diameter

mirror aperture, respectively.

For the two limits of surface utilization we observed different results depending

on the coupling optics. First, when using the MO, we found that using the entire
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DM surface provided no measurable advantage over the system without beam

expansion. In essence, we observed that the largest aberrations present without

beam expansion were of low order (coma/astigmatism) and could be corrected

using only a small portion of the mirror surface. The addition of beam expansion

in this case actually added higher-order aberrations, which were subsequently

corrected for by the mirror. If we used irises to reduce the beam diameter and

normalized the coupling efficiency according to Eq. (3.17), thereby including the

aberrations due to the expansion optics without the full use of the mirror, we

observed the expected drop in coupling efficiency (see Fig. 5.5).

Figure 5.5: Normalized coupling efficiency dependence on DM-surface usage. The
surface utilization is defined as the ratio of the area of the beam, taken at the
99% power level (Abeam = π(1.5w0)

2), to the area of the mirror aperture (ADM =
π(7.5 mm)2).

When using achromats for coupling, we observed a large difference in the

system efficiency with and without expansion. In this situation, the coupling

lens introduced aberrations that were larger and higher-order than those of the

collimating lenses, and that only the system with beam expansion could correct

for. In our system, the collimation optics set the beam diameter out of the

free-space source, while the coupling optics focus the free-space beam onto the

surface of another fiber. Although the mirror can still largely correct for simple

aberrations, such as astigmatism and coma, terms higher order than coma require
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a higher spatial-frequency resolution than small sections of the surface can provide.

An additional consideration when filling the mirror aperture arises from the

inherent aberrations AO mirrors have due to the actuator patterns. For low

surface-area usage, these inherent aberrations have lower spatial frequencies com-

pared to the aberrated wavefront, and may resemble the primary aberrations

discussed in Section 3.4.2. The primary aberrations can be largely corrected by

balancing lens alignments, reducing the standard deviation by as much as a fac-

tor of two [21], and subsequently making the mirror surface effects less apparent.

When the mirror aperture is filled, however, the inherent AO aberrations will be

of a higher order, and will not be able to be balanced by any simple optical tricks.

If these higher spatial-frequency aberrations are too large, beam expansion begins

to degrade the coupling efficiency. Further discussion of this issue is provided in

Appendix A, complete with our own experiences.

5.3.4 Actuator repeatability

Next, we consider the ability of our system to converge toward a global maximum

via metric-based optimization of coupled power-stability. We tested for actuator

repeatability by performing 10 identical trials, and calculating the command-

voltage standard deviation over the 10 trials for each actuator. We evaluated

four cases: evolutionary optimization with no beam expansion, evolutionary and

convex optimization with beam expansion, convex optimization with beam ex-

pansion, as well as evolutionary and convex optimization with beam expansion

after starting from a previously settled solution.

We found what we largely expected to find: the standard deviation of the

settled actuator voltages is inversely dependent on the intensity of the field il-

luminating that actuator. In Fig. 5.6, we have plotted the inverse of the stan-
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dard deviation to emphasize the best performing regions; we also noted the mean

standard deviation across all actuators. We have calculated the ideal RMS to

be on the order of 0.5 mV, which we calculated by comparing the ratio of ex-

pected RMS flatness and total actuator stroke to the total input voltage range

(σvact ≈ 10 nm
50 µm

× 2 V). The mean standard deviation decreases significantly when

adding beam expansion. Furthermore, if we exclusively use our convex optimiza-

tion algorithm, the standard deviation is again reduced. If we begin optimization

from a previously obtained maximum, the standard deviation drops dramatically,

and a few actuators approach the ideal RMS limit.

Although important for demonstrating a consistent solution, actuator repeata-

bility is not a sufficient criterion for an optimized system. For example, both Figs.

5.6(c) and 5.6(d) indicate better repeatability than Figs. 5.6(a) and 5.6(b), yet we

measured the coupling efficiencies associated with the convex algorithm data to

be notably worse than the evolutionary algorithm (90% compared to 94%), while

the efficiencies associated with the algorithm picking up from a local max were

notably better (97% compared to 94%). Rather than associating repeatability

with wavefront correction, we use it as an indicator of both algorithm behavior

and optimization landscape. We conclude that the similarity between Figs. 5.6(b)

and 5.6(c) indicates a partially convex optimization space, while the significant

difference between Figs. 5.6(b) and 5.6(d) indicates a number of local maxima

near the optimal solution. From the lower mean standard deviation, we conclude

that the convex algorithm is more consistent than the evolutionary scheme. Aside

from noise in the system (e.g., mechanical motion or power drift), a convex algo-

rithm should follow an identical convergence path if run multiple times, and should

therefore be the closest to the estimated ideal-RMS voltage deviation. The fact

that our tests show the convex scheme to be less than perfectly repeatable implies

that there must be sources of noise in the system which impact the optimization
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(a) Beam diameter: 4 mm
Optimization: Evolve
Initial state: 0 V
Mean RMS deviation: 11.53 mV

(b) Beam diameter: 10 mm
Optimization: Evolve
Initial state: 0 V
Mean RMS deviation: 3.61 mV

(c) Beam diameter: 10 mm
Optimization: Convex
Initial state: 0 V
Mean RMS deviation: 3.13 mV

(d) Beam diameter: 10 mm
Optimization : Evolve
Initial state: Local max
Mean RMS deviation: 1.46 mV

Figure 5.6: Actuator-repeatability results (inverse RMS deviation, σ−1).

metric on a time scale comparable to a single algorithm iteration.

We have identified a few potential sources of error that could degrade the

actuator-RMS performance, i.e., fluctuations in the source power, slight mechan-

ical drift within the system, or degenerate wavefront solutions due to piston mo-

tion. Although we have observed power issues in the past, we have since insulated

the source to minimize these issues, as well as included “double-checking” features

within the algorithm to compensate for the remaining drift. We do not consider

power fluctuations to be a limiting factor for evolutionary optimization due to
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competition within the algorithm. However, small errors in estimating a convex

gradient could have a lingering effect on subsequent estimates until the error is

corrected. Next, we have observed mechanical drift responsible for an efficiency

drop of less than 10% by measuring the efficiency of an uncorrected system im-

mediately after alignment and monitoring the coupling efficiency over time. We

can limit these errors (usually to less than 2% per day) by providing an initial

settling time before running any optimization. Some of the actuator variation

could also be attributed to the partial insensitivity of the mirror shape to piston

motion, that is, the movement of the entire mirror surface along the optical axis.

Luckily, the issues with mechanical motion and piston do not impact the coupling

efficiency or wavefront correction.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

6.1 Conclusions

Not long ago, it would have been counterproductive to utilize adaptive optics for

high-Strehl-ratio (SR) systems at visible wavelengths; the inherent aberrations

would have resulted in losses greater than the potential improvement. Although

adaptive optics have been in use for a number of years for astronomy and large-

aperture/long-wavelength systems, the technology has only recently progressed

to the point where nanometer-scale features can be reliably corrected. To the

best of our knowledge, this work represents the highest efficiency and lowest RMS

flatness obtained to date for single-mode coupling via adaptive optics with visible

light.

6.2 Modifications and Possibilities

There are still a number of modifications mentioned throughout this work which

could extend the capabilities of our AO system. We have begun work toward some

of these goals, while others are simply ideas for improvements or applications.

6.2.1 Implementation

We begin with a discussion of the improvements we could apply without major

experimental-layout changes. There are two primary weaknesses of our approach
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as described: a reduced total system efficiency due to preventable losses, and the

algorithmic-convergence speed. The Fresnel reflection losses, and inclusion of a

reference path, are the largest factors reducing the total efficiency. We have found

multiple sources in industry able to provide AR-coatings to counter reflection

losses at a desired wavelength, all with lower than 0.25% reflection loss per surface.

It is also possible to improve the coating on the mirror itself (which at present

has a reflectivity of better than 98% at 655 nm as shown in Fig. 4.4), although it

would be a more difficult and customized process.

Next, we could remove the reference path without significantly altering our

experimental layout, potentially increasing the total system efficiency by a factor

of four. If we restrict the input to horizontally polarized modes, we can increase

the efficiency by replacing the 50:50 beamsplitter with a polarizing beamsplitter

(PBS) followed by a quarter-wave plate (QWP) as shown in Fig. 6.1.

Figure 6.1: Proposed PBS and QWP modification.

With this setup, the horizontally polarized input mode would be transmitted

through the PBS, rotated to vertical polarization after a double-pass through

the QWP, and reflected on the second pass through the PBS. Equivalently, we

could use vertically polarized light by using the reflected arm of the PBS. If

we incorporate low-loss AR coatings and polarization optics, the total-system

efficiency would be limited only by the quality of the PBS. With currently available

PBSs, for example, the efficiency limit would be better than 95% for a typical

cube-PBS, and could be higher depending on wavelength and PBS quality (e.g.,
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a Brewster-angle PBS allow efficiencies above 99%).

Another alternative, pictured in Fig. 6.2, allows for high-efficiency correction

and relaxes the polarization restriction, is a modification of a standard tilted-

mirror layout, and is similar to that used by Zhu et al. in [38] to generate Zernike

modes with a deformable mirror.

Figure 6.2: Proposed tilted-mirror scheme.

The addition of two beamsplitters provides a reference path that is very use-

ful for evaluating the performance of the system without any AO, similar to our

current design. Unlike our current setup, however, we can entirely remove the

beasmplitters (and the reference path) in order to evaluate the total system effi-

ciency with AO. Unfortunately, this design also balances the effective area of the

DM aperture with the required path lengths; e.g., when closer to normal incidence,

the mirror aperture appears mostly circular, but the DM must be positioned fur-

ther from the “flat mirror 2” to separate the input and corrected beams. Shorter

path lengths will reduce both the system sensitivity to mechanical vibrations as

well as aberration propagation (into intensity fluctuations). We suspect that the

impact of the slightly elliptical mirror aperture on a Gaussian mode may be min-

imal compared to the benefits of a simpler setup with fewer optical components
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and no inherent polarization dependence, and we are considering this layout for

future work.

Another modification we have considered is changing the evolutionary stage

of our correction algorithm. In particular, we are interested in evaluating the

performance of simulated-annealing (SA) [39] and guided-evolutionary-simulated-

annealing (GESA) [40] algorithms. Both algorithms are similar to evolutionary

optimization, but have a few distinct features which change the overall behavior.

Briefly, SA was designed to model the annealing process in crystalline mate-

rials in which an ensemble of atoms is formed into a high-quality crystal through

slow heating and cooling. To model this process, we begin with an ensemble of

points in an optimization space, each representing a set of commands for a partic-

ular system, and each assigned a cost function according to a chosen metric. The

algorithm perturbs each point, and re-evaluates the cost for the new set of com-

mands. Unlike evolutionary optimization, which would only move toward a lower

cost, SA has an additional “temperature” parameter which introduces randomness

into the decision making: the new point is accepted if the cost is lower, and also

has a chance of being accepted if the cost is higher. As the system “cools,” the

chance of accepting a higher cost decreases. This behavior allows the algorithm

to escape local maxima easily when the temperature is high, and encourages the

algorithm to concentrate all the testing points near the global-minimum cost.

The GESA approach is a straightforward modification of SA, which also in-

corporates aspects of evolutionary control. Rather than concentrating on a large

ensemble of points, GESA works by running multiple, competing SA processes.

The weighted cost of each competing SA process becomes the performance metric

for evolutionary optimization, where the size of each SA ensemble is determined

by its overall success relative to the other processes. A GESA algorithm shares

many of the benefits of SA algorithms, such as the resistance to local extrema,
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and is additionally capable of exploring many regions of the optimization space

while prioritizing the best-performing regions.

6.2.2 Mode conversion

Another possible application of wavefront correction is as part of an efficient and

dynamic mode converter, i.e., a device which can simultaneously reshape both

the intensity and phase of an incident mode with minimal loss. We suspect that

we can exclusively use wavefront corrections as a building block for performing

general mode conversion. This is certainly true for a subset of problems, e.g.,

beam expansion (Fig. 4.1). Here we discuss one potential realization of this

idea, in which we wish to be able to emulate mode-conversion systems using

adaptive optics. We can implement an AO-mirror mode conversion using the

aforementioned PBS/QWP technique and two deformable mirrors, as shown in

Fig. 6.3.

Figure 6.3: Potential two-mirror mode-conversion scheme.

As drawn, we can modify the input mode’s wavefront using DM1, focus the

mode with L1, modify the focused wavefront using DM2, and collimate the output

mode via L2. Aberrations added at DM1 will change the intensity and wavefront

at DM2, and aberrations added at DM2 will change the intensity and wavefront
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at L2; consequently, the output mode is dependent on both mirrors. We are inter-

ested in the case where the output remains unchanged if the DMs are flat, which

requires that L1 and L2 form a 4f-type imaging system as described in Chapter

4. Also, if we assume that the separation between DM1 and L1 is much smaller

than the focal length of L1, then the effective lens formed by passing through L1

twice, which we will denote L1’, has a focal length approximately equivalent to

half the focal length of L1 under the thin-lens approximation [12]. Although an

ideal DM would be able to directly produce the necessary focus (removing the

need for any lenses), the large deformations required for any magnification could

quickly lead to actuator saturation, reducing the correction quality.

By designing the layout such that L1’ is exactly at DM1 and L2 is away from

DM2, we have introduced a convenient way to separate the effects of each DM on

the output mode specifically. If we place both L1’ and L2 one focal length away

from DM2, the modes at each of the lenses will be in the focal plane at the surface

of DM2. By design, the output of our mode converter should match the target

mode at L2, and since nothing alters the mode after DM2, the focused output

mode should also match the focused target mode at DM2. The second mirror can

only correct the wavefront at DM2, however, so we must have matching intensity

distributions without any contribution from DM2. We can therefore separate our

mode-conversion scheme into two components: intensity correction with DM1,

and wavefront correction with DM2.

Lastly, it is possible to simulate this system by utilizing the Fourier transform,

which is an approximation for paraxial fields focused by spherical lenses [9]. We

have performed some preliminary simulations using MATLAB and the fast Fourier

transform (FFT), as well as evolutionary optimization of the mirror settings, and

have observed promising initial results (Fig. 6.4). In particular, we have seen very

high overlap for performing a relatively simple correction from a Gaussian mode
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to a steeper-edged squarelike mode (similar to a square waveguide mode), which

began with an overlap close to 70%.

(a) Input field magnitude (b) Output field magnitude
Overlap: 98.92 %

(c) Target field magnitude

Figure 6.4: Initial two-mirror mode-conversion results.

In this first test, we allowed for perfect wavefront control at each point, which

would certainly be limited by the actuator density on real DMs. We are contin-

uing to develop practical simulations, as well as working to develop a rigorous

theoretical formulation for determining the optimal mirror settings. After the

above corrections, our net mode-coupling efficiency is limited by the desired cor-

rection and the spatial resolution of each DM, which will ultimately determine

how efficiently we can perform correction for two particular modes.
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APPENDIX A

DIAGNOSING A DEFORMED MIRROR

A.1 Introduction

In this appendix we outline a number of problems we have encountered with our

deformable mirror system during the past two years, as well as the methods we

have used to test for each. These problems include beyond-tolerance aberrations,

power-supply failure, and mirror settling times. Some of these problems may be

compensated for, while others require repairs or replacements.

A.2 Beyond-Tolerance Residual Aberrations

Despite the superior performance of our AO mirror when compared to others

commercially available (see Chapter 4), we found that our first mirror from Imag-

ine Optic was unable to meet its specified tolerance for RMS flatness. While the

manufacturer specifications state that the mirror can obtain better than 10-nm

RMS flatness, the best we found it could obtain was closer to 20 nm, which un-

acceptably limited the system performance. Our investigation determined that

these aberrations were very likely due to the actuators attached to the mirror

surface.
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A.2.1 Symptoms

There were a few clear indicators that the residual aberrations were due to the

deformable mirror. First, it appeared that high spatial frequencies were caused by

the actuators, diverged quickly upon propagation, and created a distinct intensity

pattern on the output mode after a short propagation distance. This intensity

pattern was constant regardless of the mirror settings, including after close-loop

and blind-optimization correction. Also, the pattern moved with respect to the

mirror, i.e., a vertical or horizontal translation resulted in a corresponding move-

ment of the pattern on the output mode. Since such a pattern was visible, we

suspected that it was possible the inherent aberrations of the deformable mirror

were beyond its specified tolerance. We observed such a pattern forming in as lit-

tle as 25 cm after reflecting off the DM, whereas there was no noticeable pattern

when using a flat mirror (Fig. A.1).

(a) Flat mirror. (b) Deformable mirror 1.

Figure A.1: Output intensity patterns with and without the deformable mirror
present (beam diameter: 10 mm).

An additional symptom of RMS-aberration problems was a failure of the sys-

tem to obtain its specified flatness via close-loop correction. Many factors could

impact the close-loop process, and a carefully aligned and properly imaged sys-

tem was necessary for the best results. Since the residual RMS flatness after
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correction was always larger than the specified tolerance, the mirror unit again

appeared to be out-of-spec for RMS flatness. Although the close-loop flatness

would be sufficient for demonstrating that the system was operating within its

specifications, it was not sufficient for showing it was beyond its specified limits

because of contributions from the rest of the optics. However, when there were

reasonably low aberrations due to the optical system compared to the DM, as

checked by replacing the DM with a flat mirror, we interpreted the residual aber-

rations after close-loop correction as an indicatior of the aberrations due to the

mirror, and concluded it warranted further investigation.

A.2.2 Diagnosis

It was necessary to measure surface shapes in order to conclusively detect any

residual aberrations due to the mirror, for which a number of techniques are

commonly used. We opted for interferometric testing, similar to the methods

mentioned in Chapter 2, which was well suited for noncontact and large-aperture

surface measurements.

We evaluated the mirror surface with a Veeco NT1000 interferometric surface

profiler, which could be set to use either vertical- or phase-shift interferometry

(VSI or PSI). VSI utilizes white-light interferometry, where interference fringes are

visible only over a very short and well-defined distance due to the short coherence

length of a broadband source. The surface is translated through this region in

a Michelson-type interferometer, and the shape can be reconstructed from the

placement of high-contrast fringes, much like the contours of a topographical

map. For PSI, quasi-monochromatic light is used in the same interferometer, only

now the surface shape can be reconstructed from the interference relationships in

Eq. (2.18). Both methods possess advantages and disadvantages, with VSI more
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robust to surface discontinuities and reliable for large features, and PSI more

robust to vibrational noise and reliable for subwavelength features.

After noticing a few symptoms of residual aberrations, we had a cross-section

of the mirror surface measured through VSI in overlapping, 1-mm2 sections (the

largest area possible with the available equipment), which we pieced together.

After removing tip, tilt, focus, and the noisy artifacts due to the measurement

and reconstruction process, we found that the mirror surface was covered in bumps

50-80 nm in height (see Fig. A.2).

(a) Deformable mirror surface profile.

(b) Slice of surface profile along the solid red line

Figure A.2: VSI surface profiler scans of our initial deformable mirror.

The positions of the bumps corresponded to each of the actuators across the

mirror surface. Unfortunately, we had to perform these measurements with an

inactive mirror due to equipment restrictions in the cleanroom facilities which

provided the Veeco system. As such, each of the scans was taken with the mirror in

an unbiased state, rather than a zero-volt or actively flattened state. Without any

active tension other than from the weight of the mirror surface, there appeared to

be a 19-nm RMS aberration inherent to the mirror surface, which was in agreement

with our initial suspicions, and would prevent the mirror from ever obtaining its
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specified flatness.

A.2.3 Correction

To the best of our knowledge, there is nothing that can be done to correct the

mechanical limitations of the mirror other than replacement. After our diagnosis

and demonstration of the problem to Imagine Optic, we were eventually able to

get our first mirror replaced. We repeated our previous tests on the replacement

DM, as shown in Figs. A.3 and A.4 for both mirrors.

(a) Deformable mirror 1. (b) Deformable mirror 2.

Figure A.3: Output intensity patterns with the initial and replacement mirrors
(beam diameter: 10 mm).

As a first test, the intensity pattern observed after reflecting off the replace-

ment mirror was less noticeable than before, although it was still present. We also

tested the surface shape of the replacement using the Veeco system, and found

a measurable improvement in the scale of the RMS aberrations (note the RMS

values and lighter colors in Fig. A.4(b) when compared to Fig. A.4(a)). After

testing the inactive mirror, we ran the new mirror in a close-loop experiment

and very quickly observed better than 10-nm RMS flatness after correction, pro-

viding the necessary confirmation that the new mirror was operating within its

specifications.
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(a) Deformable mirror 1 surface-profile section (taken with VSI).

(b) Deformable mirror 2 surface-profile section (taken with PSI).

Figure A.4: Comparable sections of surface-profile scans for the original and re-
placement mirrors.

As noted in Fig. A.4, we used VSI for our initial scans and PSI for our

follow-up scans. After evaluating the first mirror, we found that the scale of the

aberrations were more appropriate for PSI than VSI, and that the moving parts

involved in VSI introduced nm-scale errors. We also determined that averaging

5-10 VSI scans greatly reduced these errors, and that our original scans, each of

which was an average over four scans, were sufficiently accurate for stating the

mirror was beyond its specifications. Although our preference was to perform a

side-by-side comparison of the original and replacement mirrors, Imagine Optic

was unable to allow us to have both simultaneously.

A.3 Power-Supply Failure

During our testing of the AO system, we ran into an unexpected shutdown problem

when driving the mirror with large average command voltages. Since there is no

direct feedback from the mirror or mirror power supply, this problem was only
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apparent when monitoring the output of a corrected system, and resulted in a

complete, albeit temporary, failure of the system. Although this problem was not

outlined in the operation manual when we received our system, it has since been

included in updated versions. At the time of this writing, the specifications now

state that the absolute sum of the applied voltages must be less than 25 V, which

we have found still to be insufficient.

A.3.1 Symptoms

Once we were aware that a temporary failure of the AO mirror was possible, such

an event was somewhat obvious. The power supply would shut down the mirror for

a period of time, accompanied by an audible “click,” and the mirror would revert

to its unbiased state. At some later time, the supply turned the mirror back on,

and the system continued as if the mirror had been active the entire time. If the

system was attempting to optimize the mirror shape during the inactive time, it

would walk randomly according to performance-metric fluctuations. If the mirror

was maintaining a constant shape for coupling, the power would drop suddenly,

maintain its inactive level, and periodically repeat this cycle (see Fig. A.5).

Figure A.5: Measured trend illustrating the periodic shutdown of AO system.
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A.3.2 Diagnosis

The shutdown problem was straightforward to conclusively evaluate, and it was

further possible to approximately predict the shutdown according to the average

applied input voltages. We found it very convenient to use of the inactive state of

the mirror as the initial position in a coupling system, and to use the active state

to apply a variable tilt to the mirror. In this setup, there is no coupling unless

the mirror has failed due to the tilt, and we can measure the characteristics of the

shutdown problem over time for different magnitude tilts (see Fig. A.6).

Figure A.6: Characteristic failure of the power-supply under varying applied volt-
ages.

For average applied voltages less than 225 mV per actuator (absolute sum of

less than 12 V), the mirror did not shut down. Above this threshold, the mirror

shut down after increasingly short periods of time. The inactive time was nearly

constant for each of the tested settings.

A.3.3 Correction

We concluded that these results indicated an overheating problem with the power

supply or mirror, which would require repair, replacement, or total avoidance. For
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an overheating issue, increasing the power consumption would cause an increase

in operating temperatures, eventually reaching a predetermined shutdown thresh-

old. After a temperature-threshold shutdown, the inactive system would cool and

reactivate. If the threshold temperature was fixed, the time until shutdown would

depend on the power consumption, while the time after shutdown would be fixed

by the threshold conditions. Similar behavior would be observed if the power sup-

ply monitored power consumption; shutting down for a fixed time after reaching

a given threshold (e.g., via a slow-reset fuse).

After discussing the problem with Imagine Optic, we were able to test an

additional power supply, which we measured to fail at even worse voltages, as low

as an absolute sum of 7.5 V! Although we would like to try the recently released

upgrade supply, our discussions with the company are at a standstill. For the time

being, unfortunately, we are left having to avoid this problem rather than correct

it. This has not been a problem for wavefront correction, where the absolute

sum of actuator voltages is typically below 2.5 V, but may become problematic

in larger-stroke applications, i.e., total wavefront and intensity conversion.

A.4 Settling Time

One type of subtle error which appeared in our AO system was associated with

the repetition rate (rep-rate) at which the DM was able to properly function.

According to the Mirao52D user guide, the mirror was capable of rep-rates of up

to 200 Hz. We found this to be misleading for two reasons: the acquisition rate

was typically lower than 20 Hz when operating with the Casao software suite, and

the mirror settling time appeared to be largely dependent on both the required

accuracy and command-voltage variance. Given the large dynamic range of the

mirror (±50-µm deformation), we suspected that our application requirements,
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i.e., less than 10-nm RMS error, were beyond the typical accuracy requirements

used for this specification.

This discrepancy needed to be compensated for, and caused problems when

evaluating mirror performance faster than it could respond to, especially when

making optimization decisions below the 1% level. For repeated measurements

of a control signal applied to the mirror, we found the RMS deviation of the

coupling efficiency only to be lower than 1% when limited to rep-rates of 3-20 Hz,

as described below.

A.4.1 Symptoms

Problems associated with the rep-rate were not always easily apparent, and varied

based on the coupling efficiency and amount of change between command voltages.

For our blind-optimization coupling system, the transient behavior of the mirror

introduced uncertainty into the efficiency measurements since the state of the

mirror could change from the time of measurement to settling. If the set time of

the mirror, i.e., the time between applying commands and measuring the outcome,

was less than the settling time of the mirror, the uncertainty of each measurement

could limit the system performance.

If the system was limited by settling times, it would ultimately fail to converge

to the highest possible efficiency. Although this is a vague statement, we have

observed this behavior in the form of anything from immediate divergence, to lack

of convergence, to simply mediocre performance, making it difficult to be more

specific. Since there were many factors that could cause poor performance, a

better indicator of a settling-time problem was a performance improvement when

the set time was increased, which required a minimum of two trials to observe.
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A.4.2 Diagnosis

The easiest method we developed for determining the mirror settling was to apply

noisy sets of command voltages followed by a control set of command voltages,

and to measure the coupling efficiency each time the control set was applied. By

varying the DM set time and the magnitude of the applied noise between control

sets, we could determine the optimal settings for the DM rep-rate.

First, we chose the solution of a coupling experiment under typical operating

conditions (beam diameter: 10 mm, η ≥ 90%) to obtain a control set of command

voltages. The initial coupling experiment was run at a safe repetition rate of 3 Hz

with low noise. Since our evolutionary algorithm works by adding random noise

to an initial state, we evaluated the settling time of the mirror by removing the

selection step of the algorithm (see Fig. 4.6), leaving the control set intact from

iteration to iteration while applying “noisy” control sets between measurements.

For the best results, care was taken to assure that any other transient properties of

the system were suppressed. For example, the detector response times were shorter

than the tested set times, and the system was allowed time for any transient

environmental or vibrational effects to subside.

We normalized the standard deviation of the measured coupling efficiency

according to the best efficiency measured during testing, though this made little

difference for high-efficiency coupling. After running the experiment, we obtained

the results shown in Fig. A.7.

A.4.3 Correction

Based on the outcome of the settling-time measurements, it was straightforward

to pick an appropriate set-time for the DM according to our required measurement

accuracy. From our testing, we chose a set time of 250 ms since our evolutionary
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Figure A.7: Standard deviation of coupling efficiency with varying noise levels
between measurements.

noise levels were generally between 0.125 and 0.35 mV, and we allowed for a small

amount of random walk as discussed in Section 4.3.2. Note that it is possible to

intentionally introduce randomness into the decision-making algorithm by oper-

ating the mirror faster than the required settling time. This method may allow

for a significant speed increase for algorithms which rely on noise in some way,

e.g., SA/GESA algorithms.
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“Efficient compensation of Zernike modes and eye aberration patterns us-
ing low-cost spatial light modulators,” J. Biomed. Opt., vol. 12, no. 1, pp.
014 037–1–014 037–6, 2007.

[24] S. Serati and J. Stockley, “Advances in liquid crystal based devices for wave-
front control and beamsteering,” in Proc. of SPIE, vol. 5894, 2005, pp. 180–
192.

83



[25] J. W. Judy, “Microelectromechanical systems (MEMS): Fabrication, design
and applications,” Smart Mater. Struct., vol. 10, pp. 1115–1134, 2001.

[26] D. J. Dagel, W. D. Cowan, O. B. Spahn, G. D. Grossetete, A. J. Griñe, M. J.
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