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Abstract

The magnetic penetration depth λ of various unconventional superconductors have been mea-

sured down to ∼0.1 K using a tunnel-diode based, self-inductive technique at 21 and 28 MHz.

The samples measured are the heavy-fermion superconductors CeCoIn5 and PrOs4Sb12, the

rare-earth borocarbides RENi2B2C (RE = Y, Lu, Er, Ho), the spin-triplet superconductor

Sr2RuO4, and elemental Pb. From these studies we see how superconductivity is affected by

the presence of another order, such as paramagnetism/antiferromagnetism (in ErNi2B2C) or

spin-density-wave (in Pb). We also see how the superfluid response is modified by nonlocal

corrections in CeCoIn5 and Sr2RuO4. Hints of multi-band superconductivity are seen in

YNi2B2C, LuNi2B2C and Sr2RuO4. Finally, we observe point-node behavior in PrOs4Sb12,

whose superconductivity is suggested to be non-magnetic in origin — the first of its kind.

Various theoretical models have been used to fit the data. Some of the work are still ongoing.
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Chapter 1

Introduction

Superconductivity has remained an active area of research since the first superconductor was

discovered about 100 years ago [1]. In 1957, the Bardeen-Cooper-Schreiffer (BCS) theory

was successful in explaining the superconducting properties of conventional superconductors

[2]. The BCS theory attributed the attraction between two electrons of a Cooper pair (CP)

to the electron-phonon interaction. Since 1987, when the high-temperature superconductor

(HTSC) Yttrium-Barium-Copper-Oxide (YBCO) was discovered [3], efforts were made to

explain its unusual superconducting properties in the framework of BCS theory, but to little

avail. It is now thought that the mechanism of superconductivity in these unconventional

superconductors is magnetically-mediated, i.e. due to the interaction between the magnetic

moments and the conduction electrons.

The Meissner effect is one of the most striking and fundamental properties of supercon-

ductors. It is the ability of the superconductor to expel, from the bulk of the sample, the

externally applied magnetic field. This effect can be explained by assuming that, in response

to the external magnetic field, circulating (non-dissipative) supercurrents are generated in

the system, and the magnetic field induced by these currents cancels exactly the external

field in the bulk of the sample. However, in reality, the external magnetic field is still able

to penetrate a small distance, of the order of Ångstorms and nanometers, into the super-

conductor. This distance, which we call the penetration depth (λ), is a direct measure of

the density of the superconducting electrons in the superconductor — the superfluid density
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ρs. λ, and thus ρs, vary with temperature, and their temperature-dependences offer strong

evidence about the symmetry of the superconducting order parameter (OP). Knowing the

symmetry of the OP, ∆(k̂), is not sufficient to identify the underlying pairing mechanism

in a superconductor, but it can certainly help in narrowing down the number of competing

microscopic theories of unconventional superconducivity.

In this thesis I present penetration depth data on a number of unconventional super-

conductors, namely the Heavy-Fermion superconductors (HFSC) CeCoIn5 and PrOs4Sb12;

the borocarbide superconductors RENi2B2C (RE = Y, Lu, Er, Ho); the spin-triplet super-

conductor Sr2RuO4, and elemental Pb. First I will give a brief account of the theory of

penetration depth (Chapter 2) and our experimental setup (Chapter 3). CeCoIn5 (Chap-

ter 4) has attracted much interest due to its similarity with the cuprates: quasi-2D structure

and proximity to magnetic order. Yet its superconducting transition temperature Tc is only

2.3 K — much less than that of the cuprates. PrOs4Sb12 (Chapter 5) is another HFSC, yet

the mechanism of superconductivity in this material might be due to quadrupolar fluctua-

tions, i.e. non-magnetically mediated, making it the only material whose superconductivity

is mediated neither by the electron-phonon, nor magnetic, interactions. The non-magnetic

members of the rare-earth borocarbide family, YNi2B2C and LuNi2B2C (Chapter 6), give

glimpses of multi-band behavior, but because of surface effects, we could not make a defini-

tive statement about it. The magnetic members, ErNi2B2C (Chapter 7) and HoNi2B2C

(Chapter 8), show an interesting interplay between magnetism and superconductivity. The

work on Sr2RuO4 (Chapter 9) is a continuation of previous work done by I. Bonalde and B.

Yanoff [4]. We measured the penetration depth of samples with various impurity concentra-

tions, to see how impurities affect the two-band behavior in the purest samples, as proposed

by Kusunose and Sigrist [5]. Finally, we show some preliminary results on elemental Pb

(Chapter 10), which should show some unusual behavior when the field is applied in the

[110] direction, as predicted by Overhauser [6] and seen in phonon dispersion measurements

[7]. The work of chapters 6 to 10 is still on-going.
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Chapter 2

Penetration Depth

2.1 Some Ideas in Superconductivity

In the BCS theory, the electron-phonon interaction leads to an effective attraction between

electrons, and pairs of electrons (called Cooper pairs) are bound together by this attractive

interaction. This electron-electron interaction near the Fermi surface (FS) leads to an in-

stability in the usual Fermi distribution. As a result, a different superconducting ground

state forms. At T = 0, all the carrier electrons go into this ground state, known as the

condensate. The condensate is separated from the excited states by an energy gap, 2∆(T ).

In other words, the energy gap appears in the one-electron excitation spectrum. These

one-electron excitations are called quasiparticles. For there to be enough thermal energy to

break one Cooper pair, such that two quasiparticles can be thermally excited out of the

superfluid condensate at a temperature T , the temperature has to be high enough such that

kBT is at least 2∆(T ). The existence of the energy gap for quasiparticle excitations is one of

the most well-known predictions of the BCS theory. The quasiparticle energies in a singlet

superconducting state are given by

Ek =
√

ξ2
k + ∆2

k, (2.1)
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where ξk is the normal-state quasiparticle energy measured relative to the chemical potential,

and ∆k is the gap function. The gap function serves the purpose of the order parameter

(OP) of the system., i.e. it is non-vanishing only in the superconducting state.

The original BCS theory treated an isotropic system, and the gap function was a single

temperature-dependent constant. In a real system, with crystalline anisotropy, the gap

function depends on the crystal momentum k. The threshold energy required to break

Cooper pairs to create two quasipartcles is the minimum value of 2|∆(k)| on the FS, 2∆min.

Note the important distinction between the gap function, ∆(k), and the energy gap for

quasiparticle excitations, ∆min.

If the energy gap is isotropic, i.e. constant in magnitude everywhere on the FS, micro-

scopic calculations for a BCS superconductor in this low temperature limit give

λ2(0)

λ2(T )
≈ 1−

√
2π∆

kBT
exp−∆/kBT . (2.2)

If the energy gap is anisotropic, but the gap is finite and non-zero everywhere, then ∆ in

Eqn. 2.2 is replaced by ∆min, the minimum value of the gap. We call these superconductors

with non-zero energy gap (conventional) s-wave superconductors. If the gap is isotropic in

k-space we call it a (conventional) isotropic s-wave superconductor. Thus we see that with

an energy gap that is non-zero everywhere on the FS, its presence in the excitation spectrum

yields exponentially activated behavior at low temperatures.

On the other hand, the symmetries of unconventional states often require that ∆min

vanishes. When ∆min = 0, the location on the FS where the gap vanishes is called a node.

Nodes can be point nodes or line nodes, depending on the nature of the gap function. For

example, in a d-wave superconductor with gap function

∆(p̂) = ∆0(p̂
2
x − p̂2

y) (2.3)
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Figure 2.1: Polar plot, in momentum space, of the model order parameter ∆(p̂) of dx2−y2

symmetry (thick line). The shaded circle represents the circular Fermi surface. The dashed-
line circle, with radius EF + T , represents the maximum energy of the thermally excited
quasiparticles; these populate preferentially the nodal regions of the OP. The long-dashed
curve is the polar plot of the linear angular expansion of ∆(p̂) around the four nodes. Taken
from Ref. [8].
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is called the dx2−y2-state. A polar plot in momentum space of ∆(p̂) is shown in Fig. 2.1

(thick line). The OP has four lobes with alternating signs, and vanishes in between, at four

nodal points on the FS (shaded circle in Fig. 2.1), along radial directions determined by

p̂x = ±p̂x directions, or equivalently at φ = ±π
2
,±3π

2
, where φ denotes the angle formed by

p̂ with the a-axis. We can see from Fig. 2.1 that quasiparticles with energy EF + T (EF

= Fermi energy) has enough energy to exceed the energy gap near the nodes. If the FS of

Fig. 2.1 is a cross-section of a cylindrical FS, then there are lines of nodes running down the

c-axis. In terms of the azimuthal angle φ the gap function can be rewritten as

∆(φ) = ∆0 cos(2φ). (2.4)

A gap function which vanishes on certain parts of the FS leads to low-lying (gapless)

excitations in the corresponding energy spectrum; these excitations will dominate the low-

temperature physics of the system. Since the gap is anisotropic, the breakup of Cooper pairs

is preferential in momentum space and at the lowest temperatures the pairs affected are

only those which correspond to electronic momenta oriented close to the nodes of the gap

function, i.e. the thermally excited quasiparticles occupy the momentum space preferentially

along the nodal directions. In this regime it is convenient to approximate ∆(p̂) = ∆0Φ(p̂) by

its Taylor expansion with respect to the angular deviation ϕ of p̂ from the nodal directions

in the basal plane, i.e. [8]

∆(p̂) ≈ ∆0Φ
′(0)ϕ ϕ ≡ φ− φn ∈

[
−π

4
,
π

4

]
, φn = (2n− 1)

π

4
, n = 1, 2, 3, 4. (2.5)

For this model OP the angular slope of the gap function near a node is Φ′(0) = 2, but

Eqn. 2.5 is more general and applicable for any unconventional OP with nodes along the θn

directions, provided that Φ′(0) does not vanish. The quantity Φ′(0) is relevant in Chapter 4,

where it is related to the prefactor α in the expression for superfluid density ρs = 1−αT/Tc.
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In contrast to the exponential behavior of s-wave superconductors at low temperatures,

in this case we have a power law behavior, i.e. ∆(T ) ∝ T n, where the power exponent n

depends on the dimensionality of the nodes (point or line, 2D or 3D) and the rate at which

the gap vanishes in the neighborhood of the nodes [9]. The exponential and power-law

behaviors will be derived in subsequent sections.

The total wavefunction describing the superconducting state consists of a spin (S) part

and an orbital (L) part. By “singlet” superconductor we mean the two electrons in each

Cooper pair have opposite spins, with zero net zero spin (S = 0). Thus the spin part of the

total wavefunction is odd under exchange of particles. Since the total wavefunction has to

be antisymmetric under particle exchange, the orbital part has to be even, i.e. L = even

number. L = 0 corresponds to an s-wave superconductor, while L = 2 corresponds to d-

wave. In the next section (Section 2.2) we shall have a fuller discussion of the spin structure

of Cooper-paired states.

Finally, note that the existence of nodes depends upon two factors — the topology of

the FS and the symmetry of the state. This is a very important point, because even if the

symmetry of the superconducting state requires the existence of nodes in the gap function,

this will only give rise to a vanishing energy gap if the gap function happens to vanish on

the FS [10].

2.2 Spin Structure of Paired States

This section follows closely that of Mineev et al. [11]. In all Fermi superfluids known at the

present time, Cooper pairs are composed of particles with spin 1/2. The spin component of

a pair wave function can be characterized by its total spin S = 0 (singlet) or S = 1 (triplet).

The orbital wave function is even for even values of orbital angular momentum l and odd

for odd values of l:

gl(−k) = (−1)lgl(k). (2.6)

7



At the same time, according to Pauli’s exclusion principle, the total wave function of a pair

expressed in the form of a product like g(k)χ12, where χ12 is the spin component of the

wave function of particles 1 and 2, should change its sign after their permutation (particle

exchange):

gl(−k)χ12 = −gl(k)χ12. (2.7)

It follows from Eqns. 2.6 and 2.7 that the spin component of a paired state with even (odd)

orbital angular momentum l should be antisymmetric (symmetric) under the permutation

(exchange) of particles.

Spin wave functions of a pair of particles with spin 1/2 are constructed from the one-

particle spin wave functions

αλ =




1

0


 = | ↑〉 and βλ =




0

1


 = | ↓〉 (2.8)

which are eigenstates of the operators s2 and sz:

sz =
~
2




1 0

0 −1


 , szαλ =

~
2
αλ, szβλ = −~

2
βλ. (2.9)

The eigenfunction corresponding to the spin-singlet state of a pair, in which S = 0 and

Sz = 0, (where S = s1 + s2), and is antisymmetric with respect to the particle exchange, has

the form

α1λβ2µ − β1λα2µ = | ↑↓〉 − | ↓↑〉 =




0 1

−1 0


 = iσy, (2.10)

i.e. it is expressed in terms of the Pauli matrix σy. Recall the definition of the Pauli matrices:

σx =




0 1

1 0


 , σy =




0 −i

i 0


 , σz =




1 0

0 −1


 . (2.11)
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As a result, the total wave function of a pair with S = 0 takes the form

Ψl
pair = g(k)iσy =

l∑

m=−l

almY m
l (k̂)iσy, (2.12)

where l takes the values 0, 2, 4, .... The respective pair states are labelled, as is traditional

in atomic physics, by letters s, d, g, ....

The complex coefficients alm in Eqn. 2.12, same for all Cooper pairs of a given super-

conducting state, represent the superconductor order parameter. In non-uniform states the

order parameter depends on the coordinates, i.e. alm are functions of r. For example, the

order parameter for a s-wave superconductor is expressed by a single complex function

a00(r) = ψ(r) = |ψ|eiφ (2.13)

whereas in a d-wave superconductor (l = 2) the order parameter includes five complex

functions.

In the case of the triplet state of a pair (S = 1), the wave functions corresponding to the

three different spin projections on the quantization axis, which are symmetric under particle

exchange can be written as

Sz =





1, α1λα2µ = | ↑↑〉 =




1 0

0 0


 ,

0, α1λβ2µ + β1λα2µ = | ↑↓〉+ | ↓↑〉 =




0 1

1 0


 ,

−1, β1λβ2µ = | ↓↓〉 =




0 0

0 1


 ,

(2.14)
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i.e. they are symmetric matrices. The total wave function of a pair is a linear combination

of these states:

Ψl
pair = g1(k)| ↑↑〉+ g2(k)(| ↑↓〉+ | ↓↑〉) + g3(k)| ↓↓〉 =




g1(k) g2(k)

g2(k) g3(k)


 (2.15)

Here

gα(k) =
l∑

m=−l

aα
lmY m

l (k̂) α = 1, 2, 3 (2.16)

are the amplitudes of states with Sz = 1, 0 and -1, respectively.

The quantum number l in Eqn. 2.16 can be equal to 1, 3, .... The respective states are

called p, f , ...-wave superconducting states. Another form of Eqn. 2.16 is obtained using the

basis of the symmetric matrices iσσy = (iσxσy, iσyσy, iσzσy). We have

Ψl
pair = i(d(k)σ)σy = (dx(k)σx, dy(k)σy, dz(k)σz)iσy

=



−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)


 . (2.17)

The components of the vector d(k), which are linearly related to the amplitudes gα(k)

through the equalities

g1 = −dx + idy, g2 = dz, g3 = dx + idy, (2.18)

can be expanded in terms of the spherical harmonics:

dα(k) =
l∑

m=−l

bα
lmY m

l (k̂). (2.19)

The coefficients bα
lm play the role of the order parameter in a superconductor with a particular

type of pairing, i.e. with a given value of quantum number l. So, in the simplest case of
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p-wave pairing, the order parameter is expressed as a set of nine complex functions bα
lm (m

= -1,0,1; α = x,y,z).

We shall illustrate the l = 1 case. The spherical harmonics Y m
l (k̂) with l = 1 can be

expressed as linear functions of the vector k̂,

Y 1
1 (k̂) ∼ k̂x + ik̂y, Y −1

1 (k̂) ∼ k̂x − ik̂y, Y 0
1 (k̂) ∼ k̂z (2.20)

which allows one to write the vector d of Eqn. 2.19 in a different form:

dα(k) = Aαik̂i. (2.21)

The complex 3 × 3 matrix Aαi is the order parameter in superfluid p-wave Fermi liquids.

This is the type of pairing which takes place in superfluid 3He [12]. A few possible phases of

superfluid p-wave liquid distinguished by the configurations of the spin vector d (or matrix

Aαi) are listed below.

For the B-phase of superfluid 3He,

d(k) ∼ k̂ (B-phase), (2.22)

i.e. Aαi ∼ δαi (in an arbitrary reference frame Aαi ∼ Rαi, where R̂ is the matrix of three-

dimensional rotations). The pair wave function (Eqn. 2.17) takes the form

ΨB
pair ∼



−k̂x + ik̂y k̂z

k̂z k̂x + ik̂y




= (−k̂x + ik̂y)| ↑↑〉+ k̂z(| ↑↓〉+ | ↓↑〉) + (k̂x + ik̂y)| ↓↓〉

∼ −Y −1
1 |Sz = 1〉+ Y 0

1 |Sz = 0〉+ Y 1
1 |Sz = −1〉. (2.23)
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Thus, the B-phase is described by a linear combination of three equiprobable states |Sz =

+1,m = −1〉, |Sz = 0,m = 0〉, and |Sz = −1,m = +1〉. Note that Sz refers to the spin part

of the pair wave function, while m (as well as l) refers to the orbital part of the pair wave

function.

For the A-phase of superfluid 3He,

d(k) ∼ (k̂x + ik̂y, 0, 0) (A-phase), (2.24)

the pair wave function has the form

ΨA
pair ∼ (k̂x + ik̂y)



−1 0

0 1


 ∼ (k̂x + ik̂y)(| ↑↑〉 − | ↓↓〉). (2.25)

Thus the A-phase is a linear combination of two equiprobable states |Sz = +1,m = 1〉 and

|Sz = −1,m = 1〉.
To summarize, the pair spin wave function of a state with even parity (s: singlet)

Ψs
pair ∼ g(k)iσy, (2.26)

g(k) = g(−k), (2.27)

corresponds to S = 0, and that of a state with odd parity to S = 1, i.e. (t: triplet)

Ψt
pair ∼ (d(k)σ)iσy, (2.28)

d(k) = −d(−k). (2.29)

The superconducting gap function for the singlet and triplet case is given by

∆s
k,αβ = ∆g(k)(iσy)αβ, (2.30)
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∆t
k,αβ = ∆d(k)(iσσy)αβ (2.31)

respectively. ∆ is the k-independent part of the gap. In the case of a superconductor with

singlet pairing, we have for the quasiparticle excitation energy

Ek =
√

ξ2
k + ∆2|g(k)|2, (2.32)

i.e. the spectrum of elementary excitations has a gap. In the triplet case, if d is unitary it

can be shown that

Ek =
√

ξ2
k + ∆2|d(k)|2. (2.33)

If d is non-unitary, the excitation spectrum generalizes to

Ek,± =
√

ξ2
k + ∆2(|d(k)|2 ± |d∗(k)× d(k)|), (2.34)

i.e. if d is non-unitary then d∗ points in a different direction than d and their cross-product is

non-zero. The excitation spectrum splits into two branches for the plus and minus cases. The

cross-product term can be taken as a measure of the non-unitarity of the order parameter.

When d is maximally non-unitary |d∗(k)× d(k)| = |d|2 and the gap of the minus branch of

the excitation spectrum vanishes.

In Chapter 5 we will find that the gap structure of PrOs4Sb12 is analogous to the A-phase

of 3He. Later in Chapter 9, we will look into the various thermodynamic and electrodynamic

properties of the spin-triplet superconductor Sr2RuO4, and find that the gap that opens up

on the active γ-band is also analogous to the A-phase of 3He.

2.3 Basic Theory of Penetration Depth

Suppose I have an uniform external magnetic field H applied in the x direction, parallel to the

surface of a superconductor, such that Hx = Hx (z ), and z is the coordinate perpendicular to
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the surface. Starting from the Josephson relation between the current density j and applied

vector potential A for a superfluid density ns, we have

j = −nse
2

m∗c
A, (2.35)

where m∗ is the effective mass of the charge carriers. We can combine it with Maxwell’s

equations to find

∇2B =
4πnse

2

m∗c2
B. (2.36)

Since Bx = Bx(z), we have

d2

dz2
Bx =

1

λ2
Bx, (2.37)

where we define the London penetration depth

λ =

(
4πnse

2

m∗c2

)−1/2

. (2.38)

The solution to equation (2.37) has the form

Bx(z) = Hx(0)exp(−z/λ), (2.39)

and we see that the field penetrates into the sample a distance of order λ. If the field were

to remain constant to a certain depth and then suddenly vanish, this depth would be just

λ (this variation is of course implausible, but is sometimes useful as a crude assumption for

qualitative arguments). From Eqn. 2.38 we see that λ provides a means of measuring ns/m
∗,

the ratio of the superfluid density to the effective mass of the charge carriers.

Let us consider a particular configuration — an infinite slab of thickness 2d placed in a

uniform applied magnetic field H0 parallel to its surface. Assume that the plane z = 0 is in

the center of the slab and that its surfaces coincide with the planes z = ±d. The magnetic

field is along the x axis.
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In the interior of the slab, the magnetic field B must satisfy Eqn. 2.36. Then, from

symmetry arguments, B is along the x-axis and depends only on the z coordinate. Therefore

Eqn. 2.36 can be rewritten as Eqn. 2.37, with the boundary conditions B(±d) = H0. The

general solution of Eqn. 2.37 is [13]

B(z) = B1 cosh(z/λ) + B2 sinh(z/λ), (2.40)

where B1 and B2 are integration constants. Substituting the boundary conditions into

Eqn. 2.40, we get two algebraic equations with two unknowns that can be solved. The final

result is

B(z) = H0
cosh(z/λ)

cosh(d/λ)
. (2.41)

Later in Section 3.4 we shall extend Eqn. 2.41 to the case when (1) the applied field is

oriented perpendicular to the sample basal plane, i.e. in the z-direction, and (2) the sample

has finite dimensions in the x and y directions.

2.4 Quasiparticle Density of States (QDOS)

This section also follows closely the approach of Mineev et al. [11]. The single-(quasi)particle

density of states (QDOS) is, by definition,

N(E) =
∑

k

δ(E − Ek). (2.42)

Using the expression for quasiparticle energy in Eqn. 2.1 for the excitation spectrum, we

obtain from Eqn. 2.42

N(E) =

∫
d3k

(2π)3
δ(E − Ek) = N0

∫
dΩ

4π

∫
dξδ(E − Ek)

= N0

∫
dΩ

4π

∫
dE ′E ′

√
E ′2 −∆2

k

δ(E − E ′) = N0

∫
dΩ

4π

E√
E2 −∆2

k

, (2.43)
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where N0 is the density of states (DOS) at the Fermi level in the normal state per one spin

projection, and the integration over angles is performed within the limits ∆2
k < E2. Eqn. 2.43

is the working equation for calculating the QDOS for any arbitrary gap function. We will

use it extensively in Chapter 5, where we calculated the QDOS, and hence superfluid density

ρs, for several candidate gap functions for PrOs4Sb12.

It follows from Eqn. 2.43 that for a conventional isotropic s-wave superconductor (∆k =

∆),

N(E) = N0





0 (E < ∆)

E√
E2−∆2 (E > ∆)

, (2.44)

i.e. the density of quasiparticle states drops abruptly to zero for E < ∆.

For a d-wave superconductor, ∆k = ∆0 cos(2φ). So the d-wave QDOS is

N(E)

N0

=

∫ 2π

0

dφ

2π

E√
E2 −∆2

k

=

∫ 2π

0

dφ

2π

E√
E2 −∆2

0cos
2(2φ)

. (2.45)

The last integral is a complete elliptic integral of the first kind, and can be looked up in

Gradsteyn or computed with Mathematica or Mathcad code for the full range of values of

E/∆0. The result is

N(E)

N0

=





2
π

E
∆0

κ( E
∆0

) (E < ∆0)

2
π
κ(∆0

E
) (E > ∆0).

(2.46)

For small argument (E ¿ ∆0), κ( E
∆0

) ≈ π
2
, so

N(E)

N0

≈ E

∆0

(E ¿ ∆0). (2.47)

Eqn. 2.47 applies to any gap with line nodes, for example, the d-wave gap of the cuprates,

or the polar phase of 3He.
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In general, for point and line nodes in 3D and point nodes (the only possibility) in 2D,

we have for E ¿ ∆0 (or T ¿ Tc)

N(E) ∝





E2 (3D point node)

E (3D line node)

E (2D point node)

. (2.48)

Such a power-law dependence of the QDOS results in power-law (not exponential) tem-

perature dependences of thermodynamic and kinetic characteristics of unconventional super-

conductors.

Note that in Eqn. 2.48, the conclusion N(E) ∝ E in a d-wave superconductor with gap

function given by Eqn. 2.4 is dependent upon the fact that there is a linear dispersion of

the gap in the neighborhood of the nodes (i.e. ∆(φ) ∝ φ near the nodes), since the gap

function is a sinusoidal one. The same applies to a point-node gap. The next question is: if

∆(φ) ∝ φx near the nodes, then what is the relationship between N(E) and E?

Let ∆(φ) = ∆0φ
x. Then from Eqn. 2.43,

N(E)

N0

=

∫ E
∆0

1/x

0

dφ

2π

E√
E2 −∆0φ2x

, (2.49)

where the upper limit of the integral comes from the condition E2 −∆0φ
2x > 0. Changing

to a dimensionless variable u = E/∆0, we get

N(E)

N0

=

∫ (
E
∆0

)1/x

0

dφ

2π

E/∆0√(
E
∆0

)2

− φ2x

=

∫ u1/x

0

dφ

2π

u√
u2 − φ2x

. (2.50)
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We perform another change of variable φx = u sin θ, then

N(E)

N0

=

∫ π/2

0

u1/x

x
(sin θ)−

x−1
x dθ

∝ u1/x =

(
E

∆0

) 1
x

. (2.51)

The conclusion is thus: when ∆(φ) ∝ φx near the nodes, then N(E) ∝ E1/x.

2.5 Derivation of Superfluid Density and Penetration Depth

from QDOS

The temperature dependence of the superfluid density ns can be calculated from QDOS.

The normal fluid density (i.e. number of quasiparticle excitations) in a superconductor at

temperature T is [14]

nn = n

∫ ∞

−∞
dξ

(
− ∂f

∂Ek

)
, (2.52)

where Ek =
√

ξ2
k + ∆2

k is the Bogoliubov quasiparticle energy, f is the Fermi function.

Assuming that a two-fluid description holds, we have n = nn + ns, the density of super-

conducting electrons in the limit T → 0, as well as of normally conducting electrons above

Tc.

From Eqn. 2.52, the normalized superfluid density ρs ≡ ns/n is

ρs = 1 + 2

〈∫ ∞

0

∂f

∂E
dξ

〉

FS

, (2.53)

or, in terms of E,

ρs = 1 + 2

〈∫ ∞

0

dE
N(E)

N0

∂f

∂E

〉

FS

= 1 + 2

〈∫ ∞

0

EdE√
E2 −∆2

k

∂f

∂E

〉

FS

, (2.54)
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where 〈...〉FS denotes the average over the FS, which entails another integral over the solid

angle dΩ/4π. Equations 2.53 and 2.54 are applicable for all gap functions ∆k in the pure local

limit. These equations, together with Eqn. 2.43, are the working equations for calculating

QDOS and ρs for any arbitrary gap function ∆k.

For an s-wave superconductor at T ¿ Tc, the normal fluid density, after integrating

Eqn. 2.52 by parts, we get for T ¿ Tc

nn(T ) = n

√
2π∆(0)

kBT
exp

(
−∆(0)

kBT

)
(T ¿ Tc), (2.55)

where ∆(0) is the magnitude of the superconducting gap at T = 0.

Hence

ρs(T ) =
ns(T )

n
=

n− nn(T )

n
= 1− nn(T )

n

= 1−
√

2π∆(0)

kBT
exp

(
−∆(0)

kBT

)
(T ¿ Tc). (2.56)

So we have essentially an exp(−∆/T) behavior of the superfluid density when T ¿ Tc.

From Eqn. 2.38 we can write

ρs(T ) =
λ2(0)

λ2(T )
, (2.57)

where λ(0) is the penetration depth at T → 0. Therefore the penetration depth is given by

λ(T ) =

(
4π(n− nn)e2

mc2

)−1/2

≈ λ(0)


1 +

√
π∆(0)

2kBT
exp

(
−∆(0)

kBT

)
 (s-wave, T ¿ Tc). (2.58)

For the line-node case,

nn = n

∫ 2π

0

dφ

2π

∫ ∞

−∞
dξ

(
− ∂f

∂Ek

)
= 2n

∫ ∞

0

dE
N(E)

N0

(
− ∂f

∂E

)
, (2.59)
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3D point node 3D line node
Penetration depth λ T 2 T

Specific heat Cs T 3 T 2

NMR relaxation 1/T1 T 5 T 3

Thermal conductivity κ T 3 T 2

Table 2.1: Theoretical temperature dependencies for low-temperature measurements, as-
suming a spherical Fermi surface and either line of point nodes in the superconducting gap
function. Taken from Ref. [15].

which, after substituting for the QDOS from Eqn. 2.47, gives

nn ≈ 2n ln 2
T

∆0

(T ¿ Tc). (2.60)

Thus

λ(T ) ≈ λ(0)

(
1 + ln 2

T

∆0

)
(line node, T ¿ Tc), (2.61)

or

λ(T )− λ(0) ∝ T (line node, T ¿ Tc). (2.62)

In general,

λ(T ) ∝





T 2 (3D point nodes)

T (3D line nodes or 2D point nodes)
. (2.63)

Thus we see a fundamental difference between the asymptotic behavior (T ¿ Tc) of

superconductors with and without nodes on the FS: At the lowest temperatures λ(T ) obeys

an exponential law for nodeless superconductors, and a power law for nodal ones. Other

thermodynamic quantities also display a similar difference. One can easily verify that other

thermodynamic quantities also vary according to a power law as T → 0, for example, in the

electronic specific heat Cs, NMR relaxation rate 1/T1 and thermal conductivity κ. Table 2.1

shows the power exponent of some thermodynamic quantities in the T → 0 limit. In the

case of specific heat one has to subtract the phonon contribution from the raw data, which

is a tedious and at times ambiguous process, whereas for penetration depth one is directly
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measuring the superfluid part of the response. Therefore penetration depth is a very direct

way of probing the pairing symmetry of a superconductor. In subsequent chapters we call

ρs the “superfluid density”, dropping the word “normalized”.

Once again, we wish to stress that the temperature exponents in Table 2.1 are derived

for sinusoidal gap functions, i.e. near the nodes, the gap disperses linearly away from the

nodes. The temperature exponent depends not only on the dimensionality of the nodes (i.e.

points, lines, etc), but also on the rate at which the gap vanishes in the neighborhood of

the nodes [9]. In a similar spirit to the end of Section 2.4, we now answer the question: if

N(E) ∝ Ex, then what is the power exponent in the expression for ρs?

Let N(E) ∝ Ex, then from Eqn. 2.54

ρn ∝
〈∫ ∞

0

dE
N(E)

N0

∂f

∂E

〉

FS

∝
〈∫ ∞

0

dEEx ∂f

∂E

〉

FS

∝
∫ ∞

0

dE
Ex

T

eE/T

(eE/T + 1)2

=

∫ ∞

0

dE
Ex

T

1

(eE/2T + e−E/2T )2

=

∫ ∞

0

dE
Ex

4T

1

cosh2
(

E
2T

) . (2.64)

We change to a dimensionless variable u = E/2T , then

ρn ∝
∫ ∞

0

du(2T )
y

4T
(2uT )x 1

cosh2 u

∝ T x. (2.65)

Our conclusion is thus: if N(E) ∝ Ex, then ρn ∝ T x, and hence ρs ∼ T x also. The

next question to ask is: since ρs(T ) = λ2(0)/λ2(T ), does ρs and λ exhibit the same power

exponent?
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Let us take the d-wave model for illustration purposes. In the d-wave model, even if ρs

varies strictly with T , i.e. ρs = 1− αT/Tc, the penetration depth is non-linear:

λ(T ) = λ(0)

[
1 +

1

2

(
αT

Tc

)
+

3

8

(
αT

Tc

)2

+ ...

]
. (2.66)

Hence there is always a quadratic component to λ (for example in Eqn. 2.61) whose strength

depends on α, which in the d-wave model, is inversely proportional to d∆(φ)/dφ|node, the

angular slope of the energy gap at the nodes [16]. Therefore, strictly speaking, for a d-wave

superconductor, it is ρs, not λ, that should be linear, and one should always convert λ to ρs

before making any conclusions. Fortunately, α is small enough that the quadratic component

can usually be ignored. In this thesis we will convert λ to ρs whenever possible, and analyze

the ρs data.

2.6 Perturbing Effects

From the previous sections, for a superconductor with line nodes, e.g. a d-wave supercon-

ductor, the low-temperature penetration depth should give a linear temperature-dependence.

However, earlier measurements on the cuprates show a crossover from linear to quadratic

behavior at the lowest temperatures [17]. There is now general consensus that the quadratic

behavior is due to resonant impurity scattering [18]. Later measurements on very clean

YBCO single crystals did yield the expected linear behavior down to 3 K [19]. Recently

however, Kosztin and Leggett [20, 8] proposed that since the coherence length diverges near

the nodes, the quadratic behavior seen in the cuprates is due to nonlocal corrections to

the penetration depth, not impurities. They also suggested that the actual temperature

dependence of the penetration depth in the T → 0 limit is quadratic and not linear.
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2.6.1 Resonant Impurity Scattering

In Hirschfeld and Goldenfeld’s (HG) Resonant Impurity Scattering (RIS) model [18], they

proposed that the dominant scattering mechanism in thin films and single crystals of YBCO

is resonant scattering, not Born scattering. If the scattering responsible for the change in

power law of the penetration depth were Born scattering, there would be a large suppression

of Tc, which is not observed. For a pure superconductor in a d-wave-like state at temperatures

well below Tc, the deviation ∆λ of the penetration depth from its zero-temperature value λ(0)

is proportional to T . However, when the concentration nimp of strongly scattering impurities

is nonzero, ∆λ(T ) ∝ T n, where n = 2 for T < T ∗
imp ¿ Tc and n = 1 for T ∗

imp < T ¿ Tc.

In the RIS model, the scattering rate parameter

Γ =
nimpn

πN0

(2.67)

is dependent only on the impurity concentration nimp, the electron density n, and the normal-

state density of states N0. In the strong-scattering limit, a relatively small concentration of

defects can lead to a substantial residual density of states, within a range where the relative

Tc suppression (Tc0−Tc)/Tc0 is of order Γ/∆0 ¿ 1. Here ∆0 is the maximum superconducting

gap amplitude, and Tc0 is the superconducting transition temperature in the purest sample.

HG estimated that resonant defect concentrations of order 1% would lead to gapless behavior

(∆λ ∼ T 2) over a temperature range T ∗ of order 10% of Tc, but negligible (< 1%) Tc

suppression. Concentrations of order 0.1% would also lead to negligible Tc suppression, and

the gapless range would be restricted to temperatures below 2–3% of Tc, below the lowest

temperatures where penetration depth experiments on HTSC have been measured.

In the strong-scattering limit, one obtains for the crossover temperature

T ∗
imp ≈

6 ln 2γ

π
, (2.68)
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where γ ∼ √
Γ∆0. In the low-defect-concentration limit Γ/∆0 ¿ 1, γ ≈ 0.63

√
Γ∆0, it

becomes (taking ~ = kB = 1)

T ∗
imp ≈ 0.83

√
Γ∆0, (2.69)

or, if one puts in ~ and kB explicitly, Eqn. 2.69 becomes

T ∗
imp ≈ 0.83

√
~Γ∆0

kB

. (2.70)

Experimentally, we can estimate the experimental crossover temperature T ∗
expt from the

superfluid density data by using the interpolation formula

ρs(T ) = 1− αT 2/Tc

T ∗
expt + T

, (2.71)

where α and T ∗
expt are parameters to be varied.

2.6.2 Nonlocal Corrections to Penetration Depth

This subsection follows closely the Ph.D thesis of Ioan Kosztin [8]. Under certain condi-

tions, the very low temperature behavior of the electromagnetic penetration depth λ(T ) of

a pure d-wave superconductor (or any anisotropic superconductor with nodes in the gap)

is determined by nonlocal electrodynamics. The physical reason for this is as follows. The

low temperature properties of an anisotropic superconductor, with nodes in the gap on the

FS, are determined by the low-lying (gapless) excitations, which are located in the vicinity

of the nodes. On the other hand, the effective coherence length (proportional to the inverse

of the anisotropic gap function) corresponding to these low lying excitations is very large

and, sufficiently close to the nodes, it may well exceed the value of the London penetration

depth. Therefore, it is necessary to use nonlocal electrodynamics to properly account for

the contribution of the low-lying excitations to the temperature dependence of the pene-

tration depth in these superconductors. The results is that, contrary to the general belief,
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the low-temperature deviation ∆λ(T ) of λ(T ) from its zero-temperature value λ(0) varies

quadratically and not linearly with the temperature. The crossover temperature T ∗
NL below

which nonlocal electrodynamics is dominant is

T ∗
NL = ∆0

ξ0

λ0

, (2.72)

where ∆0 is the (maximum) amplitude of the anisotropic gap function, ξ0 is the corresponding

coherence length, and λ0 is the zero-temperature London penetration depth.

In contrast to the penetration depth, which can be measured more or less directly, the co-

herence length ξ0 cannot be determined experimentally and, in fact, is estimated in terms of

the maximum value of the anisotropic gap function ∆0 = max{∆(p̂)} by using the usual BCS

expression ξ0 = vF /π∆0 (ξ0 = ~vF /π∆0 in SI units). Thus, in the case of a clean, anisotropic

superconductor it is more appropriate to introduce an anisotropic coherence length ξ(p̂) ≡
vF /π∆(p̂). If the anisotropic OP has nodes on the FS, it is clear that sufficiently close to the

nodes ξ(p̂) > λ, and therefore, the contribution of these regions of the FS to the penetration

depth λ(T ) must be determined by using nonlocal electrodynamics. How large the value of

λ0/ξ0 is determines how small a fraction of the FS, of order α0 ≡ ξ0/λ0, violates the appli-

cability of local electrodynamics. Since the whole FS contributes to the zero temperature

penetration depth λ(0), one expects no significant nonlocal corrections to this quantity. On

the other hand, the low temperature dependence of λ(T ) must be dominated by nonlocal

effects because this dependence is determined by only a small region of the FS concentrated

around the nodes of the OP. The crossover temperature below which nonlocal effects are

important is given by T ∗
NL = α0∆0. For T À T ∗

NL the local limit is applicable. Around T ∗
NL,

however, the crossover from linear to quadratic may not be so obvious, and so one has to

use the interpolation formula (Eqn. 2.71) to estimate T ∗
expt either from ∆λ(T ) or superfluid

density (ρs) data. As a typical example consider a YBCO single crystal with ∆0 ≈ 250 K, ξ0

≈ 14 Å, and λ0 ≈ 1400 Å; this gives α0 ≈ 10−2 and T ∗
NL ≈ 2.5 K. Thus nonlocality represents
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Figure 2.2: Pippard limit for an s-wave superconductor. S = superconductor, V = vacuum.
Taken from Ref. [8].

a second possible mechanism, beside strongly scattering impurities, that may account for the

experimentally observed deviation from the linear T -dependence of the penetration depth at

the lowest measured temperatures in nominally clean HTSC.

Besides rigorously deriving the T 2 behavior, Kosztin [8] also put forward a qualitative

argument, called the inefficiency concept [21], to explain the influence of nonlocality on the

magnetic penetration depth in the extreme nonlocal limit, also known as the Pippard limit,

characterized by ξ0 À λ. We also checked the validity of this qualitative explanation with

Professor A. Leggett.

In conventional superconductors, the basic idea is to apply for the magnetic penetration

depth the same formula as in the local limit but with the density of the Cooper pairs n

replaced by an effective density neff which takes into consideration the fact that even at

zero temperature not all the carriers participate effectively in screening out the magnetic
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field from the bulk of the superconducting sample. If one denotes λ ≡ λP the penetration

depth in the Pippard limit, then one can write

λP

λ0

=

√
n

neff

, (2.73)

where n is once again the total electron density in the superconductor.

To estimate neff consider the situation depicted in Fig. 2.2 where the circle represents

the spatial extent ∼ ξ0 of a Cooper pair which is scattered from the plane superconductor-

vacuum boundary. Since ξ0 À λ it is clear that Cooper pairs with momentum p1 which form

a large angle with the interface will spend only a short time in the skin region (λ) where the

magnetic field is confined to and therefore will interact only slightly with this field. On the

other hand, Cooper pairs with momentum p2 oriented within a small angle θ ∼< dθ ∼ λ/ξ0

to the interface will spend a longer time in the field and hence participate effectively in the

Meissner effect. Thus, one may conclude that

neff ∼ ndθ ∼ n
λP

ξ0

. (2.74)

The combination of Eqns. 2.73 and 2.74 gives an estimate of the Pippard penetration

depth

λP ∼ λ0 × neff ∼ λ0

(
ξ0

λ0

)1/3

, (2.75)

which shows that λP is larger than the corresponding London (local limit) penetration depth

λ0, showing that the Meissner effect is less effective in the nonlocal limit compared with the

local limit.

Finally, note that at sufficiently high temperatures the penetration depth will eventually

become bigger than the BCS coherence length and therefore close to Tc all superconductors

behave like London (local) superconductors.
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Figure 2.3: Superconductor(S)-Vacuum(V) interface of a dx2−y2 superconductor, in the Pip-
pard limit. The dotted lines denote the angular position of the nodes (φ = π/4, 3π/4). The
shaded region inside the superconductor shows the gap opens up linearly close to the nodes.
The distance between the origin and a point on the hyperbolas is the anisotropic coherence
length ξ(φ). Note that near the nodes ξ(φ) diverges. This figure is a modification from
Ref. [8].

The situation is similar in d-wave superconductors, where there are nodes in the super-

conducting gap. The basic idea is to replace the QDOS N(E) in the local result Eqn. 2.59 by

an effective one, Neff (E), which takes into account that not all the quasiparticles participate

with the same weight in the expression of ∆λ(T ). The simple picture is this: Once the tem-

perature is increased above T = 0, thermally excited quasiparticles are created in the system

as a result of the thermal breakup of Cooper pairs. Since the gap is anisotropic, the breakup

of Cooper pairs is preferential in momentum space and at the lowest temperatures the pairs

affected are only those which correspond to electronic momenta oriented within a small angle

φ about the nodes of the gap function. The effective coherence length (anisotropic “spatial

extent”) of these Cooper pairs, represented schematically in Fig. 2.3, is

ξ(φ) = ξ0
∆0

∆(φ)
∼ ξ0

φ
. (2.76)
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Here we have assumed that close to the nodes the gap function varies as ∆(φ) ∼ φ (φ is the

angle measured from one of the nodes of the gap function). For a dx2−y2 gap function one

has ∆(φ) ≈ 2∆0φ. If the excitation energy E ∼< T ∗ (here kB = 1), i.e.

E ∼ ∆(φ) ∼< ∆(φ∗) ∼ T ∗ ≡ α0∆0, (2.77)

where α0 = ξ0/λ0, then the corresponding coherence length ξ(φ) ∼> λ0, i.e.

ξ(φ) ∼ ξ0
∆0

E ∼> ξ0
∆0

α0∆0

= ξ0
λ0

ξ0

= λ0, (2.78)

i.e. E ∼< T ∗ ⇒ ξ(φ) ∼> λ0. If E is the thermal energy available at temperature T , then for

T < T ∗, one needs to employ nonlocal electrodynamics to account for the nodal regions on

the FS. Similar to the reasoning for s-wave superconductors, the effective superfluid density

neff will be reduced by a factor λP /ξ(φ) ∼ λP ∆(φ) ∼ T , using Eqns. 2.74, 2.76 and 2.77.

This therefore introduces an additional factor T to the temperature dependence of penetration

depth in the London limit. Hence the removal of quasiparticles from the condensate leads

to a lesser increase of ∆(T ) in the penetration depth than one would expect based on local

electrodynamics. We introduce an effective DOS Neff (E) which takes into account that for

E ∼< T ∗ only a fraction E/T ∗ ∼< 1 of N(E) contributes to the temperature dependent part

of the penetration depth, i.e.

Neff (E) ∼ N(E) min(1,
E

T ∗ ). (2.79)

According to Eqn. 2.59, ∆λ(T ) ∼ N(T ), therefore

∆λ(T ) ∼ Neff (T ) ∼ T min(1,
T

T ∗ ). (2.80)
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In conclusion

∆λ(T ) ∼





T for T À T ∗ (London limit)

T 2

T ∗ for T ¿ T ∗ (Pippard limit)
. (2.81)

In Chapter 4, when we discuss the results on CeCoIn5, we will calculate the experimental

crossover temperature from linear to quadratic, T ∗
expt, from the superfluid graph. Then we

compare this value to T ∗
imp and T ∗

NL, and see that nonlocality explains the crossover better

than resonant impurity scattering.

There is another, more direct, way of distinguishing the crossover caused by impurity

scattering and nonlocality. For a d-wave superconductor with line nodes along the c-axis,

nonlocality is expected to be relevant only when the applied magnetic field is oriented parallel

to the c-axis, while the effect of impurities should not depend on the orientation of the field.

As KL noted, if T ∗
expt in ∆λ‖(T ) is noticeably smaller in the H ⊥ c than in the H ‖ c

configuration, then we may conclude that the observed effect is due mainly to nonlocal

electrodynamics and not to impurities. This dependence on field orientation appears as a

factor q̂ · p in the electromagnetic kernel, where q̂ is the direction of penetration of the

magnetic field, and p is the electron momentum. Nonlocality manifests itself only when

q̂ · p 6= 0. In the H ‖ c orientation, both q̂ and p lie along the basal ab-plane, and so

nonlocal effects should be noticeable. If H ⊥ c, things are a bit more complicated, as now

the measured λ(H ⊥ c) is an admixture of λH⊥c
‖ and λ⊥. One therefore has to subtract

the λ⊥-component to extract out λH⊥c
‖ . The direction of penetration q̂ due to λH⊥c

‖ is now

perpendicular to p, hence q · p = 0, and so the crossover due to nonlocality should not

be observable, which translates into a smaller T ∗. Unfortunately, in our measurement on

CeCoIn5 we were unable to extract λ⊥ from λ(H ⊥ c). Hence we cannot determine the

temperature dependence of λH⊥c
‖ . This will be explained in greater detail in Chapter 4.
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Chapter 3

Experimental Method

3.1 Tunnel Diode LC Oscillator Circuit

This system was developed by Dr.Ismardo Bonalde and Dr. Brian Yanoff. The setup was

first designed by Van Degrift [22], and described in great detail in Dr. Brian’s Yanoff’s Ph.D

thesis [23]. Figs. 3.1 and 3.2, taken from Ref. [23], show the schematic of the cold end of the

apparatus. We used an Oxford 25 Dilution Refrigerator to provide cooling of our sample down

to ∼ 80 mK. Fig. 3.3 shows the various components of the room-temperature circuit. The

dc bias for the tunnel diode is generated at room temperature by a semiconductor reference

voltage source (Burr-Brown model REF10), which provides a very stable 10 V output. This

voltage is buffered with a low-noise op-amp and filtered before passing out to the cryostat

through a semi-rigid coaxial cable. Maintaining a constant voltage across the stable 5 kΩ

resistor makes the voltage source act as a precision current source. The same semi-rigid

coaxial cable is used to carry the very small rf output signal back up to the room-temperature

electronics. The oscillator output signal goes into a mixer (Hewlett-Packard model 10514A)

outside the refrigerator. The mixer output (in the kHz range) is the difference between the

(fixed) frequency fsyn of a synthesizer (Stanford Research Systems model DS345), and the

frequency of the oscillator circuit, which varies with temperature. The mixer output is then

amplified and filtered, before being read by a universal frequency counter (Hewlett-Packard

model 53131A). The frequency counter is equipped with an optional high stability time base,
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which provides a stability of 1 ppb. This 10 MHz time base signal is also used to generate

the synthesized local oscillator signal.

The amplification and filter of the mixer output was carried out by the input stage of a

lockin amplifier (Stanford Research Systems model SR530). The usual lockin output is not

used, instead an output on the back of the instrument provides access to the preamplified,

filtered signal (called “signal monitor”), and is connected to the frequency counter. The

filter is a bandpass filter centered at the lockin reference frequency fLI , with a bandwidth of

fLI/5. fLI is set by another Stanford Research DS345 synthesizer (also synchronized with the

frequency counter time base) connected to the lockin reference frequency input. The signal

frequency should stay within the pass band as it shifts due to the temperature dependence

of the sample. fLI is usually set to be 20 kHz, so the bandwidth is 4 kHz. If the frequency

shift over the temperature range of interest is greater than 4 kHz, then fsyn and fLI can be

easily adjusted to a larger value. We usually set fLI to be 40 kHz for measurements close to

Tc.

The sample, which is thermally connected to the mixing chamber, is placed inside the

primary coil (Fig. 3.2). The tapping coil, together with the tunnel diode and other parts

of the low-temperature electronics, is housed inside a copper casing. Fig. 3.4 shows the

components of the low-temperature electronics. Resistor R1 serves as an rf isolation, as well

as letting the direct current pass from the room-temperature current supply to the tunnel

diode. R2 forms a voltage divider with R1 to provide the proper dc bias for the tunnel

diode. The bypass capacitor CB is so large (∼nF) that it almost appears as a short circuit

at the operating frequency of ∼21 MHz. Resistor Rp prevents the (parasitic) oscillation of

the tuned circuit unintentionally formed by the tapping coil and the stray capacitance of

the tunnel diode; it should not be so large as to disturb the fundamental oscillation. The

coupling capacitor Cc allows only a small portion of the rf signal to pass up the coax to

the room-temperature electronics. If Cc is too large, the external electronics will distort the

oscillation waveform, so Cc has to be small enough that only a small fraction of the rf signal is
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Figure 3.1: Schematic of the cold end of the apparatus. MC is the mixing chamber of the
dilution refrigerator. The 1K pot and vacuum can top plate are also shown. For clarity, the
vacuum can itself is not shown. Taken from Ref. [23].

Figure 3.2: The primary coil with coldfinger and sample inserted. Taken from Ref. [23].
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Figure 3.3: Room temperature electronics

Figure 3.4: Low-temperature electronics

coupled out. Therefore the tunnel-diode oscillator circuit is almost completely isolated from

the room-temperature electronics. For our oscillator, the operating values are R1 = 1400 Ω,

R2 = 300 Ω, Cc = 20pF, CB = 10nF, and Rp = 200 Ω.

The current-voltage behavior of a tunnel diode can be explained by a combination of

quantum mechanical tunnelling and the usual forward-biased characteristic of a semicon-

ductor diode (see for example, Ref. [24]). Fig. 3.5 shows the I-V characteristic of the tunnel

diode used in our system, at room temperature, 77 K and 4 K. Notice the region of V where

the differential (or ac) resistance, dV/dI, is negative. This is the region where the tunnel
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Figure 3.5: I-V curves of tunnel diode BD3 #8, at room temperature (©), 77 K (¤) and
4 K (4). The values of Rn (= (dI/dV )−1) are calculated from the inverse slopes of the solid
lines shown.

diode must operate to cancel the dissipative losses in the tuned circuit, so as to sustain

the oscillation. The dc bias supply serves to bias the tunnel diode into the negative-dV/dI

region. The process to locate the oscillation (resonant) frequency is as follows: (1) cool the

system down to 4 K, (2) set the center frequency of the bandpass filter to say 20 kHz, (3)

vary the bias voltage via the helipot until the spectrum analyzer reveals a very sharp and

strong peak, (4) note the location (fs) of the peak, (5) set the synthesizer frequency such

that it is 20 kHz above fs. The CRO should show a sinusoidal oscillation pattern with a

frequency of 20 kHz.

We can estimate the value of the bias current, and hence bias voltage, required to bias

the tunnel diode into the negative ac-resistance region. Fig. 3.6 shows the dc equivalent

of the low-temperature circuit, which is in effect a potential divider. We have ignored the

small dc resistance of the tapping coil (∼ 1 Ω). From Fig. 3.5 we know the upper and lower

limits of the required bias voltage across the tunnel diode. From them we can calculate, from

Fig. 3.5, the dc resistances (= V/I) of the tunnel diode (RTD). It is then trivial to calculate
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Figure 3.6: DC equivalent of low-temperature electronics. The resistance of the tapping coil
(∼ 1 Ω) has been ignored. RTD is the dc resistance of the tunnel diode.

the value of the voltage that needs to be provided by the bias voltage source. Our calculated

values using this method agree well with the experimental values obtained in the preceding

paragraph. Finally, we usually disconnect the spectrum analyzer and the CRO when taking

data.

Thermometers are placed near the sample, at the top and bottom, of the oscillator circuit

to monitor the temperatures of the sample, the primary coil and the oscillator electronics

respectively. The coil and electronics sensors are calibrated Cernox and Silicon diode sensor,

respectively, from Lakeshore. The sample temperature is monitored using a RuO2 resistor at

low temperatures (0.08–1.8 K), and a calibrated Cernox thermometer at higher temperatures

(1.3–20 K). The RuO2 sensor was calibrated against a calibrated Germanium sensor from

Lakeshore. Heaters are also placed in the vicinity of these three thermometers to change

or maintain the temperatures. G10-spacers are used to maintain a temperature difference

between the primary coil and the electronics. Temperature stability of the primary coil

and the oscillator electronics is of utmost importance in our experiments, as they determine

the noise level of our signal, especially at low temperatures, where our signal is very small.

Usually we can achieve a temperature stability of ±1 mK in both thermometers. We also

found that for the same temperature change away from the set-point of the thermometer,
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say +1 mK, the frequency jump caused by the electronics is about 50 times that caused by

the primary coil. Hence it is far more important to keep the electronics temperature stable,

than for the primary coil.

The tunnel diode oscillator has a noise level of 2 parts in 109 and low drift. Using a

method from Ref. [25], the magnitude of the ac field is estimated to be between 30 and

50 mOe, depending on the value of the bias voltage. The cryostat was surrounded by a

bilayer Mumetal shield that reduced the dc field to less than 1 mOe. The sample can

be aligned inside the probing coil in all three crystallographic directions. The sample was

mounted, using a small amount of GE varnish, on a single crystal sapphire rod. The other

end of the rod was thermally connected to the mixing chamber of an Oxford Kelvinox 25

dilution refrigerator.

We seek to measure ∆λ(T) by measuring ∆f(T) ≡ δf(T) − δf(Tmin), where δf(T) = fsyn

− fs(T ), fsyn = (fixed) frequency of a Stanford Research DS345 synthesizer, fs = resonant

frequency of the tuned oscillator circuit. The superconductor sample is placed inside an

primary coil — the inductor-part of a parallel-LC resonator circuit. As the temperature of

the sample changes below Tc, magnetic field is expelled from the sample in various amounts,

changing the inductance of the primary coil. This changes the resonant frequency of the

oscillator circuit fs, and hence ∆f changes.

3.2 Inductance of the Primary Coil

The construction of the primary coil was described in detail in Ref. [23]. I constructed a

32-turn coil made of 44 AWG wires (wire diameter = 0.00508 cm), with the turns spaced

two-wire-diameters apart. From Ref. [26], the inductance of a single-layered, tightly wound,

long, thin solenoidal coil is

L =
4π2r2N2

l
× 10−9 henries, (3.1)
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where N is the number of turns, l (in cm) is the length of the coil, and r (in cm) is the

radius of cross-section of the wires.

As the solenoid is made shorter, the field inside is no longer uniform, and the inductance

becomes a function of the ratio of length to radius. Eqn. 3.1 must then be multiplied by a

correction factor K1, whose value is

K1 =
1

1 + 0.9( r
l
)− 0.02( r

l
)2

. (3.2)

Next, if the turns are spaced well apart, another correction must be made for the fact

that the current is concentrated in the wires and not uniformly distributed over the coil.

This introduces another correction factor K2

K2 =

[
1− l(A + B)

πrNK1

]
, (3.3)

where A = 2.3 log10 1.73
d

c
(3.4)

and B = 0.336

(
1− 2.5

N
+

3.8

N2

)
. (3.5)

d is the diameter (in cm) of the circular wire, and c is the winding “pitch”, i.e. the center-

to-center distance between successive turns. Then the final inductance of the coil L is

L = L0 ×K1 ×K2. (3.6)

For my primary coil r ≈ 0.127 cm, N = 32, l ≈ 0.4 cm, d = 0.00508 cm, and c = 2d =

0.01016 cm. Hence L0 = 1.63 µH, K1 = 0.78, K2 = 0.99, giving Lp = 1.26 µH. A similar

calculation for the tap coil gives LT = 0.21 µH. Hence the total inductance of the oscillator

circuit is L = Lp + LT = 1.47 µH. When we tested the circuit at 4 K, we obtained a (empty

coil) resonant frequency f0 of 29.6248 MHz, giving L = 1.43 µH (using C = 20.2 pF). This

agrees very well with the calculated value of 1.47 µH. When we changed the capacitance C to
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≈ 44.5 pF (nominal value 47 pF), however, we get f0 = 20.7609 MHz and thus L = 1.32 µH,

which differs more from the calculated value, but still comparable to it. We stuck to using

the 47 pF-capacitor in our final configuration.

3.3 Relation between Inductance and Susceptibility

The subsection follows closely that of Ref. [27]. If the inductance of the primary coil is L0

when the coil is empty, i.e. when no sample is inside, then we want to know its inductance

when containing the sample, Ls. In general the self inductance of a coil is related to the

total stored energy in it by

u =
1

2
LsI

2 (3.7)

when a current I flows in it. This energy is also equal to the total field energy (in Gaussian

units)

U =
1

8π

∫
B ·Hd3r. (3.8)

Since we are only interested in the change in inductance, we need to find

∆U =
1

8π

∫
(B ·H−B0 ·H0)d

3r, (3.9)

where H0 and B0 are the initial fields without any sample. Eqn. 3.9 can be written in terms

of an integral only over the sample [28]

∆U =
1

2

∫

Vs

M ·B0d
3r, (3.10)

where M is the magnetization in the sample. But

∆U =
1

2
∆LI2. (3.11)
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Therefore the change in inductance is given by

(Ls − L0)I
2 =

∫

Vs

M ·B0d
3r. (3.12)

If the sample is an ellipsoid of revolution and is small enough to be in the uniform part

of the coil field, then the magnetization inside the sample is uniform and equal to

M =
χ

1 + Nχ
B0, (3.13)

where N is the demagnetization factor, and χ is the volume susceptibility. Hence we get

Ls − L0

L0

=
4πχ

1 + Nχ

Vs

Vc

, (3.14)

where Vs is the sample volume, Vc is the coil volume, and we have taken 1
2
L0I

2 = B2
0Vc/8π

(i.e. the coil is assumed long compared to its diameter). If the field inside the coil is not

uniform then the ratio Vs/Vc should be replaced by the geometrical filling factor F , where

F =

∫
Vs

B2
0(r)d

3r∫
Vc

B2
0(r)d

3r
, (3.15)

which in the limit of a very long coil compared to the diameter, gives Vs/Vc. The numer-

ator and denominator of the right-hand-side (RHS) of Eqn. 3.15 are sometimes called the

magnetic volume of the sample and coil, respectively. Eqn. 3.14 then becomes

Ls − L0

L0

=
4πχ

1 + Nχ
F. (3.16)

I wish to clarify the sometimes confusing notation of Eqn. 3.16 in the literature. It is

written in CGS units, but the product Nχ in the denominator can be in either CGS or SI

units, i.e. Ncgsχcgs = NSIχSI , where Ncgs = 4πNSI and χSI = 4πχcgs. This is important

because in the superconducting state at T = 0, χcgs = −1/4π or χSI = −1. In Ref. [29], the
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authors obtained the factor 1/(1 −N) in their expression for χ, though the expression was

written in CGS units. Their empirical expression for N is also in SI units. This must mean

that the authors used χSI = −1 implying that the factor is really 1/(1 − NSI). In all our

subsequent discussion the demagnetization factor N is really NSI , i.e. 0 < NSI < 1. I shall

rewrite Eqn. 3.16 as

Ls − L0

L0

=
4πχcgs

1 + NSIχSI

F. (3.17)

Below the superconducting transition temperature Tc, χSI ≈ −1 — the value for perfect

Meissner screening. We substitute this value into the denominator of the RHS of Eqn. 3.17

to get

Ls − L0

L0

=
4πχcgs

1−NSI

F. (3.18)

Note that we have used the perfect Meissner value, or equivalently, the T = 0 value, of χ

in the denominator, while leaving χ in the numerator intact. We use this approximation

because we want a linear relationship between inductance and susceptibility, one that forms

the basis of our calibration method described later.

We see therefore that what we are really measuring is the susceptibility of the sample,

which translates to inductance via Eqn. 3.18. Since the resonant frequency of our LC-

oscillator circuit is fs = 1
2π
√

LC
, where L = L(primary coil) + L(tapping coil), a change in

the inductance of the primary coil thus results in a change of fs. If the resonant frequency

of the oscillator when the primary coil is empty is

f0 =
1

2π
√

L0C
, (3.19)

then when the sample is inserted, the resonant frequency will decrease to

fs =
1

2π
√

LsCs

, (3.20)
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where L0 and Ls are defined above, and (Cs − C) is the change in stray capacitance when

inserting the sample. If one assumes (Ls−L0)/L0 ¿ 1 and (Cs−C)/C ¿ 1, then we obtain

f0 − fs

f0

=
1

2

Ls − L0

L0

. (3.21)

Hence Eqn. 3.18 becomes

f0 − fs

f0

=
4πχcgs

2(1−NSI)
F. (3.22)

In our experimental setup, our samples have the typical dimensions of 1×1×0.1−0.4 mm3,

with the last dimension (thickness) parallel to the axis of the coil. Compare this with the coil

— it has a length of 4 mm and radius 1.27 mm. Our calculations show that the empty-coil

magnetic field B0(r) within 0.4 mm away from the coil center has a non-uniformity of only

up to 1.3%. Thus we conclude that the empty-coil-field B0(r) is almost constant inside the

sample, and the ratio Vs/Vc can be used to represent the filling factor F . Also, we measure

the resonant frequency fs(T ) of the oscillator circuit at a temperature T relative to fs(Tmin)

at the base temperature Tmin, i.e. we measure δf(T ) = fs(T ) − fs(Tmin). So Eqn. 3.22

becomes

δf(T )

f0

≡ fs(T )− fs(Tmin)

f0

= − 4π∆χ(T )

2(1−NSI)

Vs

Vc

, (3.23)

where ∆χ(T ) = χ(T )− χ(Tmin).

The next question is: how is δf(T ) related to ∆λ(T ), the change in penetration depth

of the sample? The answer: ∆λ appears in the expression for χ.

3.4 Relation between Susceptibility and Penetration Depth

In Section 2.3 we considered an infinite slab of thickness 2d placed in a uniform applied

magnetic field H0 parallel to its surface, subject to the boundary conditions B(±d) = H0.
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The solution of Eqn. 2.37 is [13]

B(z) = H0
cosh(z/λ)

cosh(d/λ)
. (3.24)

Let us now derive the susceptibility χ from Eqn. 3.24. The magnetization M (magnetic

moment per unit volume) of the slab can be obtained from [30]

4πM =
1

2d

∫ d

−d

(B −H0)dz, (3.25)

which gives

M = −H0

4π

(
1− λ

d
tanh

d

λ

)
. (3.26)

The susceptibility χ = M/H0 is thus

−4πχ = 1− λ

d
tanh

d

λ
. (3.27)

For our single crystals λ ¿ d, thus tanh(d/λ) = 1, and hence

−4πχ = 1− λ

d
(λ ¿ d). (3.28)

Our measurements were almost always taken when the applied magnetic field is oriented

perpendicular to the sample surface. This introduces an additional factor 1/(1 − N) (from

now on N ≡ NSI), but is absorbed into the definition of χ = M
H0/(1−N)

in Eqn. 3.27, so it

doesn’t explicitly appear there. Moreover, Eqn. 3.27 applies only to an infinite slab. For a

2w × 2w slab, thickness 2d and field perpendicular to the plane, field penetration is in the

2w-directions. The quantity d in Eqn. 3.27 must be replaced by R3D, the effective dimension

of the sample. The motivation for R3D will be explained in the next section. Here we will

just mention that R3D is of the same order of magnitude as w. With these two corrections,
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Eqn. 3.27 becomes

−4πχ = 1− λ

R3D

tanh

(
R3D

λ

)
(3.29)

which, in the λ ¿ R3D limit, gives

−4πχ = 1− λ

R3D

(λ ¿ R3D), (3.30)

or

4π∆χ =
∆λ

R3D

(λ ¿ R3D). (3.31)

Combining Eqn. 3.23 and Eqn. 3.31, we finally get

δf(T )

f0

= − Vs

2Vc(1−N)

∆λ(T )

R3D

(λ ¿ R3D), (3.32)

where ∆λ(T ) = λ(T )−λ(Tmin). Eqn. 3.32 hence relates δf to the actual change in penetra-

tion depth ∆λ.

From Eqn. 3.32 we can write

∆λ(T ) = Gδf(T ), (3.33)

where

G = −2R3D(1−N)

Vs

Vc

f0

. (3.34)

The negative sign in G comes from the fact that as temperature increases, field penetration

increases (∆λ > 0). But as field penetration increases, the stored energy inside the coil

increases, hence the inductance increases, and the corresponding resonant frequency fs de-

creases, i.e. δf < 0. We want to work with a positive G, so we subtract the signal from that

of a synthesizer (with frequency fsyn) using a mixer, as described in Section 3.1, and adjust

fsyn so that fIF = fsyn − fs is positive and roughtly in the 20–40 kHz range (IF denotes
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“intermediate frequency”). Therefore ∆f ≡ fIF (T ) − fIF (Tmin) > 0 when T > Tmin, with

the calibration factor G now being positive, with the same magnitude as in Eqn. 3.34.

3.5 Calibration

As described in the preceding paragraph, the deviation ∆λ(T) = λ(T) − λ(Tmin) is propor-

tional to the change in resonant frequency ∆f(T), with the proportionality factor G depen-

dent on sample and coil geometries. In Ref. [23] a method of obtaining G for an arbitrary

sample was (1) to cut out a piece of high-purity Al platelet to have the same dimensions

as the sample, (2) take ∆f measurements of this Al platelet, (3) adjust G such that the

superfluid data fits the nonlocal BCS expression (Eqn. 3.39), and finally (4) use this value

of G for the sample. Though this method works, it is a very tedious process to cut out a

Al platelet of exactly the same dimensions every time we run a new sample. We tried two

other methods to determine G.

For a square sample of side 2w, thickness 2d, demagnetization factor N, and volume V,

G is, from Eqn. 3.34

G = +
2R3D(1−N)

Vs

Vc

f0

, (3.35)

where

R3D =
w

2f(2d/w)
(3.36)

is the effective sample dimension [29], and the correction factor f(2d/w) is

f

(
2d

w

)
=

[
1 +

(
1 +

2d

w

)2
]

arctan
( w

2d

)
− 2d

w
. (3.37)

In Eqn. 3.35 the quantities R3D, N and Vs can be determined with reasonable accuracy.

The empty-coil resonant frequency f0 differs from run to run (∼ 103 Hz), but the fractional

error is negligible (∆f0/f0 ∼ 103/107 ∼ 0.1%). What remains to be determined is Vc,

the coil volume. We tried to determine Vc by measuring ∆f(T ) of an Al sphere of known
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dimensions (1/32”-diameter) and adjusted G such that the superfluid data fits the nonlocal

BCS expression (Eqn. 3.39). This enables us, from Eqn. 3.35, to calculate Vc. However, this

value of Vc gives us a value of G about 4 times too small for conventional BCS samples (such

as Pb) to fit the empirical BCS expression for superfluid density. We attribute the error to

the low Tc of the Al sphere (∼ 0.8 K), compared to 1.2 K in the purest sample. With this

low Tc we can no longer assume that the zero-temperature penetration depth λ(0) of this

Al sphere is ∼ 500 Å, the commonly accepted value, due to the decrease of the mean free

path with impurities. Energy dispersive X-ray (EDX) analysis on the surface of the sphere

revealed the presence of Mn impurities, explaining the low Tc. The use of a wrong value of

λ(0) directly affects the value of the calculated superfluid density.

Alternatively, to eliminate the error of determining Vc, we instead make use of the pro-

portionality relation from Eqn. 3.35

G ∝ R3D(1−N)

Vs

, (3.38)

which eliminates the need to determine Vc and f0 altogether. The motivation for R3D is

as follows: Most single-crystal superconductors have rectangular basal planes, with aspect

ratios typically ranging from 1 to 30. A consequence of the high aspect ratio is that for

fields applied perpendicular to the basal plane, in addition to screening currents flowing

along the sides of the sample, there is also a contribution from the currents flowing on the

top and bottom surfaces. These currents are due to the shielding of the in-plane component

of the applied magnetic field that appears due to demagnetization. The correction factor

f(2d/w) accounts for this additional contribution. For example, in the infinitely-thin limit,

R3D ≈ 0.16w. Compare this with 0.5w if the top and bottom screening current contributions

are ignored — the “infinite-slab” value. This method has been shown to work for Nb cylinders

and foils, as well as single crystals of YBCO and BSCCO [29]. When we used the infinite-

slab value on single-crystal Pb, our calculated values of G are smaller than what is required
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Figure 3.7: Superfluid density of Al single crystal. Circles: data. Line: Fit to non-local limit
yields G = 3.8 Å/Hz.

to fit the superfluid data. All but one of our samples are thin cylinders or platelets, so this

method is applicable to us, and the calculated calibration factors have been shown to be

consistent with one another.

We first determine G for a single-crystal sample of high-purity Al (99.9995%) platelet by

fitting the Al data to the superfluid density in the pure extreme-nonlocal limit [14]

ρs(T ) =

[
∆(T )

∆(0)
tanh

β∆(T )

2

]−1/3

, (3.39)

where the temperature dependence of the superconducting gap, ∆(T ), is given by the inter-

polation formula [9]

∆(T ) = δsckTctanh

{
π

δsc

√
a

(
∆C

C

)(
Tc

T
− 1

)}
. (3.40)

In Eqn. 3.40 δsc ≡ ∆(0)/kBTc, a = 2/3 for a weak-coupling superconductor, and ∆C/C is

the specific heat jump at T c. Fig. 3.7 shows the superfluid data for a high-purity (99.999%)

single-crystal Al platelet. For the data to fit the extreme nonlocal expression (Eqn. 3.39),
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we find G(Al) to be 3.8 Å/Hz. Then, explicitly writing out Eqn. 3.38 (s: sample)

Gs

GAl

=
R3D,s

R3D,Al

1−Ns

1−NAl

VAl

Vs

, (3.41)

and substituting for sample dimensions, we can obtain the value of G for an arbitrary sam-

ple. The demagnetization factor N can be calculated in two ways: For samples with T c

≥ 2 K, N can be obtained from the deviation, from −1/4π, of the (linear negative) slope

of magnetization-field measurements (H < Hc1), using a MPMS SQUID, according to the

equation

m

H
=

Vs

4π

−1

1−N
, (3.42)

where m = magnetic moment (in emu), H = applied field (in Oe), and Vs = sample volume

(in cm3). Once again N = NSI .

For samples with any Tc, especially if Tc ≤ 2 K, N can be estimated from the expression

[29]

1

1−N
≈ 1 +

w

2d
. (3.43)

Eqn. 3.43 works especially well for samples with large aspect ratios [29]. We calculated the

value of N using both methods for samples with T c ≥ 2 K, and found that they agree very

well with each other. Using Eqn. 3.41 on a single crystal of Pb, we found excellent agreement

with conventional BCS expressions. Also, we tried this method on the Sr2RuO4 sample in

Refs. [4] and [23], and obtained G = 2.4 Å/Hz. This agrees very well with the value of G =

2.5 Å/Hz stated in Ref. [23], once again validating our method of obtaining G.

One possible flaw of this method is that it might overestimate the contribution of screen-

ing currents from the top and bottom faces of thicker samples, so that the calculated value

of G is underestimated in this configuration. We see a hint of this in Chapter 10, where

for the thick Pb#2 sample with aspect ratio w/d ≈ 1.6, G has to be 20% larger than the

calculated value in order for the superfluid data to fit the theoretical expression, whereas
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the G obtained for the thinner Pb#1 sample (aspect ratio 6.3) fits the theory extremely

well. The samples in Ref. [29] all have very large aspect ratios (w/d ≥ 15), so this problem

does not exist there. However, even in Ref. [29] two of their samples have a deviation of

20% below the expected value, which the authors attributed to the rectangular shape of

the samples. This reasoning does not apply to our Pb cylinders. Fortunately, among all

the samples we have run, only sample Pb#2 has a comparatively small aspect ratio, so this

method is applicable in all of our other samples. We should keep in mind, however, that

even for our thin platelet samples, because they do not have a perfectly square basal area,

the calculated values of G should have an error of about ± 20% anyway.

3.6 Drift, Noise and Background Signal

There are three sources of error in our frequency data points: (1) Drift, (2) noise, and (3)

sample-holder background.

Even at a constant temperature, ∆f drifts upwards or downwards, monotonically or

non-monotonically, linearly or non-linearly, with rates ranging from ±0.01 Hz/minute to as

high as ±1 Hz/minute. The drift usually becomes very small if we wait many hours after

topping up the dewar with liquid He, preferably overnight. In order to account for the drift,

we include the ”drift run” in our data run, monitoring the frequency drift during the first

five minutes of any run at base temperature, cancelling the run if the drift is too large or too

non-linear, and letting the run proceed if otherwise. We prefer a positive drift, since that is

usually its direction. We also found that the magnitude and direction of the drift depends

on the value of the bias voltage, so we adjust the bias voltage to ensure that the drift is small

and positive. We also prefer to take a quick run (∼ 1 hour), so that the drift is linear during

the duration of that run. After the completion of the run, we then subtract the (linear) drift

and the background signal (described later) from the raw data to obtain the true signal.
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Figure 3.8: Background signal from the silver sample holder: 0.1 K to 18 K. The total signal
here is about 500 Hz.

Noise is another source of error. The main source of noise is the vibration of the lines

due to the flow of the 3He–4He mixture through the lines, and the vibration of the pumps.

Various vibration isolation methods have been used. The pumps are situated outside the

screened room, and the pump lines securely bolted to the walls of the screened room. The

lines are also wrapped by short lengths of rubber hose at certain points, on both sides of the

screened room, to damp out the high-frequency vibrations. Finally, an easy but extremely

effective way to reduce the signal noise from ±0.2 Hz to ±0.05 Hz is to place the 4He cold

trap line on top of the dolly that supports the dewar, instead of letting it lie on the ground.

In this configuration any vibration (from the floor, flowing mixture, etc) merely causes the

cold trap line and the dewar to move in phase. There is thus very little relative movement

between the line and dewar, causing only negligible noise. If the cold trap line were to lie

on the floor, any vibration on the floor (due to footsteps or a host of other possible reasons)

would cause the line and the dewar to move out of phase, resulting in significant signal noise.

Lastly, even without any sample attached to the end of the sample holder, there is a

non-zero signal, i.e. ∆f still changes with temperature T . This signal must come from the

sample holder itself. We must therefore determine what this “background” signal is, and

subtract it from the raw signal to get the true signal.
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Figure 3.9: Background signal from the sapphire sample holder: Low-temperature blowup

Fig. 3.8 shows the background signal of the silver sample holder constructed by Yanoff

et al. [23], built from nine silver rods embedded in Stycast 1266 to form a 1-mm-diameter

sample rod. It is clear that the silver background signal is very large — the low-T signal is

about −5 Hz at 4 K, and the total signal from 0.1 K to 15 K is about 250 Hz. The entire

signal is non-monotonic, and its reproducibility at the lowest T , where the real signal can

be very small, is only about ±0.5 Hz. Hence with this silver sample holder, small signals

cannot be accurately determined, especially for isotropic s-wave superconductors where the

low-T response is exponential, i.e. basically flat.

So I built another coldfinger, with a single-crystal sapphire rod replacing silver as the

sample holder. Figs. 3.9 and 3.10 show the background signal from the sapphire holder,

at the lowest temperatures and up to ∼15 K, respectively. Though the signal is still non-

monotonic, the total signal from 0.1 K to 15 K is only about 2 Hz. This is more than 100

times smaller than the silver background signal. In particular, the low-T signal is less than

0.4 Hz, as compared to 5 Hz in the silver-case. This small background enables us to measure

very small signals, thus removing any doubt that a small signal might come from the sample

holder itself.
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Figure 3.10: Background signal from the sapphire sample holder: 0.1 K to 15 K. Notice that
the total signal is less than 2 Hz.

52



Chapter 4

CeCoIn5

4.1 Introduction

Heavy-fermion superconductors (HFSC) are superconductors whose effective conduction-

electron mass m∗ is typically more than 100 free-electron masses. The large effective mass

has a pronounced effect on several properties of superconducting materials since it enters

into the expression for the electron DOS at the Fermi level, N(0) (in SI units)

N(0) =
1

2π2

(
2m∗

~2

)3/2

E
1/2
F . (4.1)

For example, the HFSC CeCu2Si2 has a value of N(0) that corresponds to m∗ ≈ 220m0,

where m0 is the free-electron mass [15]. Much of the evidence for the large effective mass

comes from the experimental observations in the normal state. For example, from the low-

temperature electronic specific heat Cel = γT , we can obtain the electronic specific heat

coefficient γ. From

γ =
1

3
π2N(0)k2

B, (4.2)

we can calculate N(0), and hence m∗ from Eqn. 4.1. γ is unusually large for heavy-fermion

compounds — typically about 10 times larger than those of other superconductors. Hence

a large γ implies a large effective mass.
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Figure 4.1: The change in penetration depth ∆λ below 0.8 K. Note the obvious upward
curvature. Inset: ∆λ over a wider temperature range. Taken from Ref. [34].

The compounds CeMIn5 (M = Co, Ir, Rh) have recently been added to the heavy-fermion

family, and have attracted much interest due to their similarity with the cuprates: quasi-2D

structure and proximity to magnetic order [31]. CeCoIn5, in particular, is a good candidate

for study: its superconductivity is not sensitive to small changes in unit-cell volume or

composition, unlike CeCu2Si2, and it has the highest Tc (∼2.3 K) among the heavy-fermion

superconductors. The heavy-fermion nature of CeCoIn5 is evidenced by the large value of

the electronic specific heat coefficient γ = 0.29 J/mol K2, giving m∗ ≈ 83m0. CeCoIn5 has

tetragonal HoCoGa5 crystal structure, consisting of alternating layers of CeIn3 and ‘CoIn2’

[31]. De Haas-van Alphen (dHvA) data revealed that the Fermi surface (FS) is quasi-2D,

with an open 2D undulating cylinder extending along the [001] direction, as well as the large

effective masses of electrons on this FS [32]. Nonetheless, the superconducting properties

are not very anisotropic [33].

Recently, there has been mounting evidence for unconventional superconductivity in

CeMIn5. Specific heat data reveal a T2 term at low temperature, consistent with the presence

of 3D line nodes in the superconducting energy gap [35]. Thermal conductivity measure-
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ments with in-plane applied field show four-fold symmetry, consistent with nodes along the

(±π, ±π) positions [36]. NQR measurements find no Hebel-Slichter peak just below Tc [37].

Below Tc the spin susceptibility is suppressed, indicating singlet pairing [37, 38]. However,

there are some ambiguities in some of the measurements. Thermal conductivity data yield

a T3.37 low-temperature behavior, that the authors claim is close to T3 behavior predicted

for unconventional superconductors with line nodes in the clean limit [35]. NQR measure-

ments did not show the T 3 low-temperature behavior of 1/T1 that is expected for a line

node gap; instead 1/T1 saturates below 0.3 K [37]. Microwave measurements on a dirtier

sample (Tc = 2.17 K) down to ∼0.2 K showed a non-exponential behavior, and the authors

claimed that λ(T) ∼T below 0.8 K [34], though the data clearly show some curvature in

that temperature range (see Fig. 4.1). Further, the field was applied along the ab-plane, so

the shielding currents have both in-plane and inter-plane components. In this chapter, we

present high-precision measurements of in-plane λ‖ and inter-plane λ⊥ penetration depths

of CeCoIn5 at temperatures down to 0.14 K. We find that λ‖ is best treated as a crossover

from ∼T to ∼T2 at a temperature T ∗. We propose two mechanisms for the crossover —

Hirschfeld and Goldenfeld’s Resonant Impurity Scattering (RIS) theory [18], and Kostzin

and Leggett’s [KL] [20] nonlocal theory, with their respective crossover temperatures T ∗
imp

and T ∗
NL. We find that the crossover temperature obtained from the superfluid data T ∗

expt,

is closer to T ∗
NL than to T ∗

imp. This gives evidence for nonlocal behavior in a d-wave super-

conductor. This is a significant result, providing experimental support for the well-known

and widely mentioned KL nonlocal theory. It provides an entirely different explanation,

with totally different physics compared to the widely-accepted RIS theory, of the frequently

observed crossover from linear to quadratic behavior in penetration depth measurements

of unconventional superconductors. However, we must point out that since the coefficients

calculated in the RIS theory are approximations, it is still possible that impurity scattering

can explain the crossover effect [39]. Some of the results of this chapter have been published

in Physical Review B, volume 67, article number 014527 (2003).
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Figure 4.2: Low-temperature dependence of the in-plane penetration depth ∆λ‖(T). Lower
inset shows ∆λ‖(T) over the full temperature range. Upper inset shows ∆λ‖(T) vs T1.5 in
the temperature range (0.14–1.13) K. The solid line is a guide to the eye.

4.2 Data and Analysis

Details of sample growth and characterization are described in Refs. [31, 40]. The samples

arrived as very nice rectangular (almost square) platelets of dimensions ∼ 0.75 × 0.75 ×
0.09 mm3. SEM/EDX analysis on the surface did not reveal any impurities. The samples

were run “as is”, i.e. we did not attempt to cut, polish or clean the surface. Fig. 4.2

shows ∆λ‖(T) as a function of temperature. We see that ∆λ‖(T) varies strongly at low

temperatures, inconsistent with the exponential behavior expected for isotropic s-wave su-

perconductors. On the other hand, the variation is not linear, but has an obvious upward

curvature, unlike the low-temperature behavior expected for pure d-wave superconductors.

A fit of the low temperature data to a variable power law, ∆λ‖(T) = a + bTn yields n =

1.43 ± 0.01 for sample 1 and 1.57 ± 0.01 for sample 2. The upper inset of Fig. 4.2 shows

this approximate T3/2 behavior for sample 1. Kosztin et. al. [41, 42, 43] have proposed a
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theory that gives a T 3/2 term from the gradual evolution of the pseudogap above Tc to the

superconducting gap below Tc. While resistivity measurements suggest the possibility of a

pseudogap in CeCoIn5 [44], which renders this interpretation feasible, a decrease in Knight

shift was observed only starting at Tc [38]. We take the latter to rule out a pseudogap

mechanism.

Before considering novel excitation processes, we note the important distinction between

∆λ(T), which is directly measured, and the superfluid density [ρ(T) = λ2(0)/λ2(T)] which

can be inferred only with the knowledge of λ(0) [45]. In the d-wave model, even if ρs

varies strictly with T, i.e. ρs=1 − αT/Tc, the penetration depth is non-linear: λ(T) =

λ(0)[1+1/2 (αT/Tc) + 3/8 (αT/Tc)
2+...]. Hence there is always a quadratic component

to λ whose strength depends on α, which in the d-wave model, is inversely proportional to

d∆(φ)/dφ|node, the angular slope of the energy gap at the nodes [16]. If ρs(T) is linear in T,

there is no need to invoke another mechanism.

To extract the in-plane superfluid density from our data, we need to know λ‖(0). For

a quasi-2D superconductor with a cylindrical Fermi surface and the material parameters in

Ref. [35] and [46], we obtain λ‖(0) = 2600 Å, considerably larger than the experimentally

obtained value of 1900 Å [34]. This along with a large heat-capacity jump at Tc leads us to

consider strong-coupling corrections as listed below [47, 48]:

ηCv(ω0) = 1 + 1.8

(
πTc

ω0

)2 (
ln

(
ω0

Tc

)
+ 0.5

)
, (4.3)

η∆(ω0) = 1 + 5.3

(
Tc

ω0

)2

ln

(
ω0

Tc

)
, (4.4)

ηλ(ω0) =

√
1 + (πTc

ω0
)2(0.6 ln(ω0

Tc
)− 0.26)

1 + (πTc

ω0
)2(1.1 ln(ω0

Tc
) + 0.14)

, (4.5)
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Figure 4.3: C/T vs T for CeCoIn5. For both the zero-field (open squares) and 50 kOe (solid
circles) data, a nuclear Schottky contribution, due to the large nuclear quadrupolar moment
of In, has been subtracted. Notice that in the normal state, C/T is not a constant below Tc.
The inset shows the entropy recovered as a function of temperature in the superconducting
(open squares) and field-induced normal (solid circles) states. Taken from Ref. [31].

each η represents the correction to the corresponding BCS value

(
∆C

γTc

)sc

=

(
∆C

γTc

)BCS

ηCv (4.6)

∆sc
0 = ∆BCS

0 η∆ (4.7)

λsc(0) = λBCS(0)ηλ. (4.8)

If we take the experimental value of ∆C/γTc = 4.5 [31], then Eqn. 4.3 gives the charac-

teristic (equivalent Einstein) frequency ω0 = 9.1 K and λsc
‖ (0) = 1500 Å. However, Petrovic

et. al. [31] argued that since C/T increases with decreasing temperature (see Fig. 4.3), the

specific heat coefficient γ is temperature-dependent below Tc. This effect calls into question

simple estimates of strong-coupling corrections for CeCoIn5. A better estimate is to use

∆C/∆S in place of ∆C/γTc, where ∆S is the measured change in entropy of the sample

from T = 0 to Tc. Ref. [31] then gives ∆C/∆S = 2.5, so that ω0 = 17.9 K, resulting in
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∆sc
0 = 2.1kBTc and λsc

‖ (0) = 2000 Å. On the other hand, the larger ∆C of Ref. [33] yields

∆C/∆S = 2.8 and ω0 = 15.4 K, leading to ∆sc
0 = 2.2kBTc and λsc

‖ (0) = 1900 Å. These values

of λsc
‖ (0) are close to that obtained by Ormeno et. al. [34].

Although we will argue that nonlocal effects are important, we will refer to (λ‖(0)/λ‖(T ))2

as the “superfluid density.” Fig. 4.4 shows the calculated behavior of that quantity using the

three values of λ‖(0) obtained above. We follow the procedure in Ref. [45] to compute the

experimental superfluid density, using the T3/2 fit to estimate the small difference between

λ‖(0) and λ‖(0.14 K). In each case, ρ(T) is clearly not linear in T.

Non-linearity in ρ(T) can arise from a crossover from an intermediate-temperature (pure)

linear-T behavior to, for example, low-temperature (impurity-dominated) quadratic behavior

as pointed out by Hirschfeld and Goldenfeld [18]. Experimentally, i.e. from raw data, one

can interpolate between these two regions using

λ = λ0 +
bT 2

T ∗
expt + T

, (4.9)

where T∗expt is the crossover temperature. In terms of superfluid density, one obtains [45]

∆ρ‖(T ) =
αT 2/Tc

T ∗
expt + T

. (4.10)

In terms of material parameters, the RIS theory predicts for the crossover temperature, in

the small-impurity-concentration limit Γ/∆0 ¿ 1 (see Section 2.6.1)

T ∗
imp ≈ 0.83

√
Γ∆0 (4.11)

which is identical to Eqn. 2.69.

A much more provocative source of the crossover of Eqn. 4.10 was suggested by KL [20],

who showed that for d-wave superconductors, nonlocal effects change the linear behavior to

quadratic below a crossover temperature T∗NL = ∆0ξ‖(0)/λ‖(0).
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Figure 4.4: Low-temperature in-plane superfluid density ρ‖(T) = [λ2
‖(0)/λ2

‖(T)] calculated

from ∆λ‖(T) data in Fig. 1 (thick lines). The thin lines correspond to fits to data using
Eqn. 4.10, using three values of λ‖(0). Inset shows ρ‖(T) over the full temperature range.

The solid lines in Fig. 4.4 are fits to Eqn. 4.10 and are very good for all three val-

ues of λ‖(0). The value of α varies from ∼0.5 to 0.7, the smallest value of α belong-

ing to the largest value of λ‖(0). The value of α obtained is similar to that found for

YBa2Cu3O6.95 (α ∼ 0.6) [19, 49], but smaller than that of Tl2Ba2CuO6+δ (α ∼ 1.0) [50] and

K-(ET)2Cu[N(CN)2]Br (α ∼ 1.2) [45]. The value of T ∗
expt varies less across the three λ‖(0)

values, from 0.32 K to 0.42 K. These values of T ∗
expt/Tc (∼0.14–0.18) differ from the cuprates

[51, 19, 50] and the organic superconductor K-(ET)2Cu[N(CN)2]Br (∼0.05), where impurity

scattering is presumed to be the source. Further, thermal conductivity measurements [35]

puts an upper limit of 20 ppm on the impurity concentration, in the unitary (strong) scatter-

ing limit. This gives, in the RIS (or dirty d-wave) model [18], a unitary-limit scattering rate

Γ =
nimpn

πN0
∼ 1.5 × 108 s−1 from Eqn. 2.67. To get this value of Γ we used nimp = 20×10−6
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Figure 4.5: Low-temperature dependence ∆f⊥(T ) as defined in Eqn. 4.13, in the H ⊥ c
orientation. Note that this is raw data, without subtracting the λ‖ component. Solid line is
a variable-power law fit from 0.14 K to 1 K, where n ≈ 1.25.

and N0 = 4.774× 1035 (erg cm3)−1 from Ref. [35]. We also estimated the value of n via the

relation (in SI units)

1

2
meffv

2
F =

~2

2meff

(3π2n)2/3 (4.12)

to obtain n = 1.15 × 1022 cm−3. meff and vF were also taken from Ref. [35]. This implies

Γ/∆0 ∼ 10−4 ¿ 1, enabling us to use Eqn. 4.11 to obtain an upper limit for T ∗
imp ∼ 65 mK.

This is about 5 times smaller than the experimentally obtained values above, suggesting that

the sample is too clean for the dirty d-wave model to be applicable. However, the coefficients

calculated in RIS theory are approximations [39]. Hence impurity scattering can still be a

possible explanation for the crossover effect.
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Figure 4.6: Low-temperature dependence of inter-plane (open circles) penetration depth
∆λ⊥(T), after subtracting the in-plane component. In-plane ∆λ‖(T) (crosses) data is also
shown for comparison. Solid line is a linear fit from 0.14 K to 1 K. Inset shows inter-plane
superfluid density ρ⊥(T) for the whole temperature range.

Besides impurity scattering, we turn to another effect — nonlocal electrodynamics, that

might be the source of the crossover in ρ‖(T ). For a d-wave superconductor with line nodes

along the c-axis, nonlocality is expected to be relevant only when the applied magnetic field

is oriented parallel to the c-axis, while the effect of impurities should not depend on the

orientation of the field. As KL noted, if T ∗
expt in ∆λ‖(T ) is noticeably smaller in the H ⊥ c

than in the H ‖ c configuration, then we may conclude that the observed effect is due mainly

to nonlocal electrodynamics and not to impurities. For H ⊥ c, screening currents flow both

parallel and perpendicular to the c-axis, mixing λ‖ and λ⊥ with the frequency shift given by

[29]

∆f⊥
f0

=
Vs

2Vc

(
∆λH⊥c

‖
d

+
∆λ⊥
w

)
, (4.13)

where Vs is the effective sample volume, Vc is the effective coil volume, f0 is the resonant

frequency with the sample absent, and ∆f⊥ ≡ ∆f(H ⊥ c).
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Unfortunately, we do not know the temperature dependence of ∆λ⊥, hence we cannot

extract out ∆λH⊥c
‖ using this method. It is however, instructive to plot ∆f⊥(T ), as shown

in Fig. 4.5. Fitting the data from 0.14 K to 0.9 K to the interpolation formula Eqn. 4.9

gives T ∗ = 0.22 K — this is less than 0.32 K obtained for the H ‖ c orientation, though,

once again, we emphasize that the graph is not proportional to ∆λH⊥c
‖ , but an admixture

of ∆λH⊥c
‖ and ∆λ⊥. Equivalently, fitting the same range of data to the variable-power law

gives n = 1.17, while fitting to 1 K gives n = 1.25. Both fitted values of n are less than 1.5.

This suggests that in this H ⊥ c orientation, (1) ∆λ‖(T ) ∝ T n, n < 1.5, and/or (2) ∆λ⊥(T )

∝ T n, n < 1.5, to give a net power of ∼ 1.2. It is thus possible that ∆λ‖(T ) ∝ T in the

H ⊥ c orientation, lending credence to the KL theory.

It is interesting to use Eqn. 4.13 to extract ∆λ⊥, if we subtract out the ∆λH⊥c
‖ from ∆f⊥,

assuming that ∆λH⊥c
‖ follows the same temperature dependence as in the H ‖ c case, i.e.

∆λH⊥c
‖ ∝ T 1.5. Fig. 4.6 shows the resulting inter-plane penetration depth ∆λ⊥ of CeCoIn5

down to 0.14 K. It is clearly linear in T from 0.14 K to 1 K. So if one is able to measure

∆λ⊥(T ) and obtains a low-temperature linear behavior, it shows that ∆λH⊥c
‖ (T ) still follows

a T 3/2-dependence. If this is the case, i.e. ∆λH⊥c
‖ (T ) and ∆λ

H‖c
‖ (T ) follow the same power

law, then we can conclude that nonlocality is not the mechanism for the crossover from

linear to quadratic penetration depth temperature dependence in CeCoIn5. To obtain the

superfluid density, we estimate λ⊥(0) from the Hc2 anisotropy of ∼2.3 [33], and the fact

that λ(0) ∝
√

Hc2 (0) [9], obtaining λ⊥(0) ∼ 2700 Å. This is close to the value of ∼2800 Å

obtained from microwave measurements in the planar geometry [52]. A calculation of ρ⊥ is

shown in the inset of Fig. 4.6: the upturn below 0.5 K is an artifact of the choice of λ⊥(0).

A larger value of λ⊥(0) would remove this feature, but there is no justification for doing so.

To test the validity of the nonlocal scenario, we have to resort to estimating T ∗
NL using

strong-coupling parameters, and comparing it with T ∗
expt and T ∗

imp. From the measured

Hc2(0)[001] value of 49.5 kOe, the coherence length ξ‖(0) is calculated to be 82 Å [33].

Together with the earlier-derived values of ∆sc
0 = 2.2kBTc and λsc

‖ (0) = 1900 Å, we find the

63



strong-coupling nonlocal crossover temperature T ∗
NL = ∆sc

0 ξ‖(0)/λsc
‖ (0) = 0.22 K. Using a

weak-coupling d-wave ∆(0) = 2.14kBTc, we get T ∗
NL = 0.26 K. We regard either value to

be satisfactorily close to the experimental value of 0.32 K. Note that the value of ξ‖(0) is

different from both the calculated BCS value of 58 Å [35] and the strong-coupling corrected

value of ∼50 Å [47]. This is not surprising since the BCS expressions [47] assume a spherical

FS, while LDA band structure reveals a very complicated FS with contributions from three

different bands [53].

Finally, we point out that since since the normal-state electronic specific heat Cel 6= γT

at low temperatures, as seen in Fig. 4.3, CeCoIn5 thus exhibits non-Fermi-liquid (NFL)

behavior. The impact of NFL on predictions of the superconducting state, particularly the

applicability of the RIS and KL theories, is therefore not clear [39]. Özcan et al. attempted to

explain their penetration depth data using non-Fermi-liquid behavior and quantum criticality

[52].

4.3 Conclusion and Future Work

In conclusion, we report measurements of the magnetic penetration depth λ in single crystals

of CeCoIn5 down to ∼0.14 K using a tunnel-diode based, self-inductive technique at 28 MHz.

The in-plane penetration depth (λ‖) exhibits a crossover between linear (at high T ) and

quadratic (low T ) behavior with a crossover temperature T∗expt ≈ 0.32 K. Such behavior

can arise in a superconductor with nodes in the gap either in a dirty d-wave model or from

nonlocal electrodynamics. We find that T ∗
expt is closer to T ∗

NL (0.26 K) than to T ∗
imp (≤

0.065 K). We conclude, however, that both impurity scattering (T ∗
imp) and nonlocality (T ∗

NL)

give values of the crossover temperatures which are comparable to experimental data, since

the coefficients calculated in RIS theory are approximations [39]. Our data might provide

experimental support for the well-known and widely mentioned KL nonlocal theory. We also

demonstrate that strong-coupling corrections are required to reconcile various experimentally
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determined superconducting parameters. The present result should reenergize the search for

nonlocal effects in other unconventional superconductors.

Finally, for future work, Goldenfeld suggested the exploration of how the temperature

dependence of λ depends on impurity concentration [39]. Firstly, if the superconducting

transition temperature Tc varies dramatically with impurity concentration, then we can

conclude that there is no resonant impurity scattering in this material. If the opposite is

true, then resonant impurity scattering is present, and the assumption of RIS theory is valid,

for this material. Secondly, with sufficient impurity concentration, any nonlocal effects would

be washed out, since the effective coherence length becomes finite even at the nodes. If one

still sees the crossover effect, this time with a larger T ∗
expt, i.e. more of the T 3/2 region

becomes T 2, then it must be due to impurity scattering rather than nonlocality.

For this project I acknowledge Professors R. Prozorov, Q. Chen and N. Goldenfeld for

useful discussions. I thank Dr. J. Sarrao for providing the samples. Work at Los Alamos

was performed under the auspices of the U.S. Department of Energy.
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Chapter 5

PrOs4Sb12

5.1 Introduction

The recent discovery of the Heavy Fermion (HF) skutterudite superconductor (SC) PrOs4Sb12

[54, 55] has attracted much interest due to its differences compared with the other uncon-

ventional SC, and in particular, the HFSC. Conventional superconductivity is mediated by

the electron-phonon interaction, whereas superconductivity in the unconventional SCs are

widely thought to be magnetically-mediated, i.e. via interaction of the local magnetic mo-

ments with the conduction electrons. Because PrOs4Sb12 has a nonmagnetic ground state of

localized f electrons in the crystalline electric field, its HF behavior, and consequently the

origin of its superconductivity, has been attributed to the interaction between the electric

quadrupolar moments of Pr3+ and the conduction electrons. It is thus a candidate for the

first SC mediated by quadrupolar fluctuations, i.e. by neither electron-phonon nor, as with

other HFSC, magnetic interactions.

Recent experiments on PrOs4Sb12 give conflicting evidences to the nature of the SC gap.

Muon-spin rotation (µSR) measurements revealed a low-temperature exponential behavior,

suggesting isotropic pairing (either s or p-wave) [56]. Scanning tunneling spectroscopy mea-

surements also measured a density of states (DOS) with no low-energy excitations with a

well-developed SC gap over a large part of the Fermi surface (FS) [57]. The absence of

a Hebel-Slichter peak and the non-T3 behavior of 1/T1 in nuclear quadrupolar resonance

(NQR) experiments suggest that PrOs4Sb12 has either a full gap or point nodes, but not
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line nodes, at zero field [58, 59]. If PrOs4Sb12 has an isotropic gap, then it is unique among

HFSC, suggesting the possibility of (a) an important difference in superconducting properties

between HFSC with magnetic and non-magnetic f -ion ground states, and (b) a correlation

between pairing symmetry (isotropic or nodal gap) and mechanism (quadrupolar or magnetic

fluctuations) of superconductivity [56].

Unlike the µSR and NQR results, angle-dependent thermal conductivity measurements

[60] revealed two distinct SC phases with different symmetries, a phase transition between

them, and presence of point nodes. In the high-field phase four point nodes ([100] and [010]

directions) have been observed, whereas there are only two point nodes ([010] directions

only) in the low-field phase. Specific-heat data [54] also show a low-temperature power law

behavior, suggesting the presence of nodes. Another recent µSR experiment revealed the

spontaneous appearance of static internal magnetic fields below Tc, providing evidence that

the SC state is a time-reversal-symmetry-breaking (TRSB) state [61].

In this chapter, we present high-precision measurements of penetration depths λ(T ) of

PrOs4Sb12 at temperatures down to 0.1 K. The ac field was applied along all three crystallo-

graphic axes. In all three field orientations both λ(T ) and superfluid density ρs(T ) tends to

follow a quadratic power law, suggesting that the SC gap has nodes on the FS. ρs for various

gap functions has been calculated, and data are best fit by the 3He A-phase-like gap, with

two point nodes in the [010] directions. Our data thus puts PrOs4Sb12 in line with other

HFSC, in that they all have nodes on the FS, despite the proposed non-magnetic nature of

the mechanism of its superconductivity. The results of this chapter have been published in

Physical Review Letters, volume 91, article number 247003 (2003).

5.2 Data and Analysis

Details of sample growth and characterization are described in Ref. [62]. The de Haas-van

Alphen (dHvA) effect was observed from samples of the same batch, reflecting the high
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Figure 5.1: Low-temperature dependence of the penetration depth ∆λ(T ) for field orienta-
tions H ‖ a, b, c. The curves have been offset for clarity. The solid lines are fits to ∆λ(T ) =
A + BT n from 0.1 K to 0.55 K. Upper inset shows ∆λa(T ) over the full temperature range.

quality of the samples [62]. Moreover, the mean free path was estimated from dHvA data

to be ∼1300 Å, which is much larger than the coherence length ξ0 (∼120 Å), showing that

the sample is in the clean limit [63, 54]. Further, the samples were given to us “as is”, i.e.

they were not cut either mechanically, chemically or electrically; neither were they polished

in any way. Previous samples which were cut using spark-cutting, and polished, did not give

us a smooth signal.

I obtain the value of Ga using the method in Chapter 2. The value of Ga obtained this

way has an error of ±10 %, since our sample has a rectangular basal area instead of square

[29]. To obtain Gb and Gc we make use of the cubic symmetry of the crystal and assume that

the total change in penetration depth from the three orientations are equal, i.e. ∆λa(Tc) =

∆λb(Tc) = ∆λc(Tc). From this equality, and the value of Ga, we can calculate Gb and Gc.

Fig. 5.1 shows ∆λi(T ) as functions of temperature. All three curves vary strongly at

low temperatures, inconsistent with exponential behavior expected for isotropic s-wave su-
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perconductors. On the other hand, the variation is not linear, but has an obvious upward

curvature, unlike the low-temperature behavior expected for pure d -wave superconductors.

A fit of the low temperature data (up to 0.55 K ≈ 0.3 T c) to a variable power law, ∆λ(T)

= A + BT n yields n = 1.9 ± 0.1 for H ‖ a, b, and n = 2.0 ± 0.1 for H ‖ c. The uncer-

tainty in n is not a consequence of the uncertainty in G, but rather of the somewhat uneven

faces of the crystal and the range of fit. Within the uncertainty in G the three curves are

consistent with one another. There is also a small upturn near 0.62 K, which might distort

the low-temperature fit and cause the power law to deviate from T 2. The NQR spin-lattice

relaxation rate also changes around this temperature, however, the origin is not clear at

present [58, 63]. A non-unitary state has the unique feature that spin-up and spin-down

Cooper pairs have different excitation gaps [64]. If the SC state in PrOs4Sb12 is a TRSB

state, then this upturn may be due to the contribution from the smaller gap [61]. It is

interesting to note that a fit of the ∆λ(T ) from 0.6 K to 1.1 K, to the same variable power

law, gives an exponent of about 3, consistent with n ≈ 4 obtained for specific-heat data over

the same temperature range [54].

Using the value of λ(0) = 3440 Å from µSR measurements [56], we calculated the su-

perfluid density ρs from our data. We follow the procedure in Ref. [65] to compute the

experimental superfluid density, using the T 2 fit to estimate the small difference between

λ(0) and λ(0.1 K). Fig. 5.2a shows ρs(T ) for all three field orientations at low temperatures.

In each case, a fit of ρs(T ) to a variable power law, ρs(T ) = 1 − αT n also yields n ≈ 2, from

0.1 K (∼ 0.05 T c) to 0.55 K. Once again this suggests the presence of low-lying excitations,

incompatible with an isotropic SC gap.

Several theoretical proposals have been put forward to understand the two SC phases

[66, 67, 59]. To explain the behavior of the angle-dependent, magneto-thermal-conductivity
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Figure 5.2: (a) Low-temperature superfluid density ρs(T ) = [λ2(0)/λ2(T )] calculated from
∆λ(T ) data in Fig. 5.1, for all three field orientations. (©) H ‖ a, (4) H ‖ b, (×) H ‖ c.
Using ∆0(0)/kBT c = 2.6, the solid lines are the calculated effective superfluid density ρeff

s

corresponding to gaps II, III, A and B. The dotted lines correspond to ρs(H ‖ b) and
ρs(H ‖ a, c) for gap B. (b) The same calculated curves over the entire temperature range.
Only the ρs(T ) data for H ‖ a are shown.
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Figure 5.3: Polar plots of gap functions (II), (III), (A) and (B).

results [60], Maki et al. [66] proposed three possible SC gap functions for PrOs4Sb12. In

particular, for the low-field (L) phase, two gap functions were proposed:

f(k) = 1− k4
y − k4

z (II) (5.1)

having four nodes, and

f(k) = 1− k4
y (III) (5.2)

with two point nodes. The gap function is ∆(k) ≡ ∆0f (k), with the form factor f (k) normal-

ized to unity and ∆0 the temperature-dependent maximum gap value. As we will see, both
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functions lead to a linear temperature dependence for the superfluid density. Consequently,

we consider two further gap functions:

d(k) = ŷka (A), (5.3)

a line-node gap, and

d(k) = ŷ(ka + ikc) (B), (5.4)

for which ∆(k) = ∆0 |d(k)|. Gap B has two point nodes along the [010] directions and

a gap dispersion identical to the superfluid 3He A-phase, ∆(k) = ∆0 |ka ± ikb| = ∆0 sin θ;

hence, they give identical temperature dependences of ρs. Polar plots of these gap func-

tions are shown in Fig. 5.3. We have assumed the gap maximum ∆0(T ) to have the form

∆0(T ) = δsckT ctanh
{

π
δsc

√
a(∆C

C
)(Tc

T
− 1)

}
[9], where δsc ≡ ∆0(0)/kBTc is the only variable

parameter, T c = 1.85 K, a = 2/3, and the specific heat jump ∆C/C = 3 is an experimentally

obtained value [68].

A problem arises immediately with point nodes. If there are only two point nodes in the

[010] directions, breaking cubic symmetry, then one would expect ∆λb to tend toward an

exponential temperature dependence at low temperatures. We show this in Fig. 5.2, where

we have calculated the superfluid density for gap B for fields along [010] and either [100]

or [001]. A measurement along [010] (H ‖ b) would indeed give exponential behavior while

measurements in orthogonal directions (H ‖ a, c) give a strong temperature dependence.

However, our experimental data show otherwise — there is an almost identical T 2 superfluid

response in all three field orientations. While it is possible that, in the absence of an external

agent, the sample will randomly choose one, and only one, axis along which to locate the

nodes each time it becomes superconducting, it is much more likely to develop a domain

structure. We attribute this to the fact that as the sample goes superconducting below Tc,

cubic symmetry is broken due to the coupling between the SC order parameter and strain [67].

However, there is no guiding mechanism to suggest where in the x, y and z directions the point
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nodes should be. The result is a domain structure in PrOs4Sb12 where each domain contains

only two point nodes in one of the three possible crystallographic directions. The total

superfluid response is thus the sum of T 2 contributions from each two-point-node domain,

giving also a T 2 response, independent of field orientation. This coupling between the SC

order parameter and strain is similar to the case of magnetostriction in ferromagnets. Such

a situation also arises in Cromium (Cr) [69], where the coupling between the spin-density-

wave (SDW) and strain wave causes the wave vector Q of the modulation to point along

any {001} direction in the bcc Cr lattice. In bulk Cr all three possible orientations occur

with equal probability. A Cr single crystal thus has multiple domains, with each domain

corresponding to one of three possible Qx, Qy and Qz regions [70] — the “poly-Q” state.

Tensile stress in applied along one cube axis while cooling through TN , however, produces a

“single-Q” state with all domains having their Q’s pointing in the same direction, along the

stress axis [71]. Evidence that a domain with only two point nodes can form in PrOs4Sb12

was reported in Ref. [60], where nodes were seen only along a single [010] axis. We suggest

that the experimental setup of Ref. [60] may have strained the sample to produce a single

domain, analogous to the single-Q state of Cr.

Assuming the existence of domains, we plot an effective superfluid density ρeff
s by taking

the average of [100], [010] and [001]-superfluid densities, with equal weight from each com-

ponent. The superfluid densities in different directions are evaluated using the expression

ρs(H ‖ x) = 1− 3

N0

∑

k

(k̂2
y + k̂2

z)
∂f

∂Ek
, (5.5)

where x, y, z = any permutation of a, b, c. N0 is the normal-state DOS at the FS, f =

[exp(Ek/kBT )+1]−1 is the Fermi function, and Ek = [ε2(k) + ∆(k̂, T )2]1/2 is the quasiparticle

energy, and ∆(k̂, T ) is each of the four gap functions mentioned earlier. For example, when
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Figure 5.4: Quasiparticle DOS for the gap functions II (full line), III (short-dashed line), A
(short-dash-dotted line) and B (short-dotted line).
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H ‖ a, the screening currents are in the b and c directions. So for this case, k̂2 = k̂2
y + k̂2

z =

sin2θ sin2φ + cos2θ. Averaging it over the FS gives another factor 1
2
. Hence

ρs(H ‖ a) = 1− 3× 2

2π

∫ 2π

0

∫ ∞

0

∫ 1

0

∂f

∂E

1

2
[(1− cos2 θ)sin2φ + cos2 θ]d(cos θ)dξdφ. (5.6)

The component superfluid densities for Gap B are shown as two dotted lines, and ρeff
s as

a solid line, in Fig. 5.2. Clearly, the agreement between data and ρeff
s is very good. We chose

the strong-coupling value δsc = 2.6 here, taken from Ref. [58]. Using δsc = 2.1 from Ref. [56]

gives a worse fit. For the other gap functions, we also calculated ρeff
s (shown in Fig. 5.2) and

ρs(H ‖ a, b, c) (not shown here) — all of them give linear temperature dependences and fall

far from the experimental data. The effective quasiparticle DOS for all four gap functions

is also shown in Fig. 5.4. Our data therefore suggest that PrOs4Sb12 is a strong-coupling

unconventional SC. The superfluid data are best fit with a 3He A-phase-like gap, with two

point nodes on its FS. Both the field-direction-independence of the superfluid data, and the

nice fit of the data to ρeff
s , strongly suggest that PrOs4Sb12 has multidomains. Note that

though Gap B is a unitary gap, our low-T data can also be fit [72] by the two-point-node

L-phase non-unitary gap proposed by Ichioka et al. in Ref. [59], with similar DOS structure.

Hence our data does not contradict the non-unitary result of Aoki et al. [61].

It is already apparent in Fig. 5.2a that the data deviate from the proposed gap function

above 0.6 K. This is even clearer in Fig. 5.2b, which shows ρs(T ) for H ‖ a from 0.1 K to

Tc. The other two field orientations give almost identical temperature dependence. None of

the four gap functions fits the data over this larger temperature range. This could be due to

the opening up of the smaller gap caused by the non-unitarity of the SC state, as mentioned

earlier. Also, strong changes in the mass renormalization in different sheets have been found

in de Haas van Alphen experiments [62]. These changes may cause the distribution of values

of the SC gap measured in tunneling measurements [57], and strengthens both the idea
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Figure 5.5: ∆λ(T ) for all three field orientations near T c. The curves have been offset for
clarity. The arrows indicate the second superconducting transition at 1.74 K.

that the mass renormalization and superconductivity are of the same origin, i.e. that the

quadrupolar fluctuations favor SC correlations, as well as the possible multiband character

of superconductivity in this material [57]. Hence a multiband analysis, similar to those

performed on MgB2, might be required to fit the superfluid data over the entire temperature

range.

Finally, we turn to the region near T c. Fig. 5.5 shows ∆λ(T ) near T c for all three

field orientations. Three features can be seen: the onset of superconductivity at 1.88 K, a

strong but broad shoulder near 1.8 K, and finally a weak shoulder near 1.74 K (observable

even in the H ‖ c data). In another sample from the same batch, only the first and third

features were observed. The 1.88 K and 1.74 K features confirm the two superconducting

transitions seen in the specific-heat measurement [68], and suggested by angle-dependent

thermal conductivity measurements [60]. The origin of the 1.8 K shoulder is unknown. In
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the ρs(T ) plot, ρs already approaches zero near 1.7 K. So these features were not discernible

there. Also, we did not see any anomaly around T ∗ = 2.3 K that was observed in Ref. [58].

5.3 Conclusion

In conclusion, we report measurements of the magnetic penetration depth λ in single crystals

of PrOs4Sb12 down to 0.1 K using a tunnel-diode based, self-inductive technique at 21 MHz,

with the ac field applied along the a, b and c directions. In all three field orientations λ and

superfluid density ρs tend to follow a quadratic power law. We have calculated ρs for various

gap functions, finding that the data are best fit by the 3He A-phase-like gap function with

two point nodes on the FS. We also observe the double transitions near 1.75 K and 1.85 K

seen in other measurements.

For this project I acknowledge Dr. D. Lawrie and Professor Y. Matsuda for useful discus-

sions. Special thanks to Professor K. Machida for significant contributions. I thank Professor

H. Sugawara for giving us the samples.
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Chapter 6

YNi2B2C & LuNi2B2C: Multi-band
superconductors?

6.1 Introduction

The family of quarternary compounds RENi2B2C (RE = rare-earth) have attracted much in-

terest due to the considerable interaction among their superconducting and magnetic proper-

ties [73]. The non-magnetic members of the family, YNi2B2C and LuNi2B2C, serve as useful

candidates for elucidating the symmetry of the order parameter, since there is no mag-

netic signal to interfere with the superconducting one. Generally it has been thought that

the gap function of these materials exhibits an isotropic s-wave symmetry [74, 75, 76, 77].

However, some experiments have shown evidence of low-energy quasiparticle excitations:

power-law temperature dependence, and
√

H-dependence, of the specific heat [78, 79]; non-

BCS gap ratio from microwave impedance measurements [80]; scattering below the energy

gap from Raman measurements [81]. Ultra-high resolution photoemission experiments on

Y(Ni1−xPtx)2B2C [82] gave very strong evidence of an extremely anisotropic s-wave gap,

though the gap parameters giving the best fit are d-wave-like. Thermal conductivity mea-

sured down to 70 mK also offered compelling evidence for the presence of delocalized quasi-

particles at the lowest energies, suggesting that the gap minimum ∆min is at least 10 times

smaller than the gap maximum, and possibly going to zero at nodes [83]. Izawa et al.

reported a field-directional-angle dependence of the thermal conductivity in YNi2B2C that
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suggested point nodes along <100> directions [84]. Park et al. also reported field-directional-

angle dependence of heat capacity in YNi2B2C that showed 4-fold symmetry [85]. Local

density approximation (LDA) band structure calculations predict a rather complicated band

structure near EF , with at least four bands crossing the Fermi level [86]. DHvA data [87] also

clearly showed the presence of six different sections Fα, . . . , F η with roughly two or three

groups of Fermi velocities. However, the multiband character and the anisotropic Fermi

surface have been widely ignored in various experimental analysis. One exception is Shulga

et al. [88], who used an effective two-band model to quantitatively explain upper critical

field peculiarities of superconducting YNi2B2C and LuNi2B2C. Moreover, Terashima et al.

[89] observed dHvA oscillations from a small electron pocket (named α) in the vortex state

down to 2 T. This surface encloses only 0.3% of the first BZ, and contributes little to the

density of states (DOS), and so would hardly influence the average superconducting gap.

They argue that the gap opening on this α Fermi sheet is much smaller than the gap on

other parts of the FS.

Here we present and analyze theoretically data of the in-plane magnetic penetration

depth λ(T) in high-purity single crystals of YNi2B2C (Tc = 15.9 K) and LuNi2B2C (Tc =

15.5 K) from Tc down to 97 mK. Besides the usual diamagnetic drop of λ(T) at Tc, a second

drop around 1 K was observed. The magnitude of this drop is ∼1% of the total signal. We

show that this feature cannot be explained by a single anisotropic s-wave superconducting

gap. We also consider a second gap with a much smaller magnitude that reveals itself at ∼1

K. We explore whether a two-gap model first suggested by Suhl et al. [90] can quantitatively

explain the data.
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Figure 6.1: ∆λ(T ) for T = 0.1 K–17.5 K. Inset shows the low-temperature region in greater
detail.
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6.2 Data and Analysis

6.2.1 YNi2B2C

Fig. 6.1 shows ∆λ(T) as a function of temperature for the sample. The inset shows the

low-temperature region. We see that as T approaches 1 K, ∆λ(T) does not flatten off

exponentially, but instead decreases further as T goes down to 100 mK. This might be

indicative of either a second superconducting transition, or the opening up of a second

superconducting gap at ∼1 K.

Suhl et al. considered a multi-band BCS model to explain certain experimental results

of transition metals [90]. For the two-band case, the equations for the two gaps A and B are

A = V11N1AF (A) + V12N2BF(B)

B = V21N1AF(A) + V22N2BF(B) , (6.1)

where

F (A) =

~ω∫

0

dε
tanh

[
(ε2+A2)1/2

2kBT

]

(ε2 + A2)1/2
, (6.2)

and similarly for F (B). Subscripts 1 and 2 denote the band number. Gap A opens up on

band 1 and gap B opens up on band 2. ε = electron kinetic energy relative to EF , Ni = DOS

of the ith band at the Fermi level, and Vij = the averaged interaction energy resulting from

phonon emission and absorption by band i-j processes, minus the corresponding shielded

Coulomb interaction terms [88]. The presence of interband coupling causes (a) both gaps to

open up at the same Tc, (b) one gap to be larger than the BCS gap and the other smaller, and

(c) deviations from BCS temperature dependence for each gap. Intraband coupling further

modifies slightly the temperature dependence of the gaps.
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Figure 6.2: Superfluid density ρs(T) of YNi2B2C. (©) Data. (×,+,?) Calculation using
Suhl’s multi-gap model. The parameters are listed inside the figure.

Figure 6.3: Reduced gaps A(T), B(T), in units of kBTc, for 2-d-wave-gap model mentioned
in the main text, to fit the ρs data for YNi2B2C.
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Fig. 6.2 depicts the superfluid density ρs(T)≡ λ2(0)/λ2(T ) of YNi2B2C (circles). Notice

the unambiguous upturn near 0.1–0.2 Tc. To fit the data, we tried the following gap sym-

metries: (1) 1-gap isotropic s-wave, (2) 1-gap d-wave, (3) 1-gap anisotropic s-wave (with

∆max/∆min ≈10), (4) 2-gap anisotropic s-wave, and (5) 2-gap d-wave. We fix Tc (15.9 K),

using the onset of superconductivity from magnetization data. The parameters we vary are:

V11N1, V22N2, V12N2, V21N1, as well as d1 (the contribution of band 1 to the total super-

fluid density). We found that the one-gap pictures are inadequate to explain the upturn at

2 K. Turning to the two-gap models, we obtain a moderately good fit if we assume that (1)

both gaps are d-wave, and (2) only interband coupling is present, with only 3 parameters

required: V12N2=13, V21N1=0.04, and d1=0.48. We obtain a better fit if we include a small

amount of intraband coupling in band 2: V22N2=0.1, as shown in Fig. 6.2. Fig. 6.3 shows

the temperature-dependence of the two d-wave gaps A and B according to Suhl’s model.

If both gaps were anisotropic s-wave gaps with ∆max/∆min ≈13, there would be virtually

no difference in temperature dependence. Deviations between the data and fit might result

from (1) the intermediate to strong-coupling nature of the electron-phonon interaction in

this sample, whereas our model assumes weak-coupling; (2) there may be more than two

gaps opening up at Tc due to the complicated Fermi surface. Shulga et. al. [88] already used

2 bands to explain the upper critical field data, specifically the positive curvature near Tc.

The low-temperature ∆λ downturn is also observed in the magnetic counterpart, HoNi2B2C

[91]. Thermal conductivity data, which shows a rapid increase in quasiparticle density at

very low temperature (70 mK) and field (≤ Hc1), could alternatively be explained by the

presence of a second, smaller gap rather than a very large gap anisotropy, which is unprece-

dented for an s-wave superconductor [83]. If in our 2-gap model V12 ≈ V21, then N2/N1 ≈
325, which suggests that band 1 should be the α-band with a smaller DOS. This implies that

the larger gap (A) opens up on the band with the smaller DOS (α), thus contradicting the

results of Terashima et al. [89], which showed that the smaller gap opens up on the small

α-pocket with a small DOS. The Suhl-Mattheiss model, which ascribes the pairing potential
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to interband terms, thus causes the larger (smaller) gap to open on the band with the smaller

(larger) DOS, contrary to experimental results. We must question, therefore, whether the

downturn is intrinsic. Further evidence for an extrinsic effect comes from ∆λ(T ) data taken

recently on a floating-zone-grown YNi2B2C sample. The shape of the curve looks very differ-

ent from the flux-grown sample above — the downturn of this sample is sharper and larger.

When we converted ∆λ to ρs, the initial drop on ρs is absurdly large (of course we assumed

that λ0α = λ0β, which is not physical). We shall not bother to show those figures here. A

fuller discussion of these low-T downturns is deferred to Section 6.3.

6.2.2 LuNi2B2C

We use the same method of analysis, i.e. the Suhl two-gap model, to explain the superfluid

data for LuNi2B2C. Fig. 6.4 shows ∆λ(T ) over the entire temperature range. Notice the

downturn below ∼1 K. Fig. 6.5 shows the superfluid density ρs(T ), with the data in circles

and the two-gap fit as a dotted line. As indicated in the figure, the best fit is obtained if one

uses a 2-gap model with parameters V12N2=13, V21N1=0.04, V11N1=0.5 and d1=0.83, with

the smaller gap being an anisotropic s-wave gap, and the larger gap a d-wave gap. Fig. 6.6

shows the temperature dependence of the two gaps A and B. As is the case for YNi2B2C,

the larger gap opens on the small α-pocket, making the fit unrealistic.

Considering the unreasonable values in the 2-band fits, we turn now to an alternative

explanation. Two recent theoretical studies by Yuan et al. [92] and Maki et al. [93] showed

that, if the borocarbides, in particular the non-magnetic members, have superconducting

gaps with s+g symmetry, a gap in the quasiparticle energy spectrum is found to open even

for infinitesimal impurity scattering, giving rise to exponentially activated thermodynamic

response functions, such as the specific heat, the spin susceptibility, the superfluid density,
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Figure 6.4: ∆λ(T ) for LuNi2B2C. Notice the downturn near 1 K.

Figure 6.5: Superfluid density ρs(T ) for LuNi2B2C. (©) Data. (Dotted line) Suhl’s 2-band
best fit, with parameters listed in the figure.
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Figure 6.6: Reduced gaps A(T), B(T), in units of kBTc, for 2-gap model to fit ρs data for
LuNi2B2C.

Figure 6.7: Superfluid density ρs(T) for different values of impurity scattering rate Γ. (©)
LuNi2B2C data, assuming ρs = 0 at 0.1 K. (4) LuNi2B2C data, assuming ρs = 0 at 1.4 K.
Calculated ρs for (Dash) Γ = 0, (Dot) Γ = 4.8 K, (Solid line) Γ = 20.3 K.
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and the nuclear spin lattice relaxation. In Maki’s model, the s+g superconducting gap in

the pure limit is given by [93]

∆pure

k
(T ) =

∆(T )

2
(1− sin4 θ cos 4φ), (6.3)

where ∆(T ) is the k-independent, T -dependent gap.

The suppression of Tc by impurities follows the Abrikosov-Gorkov-like expression [93]

ln

(
Tc

Tc0

)
= 0.169

[
ψ

(
1

2

)
− ψ

(
1

2
+

Γ

2πTc

)]
, (6.4)

where the impurity scattering rate Γ can be calculated. ψ is the digamma function and Tc0

is the superconducting transition temperature of the purest sample. One then substitutes Γ

into the expression for the k-independent impurity gap ωg

ωg(T, Γ) =
2Γ

1 + 2Γ
∆(T,Γ)

. (6.5)

The effective gap ∆eff

k
is then [94]

∆eff

k
(T, Γ) =

∆(T, Γ)

N

(
1− sin4 θ cos 4φ +

2Γ
∆(T,Γ)

1 + 2Γ
∆(T,Γ)

)
, (6.6)

where N is the normalization factor.

We try next to fit Maki’s impurity s+g model to LuNi2B2C. Using Tc0 = 16.1 K and Tc

= 15.5 K from Ref. [85], and ∆0 = 2.1kBTc [95], we obtain Γ = 4.8 K. We then substitute

these values into Eqn. 6.6 and Eqn. 2.53 to calculate the superfluid density. Fig. 6.7 shows

the calculated superfluid density for different values of Γ. We see that in the presence

of impurities (and hence the impurity gap), there is a gradual evolution from linear to

exponential at the lowest temperatures. The opening up of an energy gap in an impure

sample, therefore, does not result in a sudden downturn (upturn) in the penetration depth
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Figure 6.8: Superfluid density ρs(T ) for LuNi2B2C, assuming ρs = 0 at 1.4 K. (©) Data.
Lines = 1-gap anisotropic s-wave calculation for various values of ∆min/∆max.

(superfluid density). However, this impurity model can at least qualitatively explain the

data of Carrington et al., as described in Paragraph 6 above — the process of annealing

presumably removes interstitial vacancies in the sample, thus giving linear-T behavior.

Because the downturn may not be intrinsic, we take ∆λ = 0 (and hence ρs = 1) at 1.4 K,

to obtain the superfluid density shown in Fig. 6.8. The circles indicate data, and the lines

indicate 1-gap anisotropic s-wave plots for various values of ∆min/∆max. It seems that the

best fit of the data is when ∆min/∆max = 0.45. This does not agree with thermal conductivity

data [83], which suggests that the gap minimum ∆min is at least 10 times smaller than the

gap maximum, and possibly going to zero at nodes. Fig. 6.7 also compares the “truncated”

superfluid density with Maki’s impurity model. To have a moderately good fit would require

Γ = 20.3 K, implying Tc = 14.0 K. The ∆λ data do not indicate such a low Tc.
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6.3 The Mystery of the Second Downturn

The comments in this section apply to all the rare-earth borocarbides that I have measured,

namely RENi2B2C (RE = Y, Lu, Er, Ho). In all these samples, the penetration depth data

revealed an additional downturn near 1 K, for example, in Fig. 6.4 for LuNi2B2C. Much has

been done to determine whether this downturn is extrinsic or intrinsic. Until today I am

unsure. I will list down the arguments/observations that suggest both ways.

(1) The samples I have initially measured come from two sources: (a) Pohang University,

South Korea (PSC), and (b) Ames Laboratory, Iowa State University. They are flux-grown

single crystals, either annealed or non-annealed.

(2) The downturn is seen in all the borocarbide samples I measured. For each material I

measured multiple samples from either the same or different batch, with similar results. This

suggests that this downturn is intrinsic, and is not a magnetic effect, since it is seen in the

non-magnetic samples (YNi2B2C and LuNi2B2C), as well as the magnetic ones (ErNi2B2C

and HoNi2B2C). One conjecture is that the low-temperature downturn is due to the opening

up of the second superconducting gap in the borocarbides. This is not surprising because in

the borocarbides there are at least 4 bands crossing the Fermi energy [96].

(3) Since the samples are flux-grown single crystals, Scanning Electron Microscope (SEM)

photographs of the surface reveal regions of high concentration of Ni (Ni:Lu = 9:1), com-

ing from the Ni2B flux used to grow the single crystals. Dr. David Lawrie, a postdoctoral

fellow from Professor Russ Giannetta’s group, measured the penetration depth of an Ames

LuNi2B2C sample down to 0.3 K. He also observed a downturn below about 1.5 K, but of

smaller magnitude than the PSC sample I measured. In a small dc field the downturn disap-

peared. Also, after etching the flux-rich regions from the surface, the downturn disappeared.

But the downturn re-appeared when the etched sample was re-annealed. Etching the surface

sometimes also revealed new regions of flux that sometimes penetrated through the sample!

Dr. Lawrie guessed that the downturn is both extrinsic and intrinsic.
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(4) A few months ago I obtained some ErNi2B2C and YNi2B2C samples, grown by the

floating zone method, from National Institute for Materials Science, Tsukuba, Japan. Sam-

ples grown using this method should contain far less flux than those grown by the flux

method. Also, these samples were annealed after growth, and so the amount of flux should

even be less. The penetration depth data on both samples, however, showed a huge down-

turn, at an even higher temperature! The ErNi2B2C signal, for example, did not show the

features that one would expect for this material, suggested by other measurements and con-

firmed by my measurement of the PSC sample. This is caused by the appearance of a very

large paramagnetic-like upturn that started at ∼4 K that drowns out the fine features one

would expect at 6 K and 2.3 K. So it seems that the flux-grown samples are purer than the

floating-zone ones. Based on this observation, one would think that the downturns in the

flux-grown samples are intrinsic, not due to flux, but perhaps related to the various amounts

of impurities in the samples, particularly those on the surface. It has been shown that, at

least for the magnetic members, the magnetic ordering depends very sensitively on surface

composition, on whether the different magnetic states come from the same region of the

sample’s surface [97].

(5) Recently I took SEM images of the Japanese YNi2B2C and ErNi2B2C samples, and

performed a energy dispersive X-ray (EDX) analysis on the surface. I found an abundance of

Yttrium or Erbium oxide on the surface. A normalized analysis of Y(Er) and Nickel for the

surface yielded a ratio of Y(Er):Ni ≈ 9:1! The penetration depth data on these two samples

also show a downturn below 1–4 K. So, whether there is an abundance of rare-earth over

Ni (floating-zone grown samples), or Ni over rare-earth (flux-grown samples), one essentially

sees the same qualitative features in ∆λ. This seems to contradict the popular belief that the

downturn is due to surface flux. When I performed the same EDX analysis on an exposed

portion of the bulk of the sample, the Y(Er):Ni ratio gives the correct value of 2:1. Perhaps
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the downturn in all these samples, irrespective of growth method, is due to the presence of

rare-earth oxide on the surface.

Although all the borocarbides I have studied exhibited downturns below ∼ 1 K, the

nature of the downturn is different. For the non-magnetic YNi2B2C and LuNi2B2C, there

was either a flattening of ∆λ before the onset of the downturn (flux-grown LuNi2B2C and

floating-zone-grown YNi2B2C), or a slight change of curvature all the way to 100 mK (flux-

grown YNi2B2C). Compare this with the magnetic borocarbides, where one sees an initial

upturn in ∆λ, before the onset of the downturn. Yttrium oxide, at least Y2O3, is an ex-

tremely stable ceramic. It is not known to be superconducting or even magnetic, but it

probably was never studied to 1 K. The other oxides (Er, Ho) are antiferromagnets — that

may explain the initial upturn in ∆λ (before the onset of the downturn) in these magnetic

borocarbides, as will be described in subsequent chapters. The upturn may be where the

Neel transition takes place. The Neel temperature of Er2O3 is 3.4 K [98].

(6) During the 2003 American Physical Society March Meeting, Dr. Andrew Carring-

ton’s group from UK reported penetration data for flux-grown LuNi2B2C and YNi2B2C down

to 1.4 K. They found that the temperature-dependence of λ depends markedly on surface

preparation. For a polished surface, an exponential temperature dependence characteristic

of an isotropic s-wave superconducting gap is measured. However, after annealing under

high vacuum, λ(T ) exhibits close to a linear, power law behavior suggesting the presence

of deep minima in the superconducting gap. To date, however, these results have not been

published, suggesting, perhaps, difficulty in reproducing these results consistently.

(7) Upper critical field (Hc2) data near Tc of LuNi2B2C [99] and YNi2B2C [95, 74] show

a positive curvature. Palistrant [100] showed that in two-band superconductors the temper-

ature dependence of Hc2 in the vicinity of Tc has a positive curvature due to the relation vF1

6= vF2 (vFn = velocity of electrons on n-th FS sheet). Contrast this with the one-band case,

where the curvature is negative.
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(8) Terashima et al. [89] performed de Haas-van Alphen (dHvA) experiments on YNi2B2C,

and found that there is a small superconducting gap opening on a small electron pocket (de-

noted α) part of the FS, and this gap is much smaller than the gap on other parts of the

FS. Since this α surface is very small, enclosing only 0.3% of the first Brillouin zone (BZ),

and contributes little to the density of states, it would hardly influence the average SC gap.

Their conclusion therefore does not conflict with the results of tunneling spectroscopy, nor

the specific-heat measurements, which determine a “DOS-weighted” average superconduct-

ing gap over all the pieces of the FS. Due to this very small area of the α surface, we would

expect it to contribute negligibly to the total superfluid density. So even if this second

superconducting gap does exist, it would be difficult to see it in my penetration depth mea-

surements.

(9) Even if one uses a two-gap model to interpret the data, one might be able to ignore

the contribution of the downturn to the total superfluid density. A pre-requisite of ignoring

this downturn is that the second gap originates from a different part of the FS, not from the

presence of impurities. Specifically, for a two-band system, the total superfluid density (not

normalized) is the sum of superfluid density from the two bands, i.e.

m∗
eff

λ2(T )
=

m∗
1

λ2
1(T )

+
m∗

2

λ2
2(T )

, (6.7)

where the subscripts denote bands “1” and “2”, m∗
i denotes effective electron mass in the

ith-band. m∗
eff , which we denote to be the effective mass of the two-band system, will be

derived later in this section.

At T = 0, Eqn. 6.7 becomes

m∗
eff

λ2(0)
=

m∗
1

λ2
1(0)

+
m∗

2

λ2
2(0)

. (6.8)
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So the normalized superfluid density is

λ2(0)

λ2(T )
=

m∗
1

λ2
1(T )

+
m∗

2

λ2
2(T )

m∗
1

λ2
1(0)

+
m∗

2

λ2
2(0)

=


 m∗

1
m∗

1

λ2
1(0)

+
m∗

2

λ2
2(0)


 1

λ2
1(T )

+


 m∗

2
m∗

1

λ2
1(0)

+
m∗

2

λ2
2(0)


 1

λ2
2(T )

≡ A

λ2
1(T )

+
B

λ2
2(T )

. (6.9)

Next we express λ, λ1 and λ2 as

λ = λ0 + ∆λ(T )

λ1 = λ10 + ∆λ1(T )

λ2 = λ20 + ∆λ2(T ), (6.10)

where the subscript “0” denotes the value at T = 0.

Expanding Eqn. 6.9 to first order in ∆λ, and suppressing the T -dependent notation, one

then obtains

λ2
0

(
1

λ2
0

− 2∆λ

λ3
0

)
= A

(
1

λ2
10

− 2∆λ1

λ3
10

)
+ B

(
1

λ2
20

− 2∆λ2

λ3
20

)
. (6.11)

But from Eqn. 6.9

1 =
λ2

0

λ2
0

=
A

λ2
10

+
B

λ2
20

. (6.12)

Hence Eqn. 6.11 becomes

∆λ =

(
λ0A

λ3
10

)
∆λ1 +

(
λ0B

λ3
20

)
∆λ2. (6.13)

One then sees, from Eqn. 6.13, that the contribution of ∆λ1 and ∆λ2 to ∆λ depends on

the prefactors (λ0A/λ3
10) and (λ0B/λ3

20). For example, if λ0A/λ3
10 ¿ λ0B/λ3

20, then a large
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∆λ1 would still not contribute much to ∆λ. Hence the relative contribution of ∆λ1 and

∆λ2 to ∆λ depends on the quantities m∗
eff , m∗

1, m∗
2, λ10, λ20 and λ0. λ10 and λ20 are purely

FS-quantities, i.e. they only depend on FS parameters of each of the two Fermi sheets.

Specifically, for the i-th Fermi sheet, assuming spherical [46],

λi0 ≡ λi(0) =

(
3c2

8πe2v2
F N(EF )

)1/2

, (6.14)

where vF is the Fermi velocity and N(EF ) is the DOS at the Fermi level.

But

N(EF ) =
m∗2

i vF

~3π2
, (6.15)

where m∗
i is the effective mass of the electrons on the i-th Fermi sheet.

Hence

λi(0) =

(
3c2π~3

8e2

)1/2
(

1

m∗v3/2
F

)
. (6.16)

m∗
1 and m∗

2 can be experimentally determined, for example, from dHvA measurements.

We can estimate m∗
eff by considering two limits: (1) m∗

eff (m∗
1 = m∗

2) = m∗
1, (2) m∗

eff (m∗
1 ¿

m∗
2) → m∗

2. A suitable empirical expression for m∗
eff that fulfills the above two conditions is

m∗
eff =

m∗
1

m∗
1 + m∗

2

m∗
1 +

m∗
2

m∗
1 + m∗

2

m∗
2. (6.17)

From the values of m∗
eff , m∗

1, m∗
2, λ10 and λ20, we can calculate λ0 from Eqn. 6.8. Finally,

we substitute all these values into Eqn. 6.13 to get the contribution of ∆λ1 and ∆λ2 to ∆λ.

Take YNi2B2C, for example. dHvA measurements [87] reveal that the two largest FS

sheets are the β-sheet (m∗
β = 1.50 m0, vFβ = 3.75 × 105 m/s, 22.5% of first BZ), and the

α-sheet (m∗
α = 0.55 m0, vFα = 1.93 × 105 m/s, 0.84% of first BZ). m0 is the free-electron

mass. From Eqn. 6.16 we get λβ0 = 740 Å and λα0 = 5470 Å. Eqn. 6.17 gives m∗
eff = 1.25 m0.
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Finally, putting all these numbers into Eqn. 6.13 gives, for YNi2B2C (band 1 = α-band, band

2 = β-band)

∆λ(T ) = 0.0007∆λα(T ) + 0.79∆λβ(T )

≡ A′∆λα(T ) + B′∆λβ(T )

≡ ∆λ′α(T ) + ∆λ′β(T ) (YNi2B2C). (6.18)

We see thus that the total change in penetration depth ∆λ(T ) is a weighted sum of change

in penetration depth from the individual bands. Since LuNi2B2C has similar band structure,

we can take Eqn. 6.18 to be applicable to LuNi2B2C. Note that the experimentally-obtained

value of the zero-temperature penetration depth for YNi2B2C and LuNi2B2C are 1207 Å and

759 Å respectively [95]. If we take these values as that of the larger gap arising from the

β-band, i.e. λβ(0), then for YNi2B2C, A’ = 0.0003 and B’ = 0.76, whereas for LuNi2B2C, A’

= 0.0008 and B’ = 0.79. This does not change our conclusion: the contribution of ∆λ1 to the

total penetration depth ∆λ is negligible, i.e. we will not be able to observe any appreciable

change in ∆λ due to the second, smaller gap from the α-band.

Our data for LuNi2B2C reveal a downturn below 1 K of about 50 Å. If we attribute all of

this downturn to ∆λ′α, then ∆λα ≈ 6 µm — an unreasonably large number. Any reasonable

value for ∆λα will give a negligible contribution to ∆λ.

The only scenario where the downturn needs to be considered is if λ(0) of the smaller

FS-sheet is the same as that of the larger sheet. Then the contribution of the smaller sheet

to ρs is significant — too significant, in fact, to be physically reasonable. Later in this

chapter, for illustrative purposes, I will analyze the data for YNi2B2C and LuNi2B2C using

the two-band picture, assuming λα(0) = λβ(0), and show that for the model to fit the data,

the contribution from the α-band to the total superfluid density is too large compared to its

area in the first BZ. Therefore, whether the downturn is extrinsic or intrinsic, it is safe to

ignore it, as it contributes to the total superfluid density (ρs) negligibly. The consequence
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of this is that we will not be able to determine the low-temperature behavior of ∆λ, and

hence, the nature of the low-energy excitations and the superconducting gap symmetry of

this material.

6.4 Conclusion and Future Work

In conclusion, we report measurements of the magnetic penetration depth ∆λ(T) in single

crystals of YNi2B2C and LuNi2B2C down to∼0.1 K using a tunnel-diode based, self-inductive

technique at 28 MHz. Besides the usual drop of ∆λ(T) at Tc, a second drop around 1 K

was observed. The magnitude of this drop is ∼1% of the total signal. We analyzed the data

using a two-gap model first proposed by Suhl et al. [90], and obtained a good fit. However,

(1) the fit assumes λ0α = λ0β, which is not valid, (2) the larger gap opens up on the small

α-pocket, which contradicts dHvA data [89] and (3) even if there is a second smaller gap

opening up on the α-pocket, the fact that λ0α = 7.4λ0β will cause the second gap to be

unobservable in the penetration depth data. We applied Maki’s impurity-gap model [93] to

LuNi2B2C, and found that it gives a good fit to data only down to 6 K, and so too, does

not explain the 1 K-downturn. We therefore hypothesize that the downturn is not intrinsic

to the bulk of the sample. In subsequent chapters, the same downturn is seen in ErNi2B2C

and HoNi2B2C, and we shall ignore them in our analysis.

As described in Section 6.3 Paragraph 5, the downturn may be due to the presence of the

surface oxide layer. Our future work on the borocarbides will be to run the same samples

after etching away this oxide layer (either chemically or mechanically), then quickly mount

the sample and evacuate the system. We run the risk of creating dislocations on the surface,

but this may be a lesser of two evils. I will also explore the possibility, from Ref. [101], of

using aqua regia to etch away the surface oxide layer.
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Chapter 7

ErNi2B2C: Effect of magnetic order on
superfluid response

7.1 Introduction

The magnetic members of the rare-earth (RE) nickel borocarbide family, RENi2B2C (RE =

Ho, Er, Dy, etc) have attracted much interest due to the interplay between magnetism and

superconductivity. ErNi2B2C, in particular, is a good candidate for study: superconductivity

starts at Tc ≈ 11 K, before antiferromagnetic (AF) order sets in at TN ≈ 6 K [103]. In

the AF state the Er spins are directed along the b-axis, forming a transversely polarized,

incommensurate spin-density-wave (SDW) state, with modulation vector modulation vector

δ = 0.553a∗ (a∗ = 2π/a) [104], before squaring up at lower temperatures [102]. Below TWFM

= 2.3 K a net magnetization appears, superposed on a modulation with a periodicity of

20a∗, confirming the microscopic existence of spontaneous weak ferromagnetism (WFM)

with superconductivity [102, 105]. The SDW and WFM states are illustrated in Fig. 7.1.

The fact that TN < Tc enables us to study the influence of magnetism on superconduc-

tivity. In particular, in this paper we study the pair-breaking effects of the various magnetic

orders on the superfluid response of this material. There have been various previous penetra-

tion depth measurements on ErNi2B2C. Jacobs et al. [80] measured the microwave surface

impedance of single-crystal ErNi2B2C from Tc down to 4 K, but did not see the AF tran-

sition at 6 K (Fig. 7.2). They concluded that the AF transition is not accompanied by
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Figure 7.1: Schematic of the spin density wave for T just below TN , and the (undistorted)
wave when it squares up below TWFM . Taken from Ref. [102].

Figure 7.2: Surface impedance data for ErNi2B2C single crystal. Taken from Ref. [80].

99



Figure 7.3: Normalized penetration depth λ(T )/λ(0) for a ErNi2B2C film for T < Tc/2. The
solid line represents theoretical expression from a theory (not described in this chapter.)
Inset = Data at the lowest temperatures plotted as a function of T 2 shows a linear slope.
Taken from Ref. [106].

Figure 7.4: Temperature dependence of λ, the superconducting penetration depth (¤), and
ξ, the superconducting coherence length (4), as measured using the flux line form factor in
a SANS experiment. Both quantities show distinct features near TN . Taken from Ref. [107].
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pair-breaking in zero field. Andreone et al. measured the microwave properties of ErNi2B2C

thin films — microwave surface resistance down to 2 K [108], and the change in penetration

depth from 2–5 K [106] (Fig. 7.3). They too, did not see any feature at TN , and attributed

it to the smearing of the susceptibility χ(T). Small-angle neutron measurements (SANS)

ware performed by Gammel et al. [107] on single-crystal ErNi2B2C down to 4 K (Fig. 7.4).

They observed a decrease of λ below TN , but could not account for it quantitatively. In our

paper we present high-precision measurements of the in-plane magnetic penetration depth

of single-crystal ErNi2B2C down to 0.1 K. We see features at TN and TWFM , and seek to

ascribe these to the pair-breaking effects of AF order at TN = 6 K and the weak ferromag-

netic ordering at TWFM = 2.3 K. In addition we also observe a small peak near 1.1 K. We

attribute that to a second weak ferromagnetic component. The superfluid density graph in-

dicates that these three magnetic orderings coexist with superconductivity, i.e. they do not

destroy superconductivity in this material. The two WFM peaks are the first observations

of its kind in penetration depth measurements.

7.2 Theory of Antiferromagnetic Superconductors

Various theories of antiferromagnetic superconductors have been proposed [109, 110, 111,

112, 113, 114, 115]. We shall follow that of Chi and Nagi [115], which is an extension of the

mean-field model by Nass and Levin [113, 114] to the regime where the superconducting gap

∆ is finite, and it includes the effects of spin-fluctuations, molecular field and impurities. In

the Chi-Nagi-Nass-Levin (CNNL) model, which applies specifically to superconductors with

TN < Tc, two temperature regimes are separately considered. First, in the paramagnetic

regime (TN < T < Tc), the depression of Tc with respect to the non-magnetic counterparts,

LuNi2B2C or YNi2B2C, is due to the exchange scattering of the conduction electrons from

the spins of the RE Er ions. Assuming that the exchange interaction is weak, this paramag-

netic phase of ErNi2B2C can be accounted for by the Abrikosov-Gorkov (AG) pair-breaking
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theory [116]. Second, in the AF phase (T < TN), the effect of pair-breaking depends on

the competition [117] between the temperature-dependent AF molecular field (with param-

eter HQ(T)) and spin-fluctuation scattering of the conduction electrons, the latter by both

magnetic RE ions (parameter 1/τ eff
2 ) and non-magnetic impurities (parameter 1/τ1). The

molecular field opens AF gaps on parts of the Fermi surface (FS), hence destroying the su-

perconducting gap in those areas. The non-magnetic impurities do not affect the BCS state

for an s-wave superconductor [118], but weaken the effect of the AF field by destroying the

pairing state for charge density wave or spin density wave [119]. Thus non-magnetic impu-

rities promote the recovery of superconductivity in the material. Moreover, the effect of the

molecular field and spin fluctuations are governed by a sum rule [117], and the competition

between them determines whether the AF phase gives increased or decreased pair-breaking

below TN . The total electronic effective magnetic scattering rate, 1/τ eff
2 , is temperature-

dependent and decreases with decreasing temperature (as the magnetic moments become

more and more frozen). The assumptions of the CNNL model are: (1) the effect of inelastic

scattering, which is relevant only for T ¿ TN , can be ignored; (2) BCS s-wave pairing and

(3) a one-dimensional (1-D) electron band that satisfies the nesting condition εk = −εk+Q.

The following equations of the CNNL model were used [115]. The temperature-dependence

of the superconducting gap is determined from

(AG equation) ln

(
Tc

Tc0

)
= ψ

(
1

2

)
− ψ

(
1

2
+

1

2πTcτ
eff
2

)
, (7.1)

(Renormalized frequency) ω̃n± = ωn + Y∓
ω̃n+

2λ+

+ Y±
ω̃n−
2λ−

, (7.2)

(Renormalized gap) ∆̃n± = ∆±HQ(T ) + X∓
∆̃n+

2λ+

+ X±
∆̃n−
2λ−

, (7.3)
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(Gap equation) ln
T

Tc0

= πT
∑{

1

∆

[
1

(U2
n+ + 1)1/2

+
(sgn)(Un−)

(U2
n− + 1)1/2

]
− 2

ωn

}
, (7.4)

where Tc0 is the transition of the non-magnetic member of the borocarbide family LuNi2B2C

or YNi2B2C, ψ is the digamma function, X± and Y± are linear combinations of the magnetic

(1/τ eff
2 ), non-magnetic (1/τ1) and spin-orbit (1/τso), scattering rates

Y± =
1

2

(
1

τ1

+
1

τ eff
2

+
1

τso

)
± 1

2

(
1

τ1

+
1

3τ eff
2

+
1

3τso

)
, (7.5)

X± =
1

2

(
1

τ1

− 1

τ eff
2

+
1

τso

)
± 1

2

(
1

τ1

+
1

3τ eff
2

− 1

3τso

)
. (7.6)

λ± = [ω̃2
n± + ∆̃2

n±]1/2; Un± = ω̃n±/∆̃n±; ωn = πT (2n+1) is the Matsubara frequency. In the

paramagnetic phase ω̃n± = ω̃n, ∆̃n± = ∆̃n and so Un = ω̃n/∆̃n.

The temperature-dependence of the superfluid density ρs is given by

ρs(T ) ≡
[

λ2(0)

λ2(T )

]2

=

[
πT

∑
n≥0

A(ωn)

]
, (7.7)

where

A(ωn) =
∆̃2

n+ − ω̃2
n+

4ε3
1

+
∆̃2

n− − ω̃2
n−

4ε3
2

+
1

4ε1

+
1

4ε2

+
1

ε1 + ε2

+
∆̃n+∆̃n− − ω̃n+ω̃n−

ε1ε2(ε1 + ε2)
, (7.8)

ε1 =| (ω̃2
n+ + ∆̃2

n+)1/2 |, ε2 =| (ω̃2
n− + ∆̃2

n−)1/2 | . (7.9)
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In the paramagnetic phase (TN < T < Tc), ρs is given by (P: paramagnetic)

ρP
s (T ) =

[
2πT

∑
n≥0

1

ε(1 + U2
n)

]
, (7.10)

where ε =| (ω̃2
n + ∆̃2

n)1/2 |.
We turn next to the parameters of the model. The effective magnetic scattering rate

(1/τ eff
2 ) from RE ions (1/τR

2 ) and magnetic impurities (1/τ i
2) is given by

1

τ eff
2

=





1
τ i
2

+ 1
τR
2

(T > TN)

1
τ i
2

+ 1
τR
2

(1− F 2(T )) (T ≤ TN)
, (7.11)

where
1

τR
2

= 2πnRN(0)J(J + 1)(gJ − 1)2I2. (7.12)

The AF molecular field is given by

HQ(T ) = HQ(0)F (T ), (7.13)

where HQ(0) = nRI | gJ − 1 |
√

J(J + 1). (7.14)

nR is the concentration of RE ions, I is the exchange interaction constant, gJ is the Landé

factor, and J is the total angular momentum of the RE ion. The function F(T) can be

approximated by the empirical relation

F (T ) = 1−
(

T

TN

)ν

, (7.15)

where ν is a parameter obtained by fitting F(T) to sublattice magnetization data.
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Figure 7.5: Resistivity from 0.1 K to 12 K. Data taken by T. Park.

The values of the renormalized frequency ω̃n and gap ∆̃n are determined self-consistently.

For a fixed temperature T and Matsubara index n, one determines ω̃n and ∆̃n from Equa-

tions 7.2 and 7.3 such that they also satisfy Eqn. 7.4. After computing the ω̃′ns and ∆̃′
ns for

a fixed T, one then substitutes these values into Eqn. 7.7 or 7.10 to obtain the superfluid

density ρs at that temperature T .

7.3 Data and Analysis

Details of sample growth and characterization are described in Refs. [103] and [120]. The

superconducting transitions of our sample were measured by low-field (H = 5 G) magneti-

zation, zero-field resistivity and zero-field specific-heat measurements. From magnetization

data, the onset of superconducting diamagnetism appears at T = 11.0 K and 90% of the

full diamagnetic magnetization is reached at T = 9.6 K. Resistivity data (Fig. 7.5) show

a superconducting onset at a higher temperature of 11.3 K, a small shoulder at 10 K, and

zero resistivity at 9.6 K. The mid-point of the specific-heat jump yields a Tc of 10.1 K [121].

A comparison of the three measurements show that bulk superconductivity occurs at Tc

≈ 10 K, whereas the initial decrease of resistivity at ∼ 11 K may be due to some sort of

filamentary superconductivity.
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Figure 7.6: Intensity of the first and third-order satellite peaks for the spin-density wave in
ErNi2B2C. Taken from Ref. [97].

The parameters of this model are determined as follows. We denote ∆0 and ∆(0) to be the

zero-temperature superconducting gap amplitude of YNi2B2C and ErNi2B2C, respectively.

Tunneling measurements yield ∆0 = 1.83Tc0 [122]. From the experimental values of Tc

(10.1 K for ErNi2B2C) and Tc0 (15.5 K for YNi2B2C), Equation 7.1 gives 1/τ eff
2 ∆0 = 0.227.

Taking 1/τ i
2 = 0, Eqn. 7.11 gives 1/τR

2 ∆0 = 0.227. The molecular field HQ(0) is obtained

as follows. For ErNi2B2C, using the values nR = 1/6, J = 7.5, gJ = 1.2, N(0) = 0.36

states/eV-atom-spin [123], we obtain I = 0.024 eV from Eqn. 7.12 which is comparable with

the experimental value of 0.031 eV [124]. This justifies our assuming 1/τ i
2 = 0, as any finite

τ i
2 would make I even smaller than the experimental value. Eqn. 7.14 then gives HQ(0)/∆0

= 2.6. From the temperature-dependence of the magnetic Bragg peak intensity below TN

[97, 102] (Fig. 7.6) we obtain ν = 4.8 in Eqn. 7.15. The only remaining free parameter of

the theory is 1/τ , the non-magnetic scattering rate.

To see the pairbreaking effects of the various magnetic orders we need to convert ∆λ(T)

to ρs(T), the superfluid density. To determine ρs(T) we need the value of λ(0), which has
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Figure 7.7: ∆λ(T ) from 0.1 K to 12 K.

been reported over a range from 700 Å [107] to 1150 Å [103]. We take λ(0) to be the

parameter in our model, keeping in mind that it has to be in the vicinity of the above two

values.

Figures 7.7, 7.8 and 7.9 show the temperature-dependence of the in-plane penetration

depth ∆λ(T). We saw a small shoulder at around 9.1 K, which Jacobs et al. also saw in their

surface reactance data near 9.5 K [80]. We also see the following features: (1) a slight dip in

∆λ(T) at TN = 6.0 K, (2) a peak in ∆λ(T) at TWFM = 2.3 K, and (3) another maximum at

1.1 K. The small dip at TN has not been seen in previous microwave measurements of either

thin-film [108] or single-crystal ErNi2B2C [80], but has been observed in SANS data [107]. For

dirty AF superconductors, the penetration depth is expected to decrease below TN by both

the susceptibility (χ) and mean free path (l) as λ ∼ λ′L/
√

1 + 4πχ, where λ′L ≈ λL(1+ξ0/l)

[125]. Neither effect, however, explains our data: First, using the mean-field expression for χ,

in order to reproduce the experimental dip, the peak in χ at Tc has to be at least an order of

magnitude larger than that suggested by magnetization measurements [103]. Second, from

our resistivity data we obtained Hc2(T), and hence we calculated ξ0(T), l(T), and lastly, λ′L.

Our values of λ′L also are unable to explain the magnitude of the drop of λ below TN . Our

conclusions are thus similar to Gammel et al. for their SANS data [107].
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Figure 7.8: ∆λ(T ) near the AF transition at 6 K.

Figure 7.9: ∆λ(T ) near the WFM transition at 2.3 K. The arrow indicates the temperature
(1 K) where ρs is defined to be zero, i.e. the downturn below 1 K is ignored.
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Figure 7.10: ρs(T) from 0.1 K to Tc. (©) data. Solid squares = Paramagnetic fitting curve.
The arrow denotes Néel temperature at 6 K.

Figure 7.11: Chi-Nagi model calculation for the superconducting gap ∆. Solid line = BCS
temperature-dependence. (©) Paramagnetic gap. Solid squares = Incorporating AF phase
below TN , for different values of 1/τ∆0.
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Figure 7.12: ρs(T) from 0.1 K to Tc. Solid circles = data. Open squares (triangles, crosses)
= AF-phase fitting curves for 1/τ∆0 = 20 (22, 24).

Figure 7.13: Solid squares = Superconducting gap obtained from tunneling measurements.
Solid line = BCS calculation. Taken from Ref. [126].
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As described in Section 6.3 we neglect the downturn below 1 K when we convert to su-

perfluid density ρs, i.e. we assume ρs (T=1 K) = 1. Converting to ρs in Fig. 7.10, we

see that AF order at TN has negligible effect on superconductivity — ρs increases only

marginally. The best fit to Eqn. 7.10 (solid squares) is obtained when λ(0) = 1100 Å; we

assume paramagnetism from T = 0 to Tc, neglecting AF order, with parameter 1/τ∆0 =

18. The paramagnetic curve is almost unchanged if one uses 1/τ∆0 = 20 or 22. We see that

the paramagnetic curve fits well with the experimental data, even without taking AF order

into account. We suggest two possible explanations for this: First, there is near-complete

cancellation between the effects of the molecular field and spin-fluctuation scattering, such

that there is negligible change in pair-breaking at TN .

Fig. 7.11 shows the calculated superconducting gap amplitude ∆(T ) for various values of

1/τ∆0, as well as the paramagnetic curve. The normalized paramagnetic gap (open circles)

agrees excellently with the BCS gap (solid line). Tunneling measurements also show that

∆(T ) follows the BCS curve above TN [126] (Fig. 7.13). Next, as shown in Fig. 7.11, in

the AF phase, as 1/τ∆0 is increased, superconductivity is gradually recovered, as evidenced

by the increase of ∆(T) (see the square curves in Fig. 7.12). When 1/τ∆0 = 24, ∆ is only

slightly depressed below the BCS value, in agreement with tunneling data [126, 101]. This

value of 1/τ∆0 corresponds to a mean free path (mfp) of 49 Å.

To see if this is reasonable, we take ∆(0) = 1.83Tc for ErNi2B2C [122], for which the BCS

coherence length ξ∆
0BCS = ~vF /π∆(0) = 470 Å, where vF = 3.6 × 105 m/s is taken from

band-structure calculations for LuNi2B2C and YNi2B2C [127]. Using the relation

Hc2(0) = 0.693Tc(
dHc2

dT
)
∣∣∣
Tc

, (7.16)
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and dHc2/dT |Tc (H ‖ c) = −2.67 kOe/K [103], we obtain the coherence length

ξHc2
0 =

√
φ0

2πHc2(0)
= 130 Å. (7.17)

Finally, using the relation [95]

ξHc2
0 = 0.85(ξ∆

0BCSl)1/2, (7.18)

we obtain the mfp l = 42 Å. On the other hand, from the resistivity value just above Tc, ρ(T ∗
c )

= 5.8 µΩ-cm, we get l = 56 Å. These two values agree well with the value of 49 Å calculated

from 1/τ∆0 = 24 obtained earlier, implying that this particular value of the non-magnetic

scattering rate needed to explain our ρs data is consistent with Hc2 data. Note that this

value of mfp calculated from Hc2 data does not depend on the exact value of Tc. Also, the

prefactors 0.693 and 0.85 in the above relations are for materials in the dirty limit. Here l

< ξ0, so our ErNi2B2C sample may be considered as “quasidirty”. Moreover, in this sample

the non-magnetic scattering rate (1/τ) is at least two orders of magnitude larger than the

effective magnetic scattering rate (1/τ eff
2 ), thus the mfp value is largely determined by 1/τ .

Our mfp value, however, is smaller than the 90 Å obtained from resistivity measurements

just above Tc in Ref. [128]. The CNNL model is thus able to explain our superfluid density

data, both qualitatively and quantitatively. Our data, in agreement with others, also shows

that AF order coexists with superconductivity below TN .

We turn next to an alternative explanation for the negligible change of ρs at TN . Ra-

makrishnan and Varma [112] predicted that for materials with a nested FS, since the peak

in susceptibility and the joint density of states (defined as the difference between the suscep-

tibility in the superconducting state and the normal state) occur at the same Q-value, one

should expect an increase in pair-breaking at TN . Conversely, a non-nested FS will give rise

to decreased pair-breaking at TN (see Fig. 7.14). Two-dimensional angular correlation of
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Figure 7.14: (a) Schematic representation of the q-dependence of the conduction-electron
susceptibility for the normal state and the superconducting state for a metal with a spherical
FS. (b) Same as (a) for a metal with a FS with nesting near q = G. Taken from Ref. [112].
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Figure 7.15: The experimental (top) and calculated (bottom) FS topology of LuNi2B2C. The
calculation is of the FS in the third band in the (001) plane through the Γ point. The arrow
indicates the nesting feature. Taken from Ref. [123].

electron-positron annihilation radiation measurements show that only one out of the three

FS sheets in LuNi2B2C possesses nesting properties, thereby accounting for the propensity

for magnetic ordering found in the other magnetic members of the RE nickel borocarbides

[123] (Fig. 7.15). Also, Dugdale et al. [123] estimated that the fraction of the FS that would

be able to participate in nesting is only 4.4%. Contrast this with CNNL model, which as-

sumes perfect 1-D nesting. Hence the increased pair-breaking due to partial nesting on one

FS sheet is compensated by decreased pair-breaking by the other two sheets, resulting in

negligible change in pair-breaking at TN .

As temperature further reduces below TN , the theoretical curve in Fig. 7.10 overestimates

the experimental curve below 3 K (∼ 0.3Tc). This is due to additional pair-breaking effects

of WFM, which shows up as a small peak near TWFM = 2.3 K (see Fig. 7.9). This is the first

observation of WFM in penetration depth measurements. The small dip in superfluid density

shows that this WFM slightly depresses, but does not completely destroy, superconductivity,

demonstrating the coexistence of WFM and superconductivity. We model this WFM by
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Figure 7.16: ρs(T ) from 0.1 K to Tc. (©) data. Solid squares = Fitting curve incorporating
WFM.

including a temperature-dependent magnetic impurity scattering rate 1/τWFM
2 = 1/20(gJ −

1)J(J + 1)(1 − T/TWFM)ν′ (with the same value of gJ and J as before), and adding this

to the previous effective magnetic scattering rate, i.e. 1/τ total
2 = 1/τ eff

2 + 1/τWFM
2 when

T < TWFM . The pre-factor 1/20 arises from the fact that one out of every 20 spins contributes

to the WFM [129], giving rise to a weak magnetization. The temperature dependence (1 −
T/TWFM)ν′ is analogous to the molecular field formulation. We obtain ν ′ ≈ 2 from Jensen’s

calculation [130] or Choi and Canfield’s data [102, 105]. Fig. 7.16 shows ρs when one accounts

for WFM. Agreement between theory and data is good. The dip in ρs is reproduced, though

it still overestimates ρs near 3 K. This can be explained by neutron-scattering data, which

shows that this weak ferromagnetic component already shows up at 3 K [102]. There is

as yet no direct measurement of superconducting gap amplitude at this temperature range,

though our model predicts a drop in ∆ there.

Finally we turn to another small peak in ∆λ near 1.1 K (see Fig. 7.9), which looks

similar to the WFM peak at 2.3 K. This peak has not been observed elsewhere, mainly

because experiments have not been carried out at such low temperatures and high precision.

115



We conjecture that this is a second weak ferromagnetic component, of similar origin to the

first. We await other experiments to confirm our observation.

7.4 Conclusion

In conclusion, we present in-plane penetration depth data of single-crystal ErNi2B2C down to

0.1 K. The negligible change in pair-breaking at TN can be attributed to the near-complete

cancellation of the effects of the AF molecular field and spin-fluctuation scattering. It could

also be due to the combined effects of non-perfect nesting on one piece of the FS and non-

nesting on other pieces of the FS. The increased pair-breaking at TWFM is modelled by

a magnetic impurity scattering parameter, and both magnetic orders coexist with super-

conductivity. We also see the first observation of a possible second weak ferromagnetic

component near 1.1 K. This observation has to await confirmation from other experiments.

I wish to thank Professor Y. C. Chang for teaching me the computational aspects of the

Chi-Nagi model, and Professor C. Varma for encouraging discussions on my interpretation

of the data. I also thank Dr. Tuson Park for taking the resistivity data. The data were

taken from samples obtained from Professor S.-I. Lee.
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Chapter 8

HoNi2B2C: Interplay between
superconducting and magnetic order

8.1 Introduction

The family of quarternary compounds RENi2B2C (RE = rare-earth) have attracted much

interest due to the considerable interaction among their superconducting and magnetic prop-

erties [73]. HoNi2B2C in particular, exhibits rich behavior due to this interplay within a

narrow temperature range. It becomes superconducting at ∼ 8 K, then reenters the normal

state at ∼ 5 K, only to quickly become superconducting again with further reduction of tem-

perature [73]. In the same temperature range three types of magnetic order were observed

in the Ho f electron sublattice [97]: (a) a commensurate antiferromagnetic structure below

5 K, which consists of sheets of ferromagnetic moments in the a − b plane, with adjacent

sheets coupled antiferromagnetically along the c-axis; (b) an incommensurate c-axis helical

magnetic state at ≈ 8.5 K; (c) another incommensurate a-axis modulation at ≈ 6.3 K. A

deep minimum in Hc2 near 5 K [73] showed that superconductivity is reentrant, below which

both the c- and a-axis incommensurate structures disappear, or lock into the commensurate

structure. Once the system is in the commensurate antiferromagnetic state, this permits

the return of superconductivity, and long-range antiferromagnetic order coexists with super-

conductivity at low temperatures. Here we report measurements of the in-plane magnetic

penetration depth λ(T ) in single crystals of HoNi2B2C from Tc down to 0.1 K. The samples
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Figure 8.1: ∆f(T ) for T = 0.1 K–11 K (solid circles) and zero-field-cooled M(T ) for T =
1.8 K–9 K (crosses) as a function of temperature for sample #1. Insets show ∆f(T ) features
around 8 K, and M(T ) features around 5 K, in greater detail.

come from the same batch, and we label them sample #1 and #2, with sample #2 being

slightly smaller in dimensions. We do not convert ∆f to ∆λ in this chapter, since we are

looking only at qualitative features. Moreover, as explained in Section 6.3, we do not know if

the low-T downturn is real, so it is problematic to convert the data to superfluid density. The

results of this chapter were published in the Journal of Magnetism and Magnetic Materials,

volume 226, pages 301-303 (2001).

8.2 Data and Analysis

Fig. 8.1 shows ∆f(T ) and the zero-field-cooled dc magnetization M(T ) as a function of

temperature for sample #1. The insets expand the regions around 8 K for ∆f(T ) and

5 K for M(T ). We see a broad decrease in ∆f(T ) beginning near 9 K and leveling off

before dropping sharply at 8 K. Comparing with the magnetization data, it is generally
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Figure 8.2: ∆f(T ) as a function of temperature in the temperature range (0.3–10) K for
sample #2. The insets show the low-temperature region, the 5 K-peaks and the 8 K-shoulder
in greater detail.
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agreed that bulk superconductivity sets in at 8 K. There is evidently a significantly loss of

rf penetration between the Neel temperature TN ∼ 8.5 K and Tc ∼ 8 K, and that could

be due to the onset of weak superconductivity at ∼ 9 K with very small Hc1. In addition,

we see dramatic increases in ∆f(T ) starting near 6.5 K and peaking at 5.2 K. The 5.2 K-

peak most certainly corresponds to the commensurate antiferromagnetic state. The rise

near 6.5 K can be correlated with the incommensurate a-axis transition at 6.3 K reported

previously [97]. Just below the 5.2 K peak, ∆f(T ) drops abruptly, suggesting a reentrant

superconducting state. The M(T ) data of sample #1 (1.8 K–9 K), in an applied field of

5 G parallel to the c-axis of the crystal, agree with the general features of the ∆f(T ) data:

superconducting transition at 8 K, knee at 5.7 K, and reentrant superconductivity below

5.2 K. It also shows that the sample does not go completely normal at 5.2 K, agreeing with

our penetration depth data. When we measured M(T ) at 20 G, however, the material goes

completely normal at 5.2 K. This can be attributed to flux penetration, since the applied

field is comparable to Hc1 at this temperature. We also note that our results differ from

[73], where for H parallel to the c-axis the reentrant behavior was only barely visible for

200 G < H < 500 G. Ours also differ from [131], where the reentrant behavior was visible

only for powdered samples at 1 G, not for annealed bulk samples. Fig. 8.2 shows a similar

structure from sample #2, though the shoulder at 8 K is more pronounced, and the features

near 5 K are closer together and resolved as two peaks at 5.2 K and 5.3 K. The 5.3 K-peak

of sample #2, and the 5.7 K-knee of sample #1, may be related to the two shoulders in

the specific heat data seen in [73]. The slight difference between samples #1 and #2 may

reflect the sensitivity of magnetic ordering on surface composition, on whether the different

magnetic states come from the same region of the sample’s surface [97]. For both samples,

the peak frequency shift at 5.2 K is significantly smaller than the ∼ 9 K value, suggesting

that the c-axis helical phase significantly reduces the density of Cooper pairs, but does not

completely destroy superconductivity, in agreement with Ref. [80].
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Figure 8.3: ∆f(T ) as a function of temperature for sample #1 at low temperatures. Inset
shows the three jumps between 1.7 K and 2.5 K.
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Fig. 8.3 expands the lower temperature regions of Fig. 8.1. Below 3 K ∆f(T ) increases

with decreasing T , but only by ∼ 0.2% of the total signal. This agrees with Ref. [80], and

possibly suggests a new source of magnetic scattering below 3 K. Lying on top of this increase

are three previously unreported, smaller jumps near 1.7 K, 2.2 K, and 2.5 K. The magnitude

of these peaks (∼ 1 Hz) is ∼ 10−8 of the total signal, and appear on repeated runs on

sample #1. These may be additional magnetic transitions that the material goes through as

temperature is lowered, corresponding to reorientations of the Ho magnetic moments as they

reach the true ground state of the system. Lastly, ∆f(T ) increases to a broad maximum

near 1 K, then displays the expected decrease at the lowest temperatures down to 100 mK.

The rise of ∆f(T ) from 3 K to a broad maximum near 1 K, and the eventual decrease at the

lowest temperatures, are also seen in sample #2. However, sample #2 does not display the

three smaller jumps that sample #1 exhibits, perhaps because sample #2, being smaller in

size, gives a signal comparable to the noise of the system.

The downturn below 1 K has been seen in all the magnetic and non-magnetic borocarbide

samples I measured: LuNi2B2C, YNi2B2C, ErNi2B2C, and HoNi2B2C. This could mean that

the rare-earth borocarbides are multi-gap superconductors, with the small downturn due to

the opening up of the second superconducting gap on a different Fermi sheet. This could also

be an extrinsic effect, for example, due to flux on the surface, and even penetrating through,

the samples, since these are flux-grown sample. Scanning Electron Microscope analysis on

some of the samples show a blobs of Ni on parts of the surface. They could be Ni2B flux.

8.3 Conclusion

In conclusion, we report measurements of the magnetic penetration depth in single crystals

of HoNi2B2C down to 100 mK using a tunnel-diode based, self-inductive technique at 28

MHz. We observe a sharp decrease in the rf penetration depth λ(T ) at the superconducting

transition near 9 K. A pronounced shoulder appears at approximately 8 K, followed by
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dramatic increases in λ(T ) at 5.7 K and 5.2 K. These increases correspond approximately

to the onsets of previously reported magnetic structures. Just below the 5.2 K peak, λ(T )

drops abruptly, suggesting a reentrant superconducting state. Below 3 K, λ(T ) increases

gradually to a broad maximum near 1 K, then decreases again. In addition, three previously

unreported, smaller transitions are observed between 1.7 K and 2.5 K. It appears that the

c-axis helical phase inhibits the increase in the density of Cooper pairs, but does not destroy

superconductivity. Magnetization data of HoNi2B2C is also presented for comparison. I

thank Professor S.-I. Lee for providing the samples.
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Chapter 9

Sr2RuO4

9.1 Introduction

Sr2RuO4 has the same layered-perovskite K2NiF4-type crystal structure as the high-Tc cuprate

superconductor La2−xBaxCuO4 [138]. The transition temperature of Sr2RuO4 has now

reached Tc = 1.50 K, which is very close to the intrinsic value for this superconductor

[139]. Table 9.1 summarizes some of the anisotropic superconducting parameters based on

the observed critical fields and specific heat [132], along with values for other supercon-

ductors for comparison. Fig. 9.1 depicts its Fermi surface (FS), consisting of three nearly

cylindrical sheets called α, β, and γ [137]. They originate from different orbitals of Ru 4d

electrons. Comparison with some other superconductors, based on Table 9.1, leads to a few

observations: firstly, for the zero-temperature penetration depth λ(0), λSRO(0) > λY BCO(0)

> λAl(0), which imply that the carrier density in Sr2RuO4 is relatively low compared to Al.

This means that the carriers are less heavily screened than they are in ordinary metals and

makes the Coulomb repulsion between them more important. Secondly, for the coherence

length ξ, ξY BCO < ξSRO < ξAl, which makes thermal fluctuations in Sr2RuO4 larger than

in Al, and also makes defects such as impurity concentrations, grain boundaries and sur-

face rearrangements much more important than in Al, but perhaps less so than in YBCO.

Thirdly, in comparing Sr2RuO4 with the heavy-fermion superconductor UPt3, both of which

have similar Tc’s, we see that they have roughly comparable ξ’s and λ’s to the same order

of magnitude. In fact, we will see later from Knight shift and other experiments that both
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Sr2RuO4 [132] YBCO [133] UPt3 [134, 135] Al [136]
Tc(K) 1.49 92 0.46 1.18

ξab(0)(Å) 660 12
ξc(0)(Å) 33 3

200 16000

λab(0)(Å) 1800 890 7820
λc(0)(Å) 37000 5500 7070

400

κab(0)(Å) 55 74
κc(0)(Å) 2.7 2750

23 0.03

Table 9.1: Anisotropic superconducting parameters of Sr2RuO4. ξ(0) is the coherence length
at T = 0 K, λ(0) is the penetration depth, and κ(0) is the Ginsburg-Landau (GL) parameter.
The mean free path of the Sr2RuO4 crystal used for the measurement is l = 2100 Å. Corre-
sponding values of a few superconductors are listed for comparison. YBCO ≡ YBa2Cu3O7−δ.

Figure 9.1: The Fermi surface of Sr2RuO4. It consists of three slightly warped cylinders with
axes along the c-axis. γ and β are electron surfaces, while α is a hole surface. Taken from
Ref. [137].
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of them are spin-triplet superconductors. Sr2RuO4 has generated so much interest due to

the possibility of spin-triplet pairing. Early experimental evidence for unconventional su-

perconductivity was in the absence of the Hebel-Slichter peak in the Ru nuclear relaxation

rate [140]. The non-s-wave character of the superconductivity has been established by the

extreme sensitivity of Tc to non-magnetic impurities and defects [141, 142].

9.2 Spin-triplet superconductivity

This section follows that of Ref. [139]. We can represent the spin-triplet wave function in

terms of the “d-vector” [143]. As described in Section 2.2, Eqn. 2.17, the superconducting

gap function (or order parameter) ∆(k) is represented by the 2 × 2 matrix

∧
∆(k) =




∆↑↑ ∆↑↓

∆↓↑ ∆↓↓


 =



−dx(k) + idy(k) dz(k)

dz(k) dx(k) + idy(k)


 , (9.1)

where ∆↑↓ = ∆↓↑ ≡ ∆0 and k = (kx, ky, kz) is the vector specifying the direction in the

momentum space. We introduce the d-vector

d = dxx + dyy + dzz

=
1√
2
{∆↑↑| ↑↑〉+ ∆↓↓| ↓↓〉+ ∆0(| ↑↓〉+ | ↓↑〉)} . (9.2)

The d-vector d(k) = (dx, dy, dz) can now be transformed as a three-dimensional vector under

rotation in spin space. The relation between the two representations is shown in Eqn. 9.1.

Let us take the wave function d = z(kx + iky) ≡ zf(k), for example, since, we shall

show later, that this d-vector is compatible with some existing experimental observations.

The spin part of the wave function consists of only the z = |Sz = 0〉 = 2−1/2{| ↑↓〉+ | ↓↑〉}
component. This means that the parallel spins of the Cooper pairs are in the plane normal

to the z-direction. In the presence of weak spin-orbit interaction, it is natural to take
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Figure 9.2: Schematic representation of the spin and orbital parts of the spin-triplet pairing
function d = z (kx + iky) on the RuO2 plane. The pairs of thin arrows depict the spin part
z, whereas the thick open arrows indicate the orbital part with angular momentum Lz =
+1. Taken from Ref. [139].

the z-direction along the c-axis. As depicted in Fig. 9.2 by the pairs of thin arrows, for

an arbitrary quantization axis x′ within the plane, the spin wave function is the equally

weighted superposition of the ↑↑ and ↓↓ pairs, i.e.

z =
−i

2
{| ↑↑〉x′ + | ↓↓〉x′}

=
−i

2
{(−y′ + iz) + (y′ + iz)}. (9.3)

The orbital part of the wave function, kx + iky, can be described by the spherical harmonic

Y −1
1 (k) ∝ sin θ eiφ for the relative motion of the paired electrons. Its orbital angular mo-

mentum, Lz = +1, is depicted in Fig. 9.2 by the thick open arrows. The superconducting

gap is proportional to (d · d*)1/2 = (k2
x + k2

y)
1/2 and is therefore isotropic.

9.3 Experimental results

Many experiments confirm the unconventional nature of superconductivity in Sr2RuO4. The

NMR nuclear-spin lattice relaxation rate 1/T1 decreases sharply without the coherence peak

just below Tc, suggesting an unconventional pairing state [140]. Knight shift for field parallel
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to the basal plane remains unchanged as one goes below Tc, suggesting a spin-triplet structure

[144]. For comparison, the Knight shift should decrease below Tc for a spin-singlet d-wave. It

can be shown that for the equal-spin-pairing (ESP) state, as depicted in Fig. 9.2, the Cooper

pairs consist of the spin pairs | ↑↑〉 and | ↓↓〉 with their quantization axis perpendicular to

the c-axis direction. As a result, an invariant spin susceptibility χs is expected when the

field is parallel to any direction within the a-b plane [12]. The experimental results clearly

demonstrate no change of the spin susceptibility of Cooper pairs, and therefore lead to the

definitive conclusion that spin-triplet superconductivity is realized in Sr2RuO4. Muon-spin

relaxation data [145] show the presence of a spontaneous magnetic field appearing within

the superconducting state. This indicates that the superconducting state of Sr2RuO4 is a

time-reversal-symmetry-breaking (TRSB) state.

The above experiments were explained by the p-wave spin-triplet state with the order

parameter [5]

d1(k) = z∆1(T )(k̂x + ik̂y), (9.4)

where ∆1 is the k-independent part of the gap. This state is analogous to the A-phase of su-

perfluid 3He [12], which has point nodes of the energy gap at kx = ky = 0 on the spherical FS,

i.e. the north and south poles. However, since the FS of Sr2RuO4 consists of three cylindrical

surfaces, the above p-wave state would not have nodes even if there were states kx = ky = 0,

hence it has a finite energy gap on the FS. This implies that the low-temperature behavior

of electrodynamic and thermodynamic quantities like penetration depth and specific heat

should exhibit an activated behavior, i.e. exponential T -dependence at low temperatures.

However, specific heat measurements [139] give C(T) ∝ T 2, and the NMR 1/T1 ∝ T 3 at

low temperatures [139]. These temperature dependences are interpreted as a consequence

of line nodes in the energy gap. However, thermal conductivity measurements [146] gave no

evidence of strong anisotropy of the gap in the basal plane, essentially excluding vertical line

nodes. If present at all, nodes would have to be horizontal, i.e. parallel to the (kx,ky)-plane
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[147]. By contrast, the p-wave state in Eqn. 9.4 has an isotropic energy gap, i.e. does not

have any nodes. Hence the p-wave pairing state in Eqn. 9.4 seems unable to describe the

pairing mechanism for Sr2RuO4.

Penetration depth measurements on a pure sample (Tc = 1.5 K) were performed by

Bonalde et al. [4], and it gives a T 2 dependence up to 0.6Tc, which the authors attributed to

the presence of line nodes, with the extra factor T coming from nonlocal corrections instead

of impurity scattering (see Fig. 9.3). Later we took another on another pure sample with Tc

= 1.43 K (not converted to ∆λ), and also obtained a T 2 low-temperature dependence up to

0.53Tc (see Fig. 9.4). However, Kusunose and Sigrist [KS] [5], using the idea first proposed by

Zhitomirsky and Rice [148], performed a calculation on Sr2RuO4 which incorporates multiple

bands, nonlocality and horizontal line nodes, where the main “active” γ band ∆1(T ) is fully

gapped with p-wave symmetry of the form in Eqn. 9.4, while the “passive” α and β bands

have horizontal line nodes with an order parameter of the form [5]

d2(k) = z∆2(T )(k̂x + ik̂y)cos(kzc/2). (9.5)

In the “one-band” limit, where interband scattering is absent, only the quasiparticles from

the passive bands contribute to the low-temperature behavior, while those in the totally

gapped dominant band are inactive. In this one-band Pippard limit [5],

∆λ(T )

λ(0)
=

1

18

(
T

Tp

)2

+
83

3240

(
T

Tp

)4

, (9.6)

where Tp = ∆2(0)/π. So ∆(T ) ∝ T 2 only at very low temperatures, specifically T < T ∗

≈ 0.3Tp. Even with the maximal gap, ∆2(0) = ∆BCS (= 1.76Tc), T ∗ < 0.17Tc ≈ 0.26 K.

That is, the T 2-behavior should only be seen below 0.26 K, and not 0.9 K as observed in

Ref. [4]. Hence a single-gap model, even with nonlocality and horizontal line nodes, is unable

to explain the T 2-behavior of penetration depth over a wide temperature range.
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Figure 9.3: (a) ∆λ(T ) vs T/Tc for sample 1 of Ref. [4]. (b) ∆λ(T ) vs (T/Tc)
2 in the

temperature range (0.04-1.16) K for samples 1 (©) and 3 (4), and the inset shows the low
temperature regime T < 0.2Tc for the same data. All straight lines are fits to the data. The
data have been shifted for clarity. Taken from Ref. [4].
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Figure 9.4: ∆f vs T/Tc of another pure Sr2RuO4 sample (C129A, Tc = 1.43 K). Inset shows
the low temperature region plotted against (T/Tc)

2. The straight line is a fit to 0.53Tc.
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Figure 9.5: Calculated ∆λ(T ) for different g3/g1. The other parameters are fixed at g1 = 0.4,
g2/g1 = 0.85 and κ1 = 2.3 (GL parameter of the active band). A moderate interband coupling
fits well the observed temperature dependence. The open circles are the experimental data
of Bonalde et al. [4]. Taken from Ref. [5].
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KS then turned to the multi-gap scenario for Sr2RuO4, in which the temperature depen-

dence of the gap magnitudes are given by an effective two-band model: ∆α = ∆β = ∆2(T )

and ∆γ = ∆1(T ). Moreover, the pairing interactions in the gap equations are momentum-

dependent, defined as V11 = −g1k̂ · k̂′, V22 = −2g2(k̂ · k̂′) cos(kzc/2) cos(k′zc/2) for intraband

coupling, and V12 = −√2g3(k̂ · k̂′) cos(k′zc/2) for the interband Cooper pair scattering. Then,

with these intraband and interband coupling parameters, as well as other material param-

eters, they performed the same nonlocal calculations as in the one-band case, and are able

to fit the penetration depth data over a wider temperature range (see Fig. 9.5). In the fit

the GL parameter of the active band, κ1, is found to be 2.3. This is slightly smaller than

the generally cited value κ ≈ 2.6 [5]. They also found that the same set of interband and

intraband scattering parameters (g1 = 0.4, g2 = 0.34, g3 = 0.028) is able to explain the

temperature dependence of both the penetration depth and specific heat data. The ap-

parent T 2-dependence of the penetration depth on a pure Sr2RuO4 sample is an accidental

one. However, in the same paper, the authors also considered the case where the passive

gap is nodeless, i.e. d2 = z∆2(T )(k̂x + ik̂y). Trying the same fitting procedure, they find

only a minor difference at very low temperatures compared to the the previous fit. While

the difference is small in λ(T ), horizontal line nodes are necessary to fit the specific heat

data [148]. Hence it is not possible, using penetration depth data from the pure samples, to

ascertain the detailed gap structure of Sr2RuO4. Also, Ref. [5] did not attempt to explain

the T 3-dependence of dirty samples, which will be described in the next paragraphs.

Bonalde et al. also performed penetration depth measurements on a dirty sample (Tc =

0.82 K) [4], and obtained a T 3-dependence, which they attributed to the combined effects

of nonlocality and impurity scattering, each giving an extra factor T besides the linear T

expected for line nodes. However, in the dirty limit ξ no longer diverges near the nodes,

and hence the nonlocal condition ξ À λ no longer applies, so one should expect only a T 2

dependence and not T 3. Bonalde et al. argued that since the GL parameter κ is not large

in Sr2RuO4, κ = λ/ξ ≈ 2–3, a large portion of the FS near the nodes fulfills the nonlocal
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Figure 9.6: ∆λ(T ) vs (T/Tc)
3 in the temperature range (0.040.69) K for an impure sample

(Tc = 0.82 K). The line is a fit to the data. Taken from Ref. [4].
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Figure 9.7: ∆f(T ) vs T for SRO sample with Tc ≈ 1 K. Inset shows the low-temperature
region. Solid line is a fit to Eqn. 9.6 from 82 mK to 0.63 K.

condition ξ > λ in the purest samples. So even in slightly dirtier samples, the nonlocal

condition can still be satisfied, albeit in smaller parts of the FS closer to the nodes. There is

at present no conclusive explanation for this T 3 behavior. In this thesis, we present additional

data on one dirty sample of Sr2RuO4 with Tc ≈ 1 K. We attempt to explain the temperature

dependence of these samples using the nonlocal calculation of KS [5]. Our conclusion is that

the effective single band theory is able to explain the T 3-dependence of dirty samples, but

not the T 2-dependence of pure samples. We also propose an alternative method to explain

the data of both pure and dirty samples within the same two-band framework.

First we consider the one-band model. As we go across the samples with different Tc’s,

the magnitude of the smaller gap, ∆2(0) depends only on Tc. We assume that the prefactors

1/18 and 83/3240 in Eqn. 9.6, to a first approximation, do not change with the purity of

the sample. We also assume ∆2(0) = ∆BCS(0) = 1.76Tc. So Tp = ∆2(0)/π = 0.56Tc. Using

these values of Tp for different values of Tc, we can calculate the relative contributions of the
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Sample Tc(K) ∆2(0)=1.76Tc (K) Tp=∆2(0)/π (K) b/c theory b/c data
0.82 1.44 0.46 0.46 0.3
1.0 1.76 0.56 0.68 0.6
1.5 2.64 0.84 1.53 10

Table 9.2: Value of b/c obtained from data and KS one-band model. b/c is the contribution
of T 2 term relative to the T 4 term, to ∆λ(T ) or ∆f(T ).

T2 and T4 terms in Eqn. 9.6. We clearly see that as the sample gets dirtier, Tp gets smaller,

and the relative contribution of the T 4 term increases. Fig. 9.7 shows ∆f(T ) for a sample

whose Tc ≈ 1 K. As with the earlier dirty sample (Tc = 0.82 K), we obtain a T 3-fit from

120 mK to 0.5Tc. Next, we fit the experimental data to the equation ∆f(T ) = a + bT 2 +

cT 4. The relative contribution of the T 2-term relative to the T 4-term is then b/c. Table 9.2

compares the predicted and experimental values of b/c, together with the values of Tc, ∆(0)

and Tp for the different samples. We see that for the the dirty samples, the values of b/c

predicted by the one-band model roughly agree with data. But for the purest sample, the

experimental T 2-dependence (b/c ≈ 10) is much stronger than the predicted one (b/c ≈ 1.5).

The above analysis suggests that for dirty samples, there is effectively only one super-

conducting gap whose amplitude is close to the BCS value, whereas for pure samples, a

one-gap description is insufficient to explain the data. This agrees with KS, who stated that

for strong interband coupling, all gaps are tied together and act like a superconductor with

a single order parameter [5].

However, Mazin [149] pointed out that the merging of two gaps to one in the presence of

moderate-to-strong interband impurity scattering takes place only if the order parameter has

a non-zero average over the FS in the clean limit, for example, in s-wave superconductors.

If the FS-average of the order parameter is zero, as is the case for d- or p- superconductors,

then the gap suppression follows the Abrikosov-Gorkov theory all the way, with a possible

gapless superconductivity just before superconductivity is totally suppressed. Golubov and

Mazin [150] examined the effect of magnetic and nonmagnetic impurities on multi-band

superconductors. Recall that for single-band superconductors, the Anderson theorem states
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that non-magnetic impurities do not influence Tc. In the multi-band case, however, only

intraband non-magnetic scattering does not influence Tc, i.e. besides magnetic impurities,

interband non-magnetic impurity scattering also suppresses Tc. Our dirty Sr2RuO4 samples

contain Al as the (non-magnetic) impurity to suppress Tc. In the two-band case, weak-

scattering limit (γαβ ¿ Tc) assuming there are no magnetic impurities, we have the two-band

Abrikosov-Gorkov relation [150]

Tc0 − Tc

Tc

=
π [∆2

1γ12 −∆1∆2(γ12 + γ21) + ∆2
2γ21]

8Tc(∆2
1 + ∆2

2)
, (9.7)

where Tc0 is the superconducting transition temperature of the purest sample (≈ 1.5 K), and

γij is the non-magnetic impurity scattering rate from band i to band j. Thus we could use

Eqn. 9.7 to obtain γ12 (assuming γ12 = γ21) for each of our dirty samples. Then we use γ12

to calculate how much the gaps ∆1 and ∆2 in the active and passive bands are suppressed.

Finally, armed with the temperature dependence of the two suppressed gaps, we perform the

same calculations as in the pure case to obtain the temperature dependence of the superfluid

density, or penetration depth. The above will be the object of future theoretical work.

9.4 Conclusion

Previous data taken by Bonalde et al. on pure Sr2RuO4 samples [4] were reanalyzed by

Kusunose and Sigrist’s [5]. It is found that a one-band nonlocal model is not able to explain

the approximate T 2-behavior over a wide temperature range as seen in penetration depth

data. A two-band model is thus required, with the active band being fully gapped, and the

passive band having horizontal line nodes. The same set of intraband and interband coupling

parameters can explain both the penetration depth and heat capacity data. However, a

two-band model with a fully-gapped passive band is also able to explain the penetration

depth data. Kusunose and Sigrist did not attempt to use the model to explain the T 3

low-temperature dependence of dirty samples. We ran two additional samples, one with
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Tc ≈ 1.5 K (pure) and the other with Tc ≈ 1 K (dirty). We confirmed the T 2 and T 3

low-temperature dependence of the pure and dirty sample, respectively. We propose that

Kusunose and Sigrist’s one-band model is able to explain T 3-dependence of dirty samples,

suggesting that for dirty samples, there is effectively only one superconducting gap. The one-

band model is not able to explain the T 2-dependence of pure samples. We also present an

alternative explanation by Golubov and Martin [150] which examined the effects of impurites

on multi-band superconductors, and suggest that the two gaps in Sr2RuO4 are suppressed

by impurities following the two-band Abrikosov-Gorkov relation [150]. One then can use the

same intraband and interband expressions of the momentum-dependent pairing interactions

as in the pure case to calculate the temperature dependence of the penetration depth in

dirty samples. This will be the object of future theoretical work.

Experimentally, we also hope to run more samples with different Tc’s ranging from 0.7 K

to 1.4 K. I wish to thank Professors Igor Mazin and Hiraoki Kusunose for enlightening

discussions. I also thank Professor Y. Maeno for providing the samples.

When this thesis was almost completed a paper appeared in the Los Alamos archives

[151], which described the measurement of the in-plane field-angle-dependent heat capac-

ity of Sr2RuO4 down to 0.1 K. The data revealed that the SC state of Sr2RuO4 has a

band-dependent gap, and the gap on the active band has strong in-plane anisotropy with a

minimum along the [100] direction. The conclusions are still controversial at this moment.
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Chapter 10

Pb: Effect of spin-density order on
superconductivity

10.1 Introduction

Lead (Pb) is a conventional superconductor with not-so-conventional properties. Tunneling

measurements gave an estimate of the zero-temperature gap ∆0 = 1.35 meV ≈ 2.2Tc [152],

suggesting that Pb is a strong-coupling superconductor. Specific-heat measurements [153]

reveal that the electronic part of the specific heat, Ces, at 0.5 K is four orders of magni-

tude larger than that predicted by BCS theory. Moreover, impurites eliminate the large

anomaly. Ultrasonic attenuation experiments also indicate a much larger concentration of

quasiparticles than that predicted from the value of ∆0.

All the above data suggest a high number of quasiparticles. In particular, the specific-heat

data [153] imply the presence of regions of a reduced energy gap of about ∆0/4. Theoretical

work which incorporates the strong-coupling nature of Pb, however, predicts only a less than

10% gap anisotropy [154].

Overhauser and Daemen [6, 155] proposed a remarkable answer to this puzzle: the elec-

tronic ground state of Pb possesses a spin density wave (SDW) structure, which is not

included in the BCS and strong-coupling calculations. This SDW interferes with Cooper

pairing, such that the superconducting gap is reduced at the intersection of SDW planes and
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Figure 10.1: Phonon image in Pb at 1.85 K. Taken from Ref. [7].

the Fermi surface (FS). This leads to a large anisotropy in the superconducting gap, and

explains the anomalous temperature dependencies of the specific heat and acoustic attenua-

tion. Chen and Overhauser [156] further showed that such an electronic ground state would

lead to a highly anomalous phonon dispersion in Pb.

Short and Wolfe [7] performed phonon imaging experiments on superconducting Pb.

Fig. 10.1 shows the phonon image in Pb at 1.85 K. The striking result in the figure is the

pattern of dark lines crossing in the [110] direction. These lines correspond to absorption of

sub-gap phonons with wavevectors in the {111} planes. They postulated that the phonon

absorption is due to phonon-quasiparticle scattering. By plotting the amount of absorption

at different temperatures (1.4 K–2 K) and fitting it to the BCS expression (Fig. 10.2), they

found that the best fit occurs when the gap parameter ∆fit = ∆0/6. However, the small

temperature range of the data cannot distinguish between an exponential (implying ∆fit > 0)

and polynomial dependence (implying ∆fit = 0). The temperature dependence is thus much

slower than expected, and is consistent with the slow temperature-dependence of specific
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Figure 10.2: (a) Solid dots are the measured phonon flux along a vertical line through
the center of the phonon image in Fig. 10.1. The unattenuated flux is approximated with
a Gaussian function of amplitude I0. The thin line through the data points is a fit to
a Gaussian-exponential function in Ref. [7]. (b) Temperature dependence of the phonon
attenuation coefficient along [110]. The solid line shows an exponential fit using an energy
gap of ∆0/6 and the dashed lines uses ∆0 with an arbitrary vertical displacement. Taken
from Ref. [7].
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heat and ultrasonic attenuation data. The energy of the absorbed phonons implies that the

their wavevector lies in the {111} planes.

Daemen and Overhauser [155] pointed out that for Pb the candidate SDW wavevectors

are Q = (2π/a)[211] or (2π/a)[210]. In the spherical FS approximation, the intersection of

the (2π/a)[211] planes with the FS of Pb are circles, while Short and Wolfe calculated and

obtained [7], using de Haas-van Alphen data [158] for Pb, a triangular-shaped intersection of

the (2π/a)[211] planes with the actual FS of Pb. Three types of quasiparticle-scattering are

possible: (1) intravalley scattering, (2) inter-valley scattering and (3) exit-valley scattering.

The schematic of these types of scattering processes is shown in Fig. 10.3. Phonons with

energy less than ∆0 are restricted to scattering a quasiparticle from one part of the node

structure to a nearby portion of the node structure — processes shown in Fig. 10.3a and

referred to collectively as “in-valley” — as the phonon has insufficient energy to eject the

quasiparticle from the valley. If there are intersecting valleys, we distinguish between inter-

valley and intra-valley scattering events as illustrated in the figure. By comparing theoretical

calculations with data, Short and Wolfe [7] concluded that the transitions responsible for

the absorption lines are the inter-valley transitions.

In a later paper, however, Short and Wolfe [157] suggested two corrections to their pre-

vious hypothesis. First, the previous model did not account for mass-defect (or isotope)

scattering resulting from the random occurrence of atomic isotopes in a crystal. After tak-

ing isotope-scattering into account and fitting it to data, they obtained ∆min = ∆0/3.5,

which agrees even better with specific heat data [153]. Second, the phase space for in-valley

scattering is too small to explain the observed absorption. They then proposed that “exit-

valley” transitions (Fig. 10.3b), mediated by phonons whose energies exceed ∆0, are more

likely the dominant scattering mechanism. They then proposed a new experiment, where

only low-energy “in-valley” phonons (hν < ∆0 − ∆min) are used to mediate in-valley tran-

sitions, so that one can ascertain gap minima directions. The proposed experiment is still

underway, carried out by Tim Head from Professor Jim Wolfe’s group.
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Figure 10.3: Diagram of (hypothetical) sharp gap anistropy in the superconducting energy
gap. The bottom of the “valleys” correspond to a minimum gap value of ∆min with the
full gap value ∆0 on the rest of the FS. (a) Definition of “in-valley” phonon scattering. (b)
Definition of “exit-valley” scattering. In-valley phonons (a) scatter quasiparticles within the
gap valleys as shown and exit-valley phonons (b) scatter a quasiparticle from within a valley
to a final state anywhere on the FS. Taken from Ref. [157].
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A proposed experiment to indirectly support the SDW theory is to take penetration

depth data for two Pb single-crystal cylinders cut in two different orientations. One has the

cylindrical axis pointing in the [111]-direction, and the other in the [110]-direction. In general

if there exists nodes in a certain direction in k-space, then applying a field perpendicular

to that direction in real space probes the quasiparticles excited along that direction in k-

space. In our setup the ac field is always applied parallel to the cylindrical axis. Since the

proposed nodal regions are close to the (111)-plane, we should see a greater departure from

BCS dependence if the field is applied perpendicular to the [110] direction compared with

[111] direction. What is uncertain is whether the departure from BCS theory is observable.

10.2 Data and Analysis

We measured the penetration depth of two samples of different crystal orientations. Pb#1 (or

Pb(111)) is a cylindrical sample of diameter 1.4 mm and length 0.23 mm, and the cylindrical

axis points in the [111] direction, i.e. its cross-sectional area is the (111) plane. Pb#2 (or

Pb(110)) is also a cylinder, with diameter 1.3 mm and length 0.8 mm, but its cylindrical axis

points in the [110] direction. The samples are 99.9999% pure Pb grown by Metal Crystals

& Oxides, Ltd., United Kingdom. The ac field is applied along the cylindrical axis.

Fig. 10.4 shows the temperature dependence of the change in penetration depth, ∆λ(T )

= λ(T ) − λ(0.1 K) of Pb#1. The insert shows the low-temperature region in detail. Below

1.1 K, there is a clear downturn, before another upturn appears near 0.6 K. This signal

is obtained after subtraction of the background signal from the sapphire sample holder.

Initially we thought that this upturn is due to the sample holder, but later measurements on

the Pb#2 sample did not reveal an upturn of such magnitude. This upturn may be due to

the presence of very small amount of paramagnetic impurities inside the sample. We have

ordered another Pb(111) sample, and will run it to confirm this feature.
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Figure 10.4: ∆λ(T ) for Pb#1. Inset shows low-temperature region.

Figure 10.5: Superfluid density ρs(T ) for Pb#1. (©) Data, using G = 1.83. (Solid line)
Nonlocal BCS superfluid density expression.
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Figure 10.6: ∆f(T ) vs T for Pb#2 below 1 K. Within errors due to noise and background,
the signal is essentially zero.

We now turn to the high-temperature region (1 K < T < Tc). First we convert ∆λ(T )

to superfluid density ρs. Fig. 10.5 shows ρs(T ) from 1.1 K to Tc. We have assumed λ(0.1 K)

= 0, and λ(0) = 390 Å. The circles are the data points, where we have used the calibration

factor G = 1.83, obtained from the calibration method described in Section 3.5. The solid

line is the BCS superfluid density expression in the pure nonlocal limit, given by Eqn. 3.39,

where we have used Tc = 7.19 K, ∆0/kBTc = 2.15, and the specific heat jump ∆C/C = 2.71

from Ref. [159]. The agreement between data and theory is quite remarkable, and is another

confirmation that our calibration method is accurate.

Fig. 10.6 shows the low-temperature ∆f(T ) for sample Pb#2. The low-temperature

signal is basically flat, suggesting that at this temperature range (T ≤ 0.14 Tc), all the

quasiparticles have been frozen out. Fig. 10.7 shows ∆f(T ) from 0.1 K to 3.6 K (∼ 0.5 Tc).

The solid line is the fit of the data to the low-temperature local limit

∆f = constant×
√

π∆(0)

2T
exp

(
−∆(0)

kBT

)
, (10.1)
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Figure 10.7: ∆f(T ) vs T for Pb#2 below 3.6 K. Solid line is the low-temperature BCS fit.

Figure 10.8: ρs(T ) of Pb#2. (©) Data using G = 1.8. (4) Data using G = 2.2. (Solid line)
BCS nonlocal limit. (Dashed line) BCS local limit. Inset shows the low-temperature region
in detail.
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where ∆(0) is the zero-temperature gap. For the best fit we obtain ∆(0) = 19.2 K, which

implies ∆(0)/Tc = 19.2/7.19 = 2.66. This is larger than the value of 2.15 obtained from

other measurements [159]. Note that this value of the gap does not depend on the value

of the calibration constant G. Fig. 10.8 shows ρs(T ) from 0.1 K to Tc. The circles are

the data points using G = 1.8, and the solid line is the BCS expression for ρs in the pure

nonlocal limit. This time the agreement between data and theory is unsatisfactory. To have

them agree requires G ≈ 2.2 (4). This is about 20% larger than the calculated value, but

is still smaller than the “infinite-slab” value of 2.6. This discrepancy may be due to the

comparatively smaller aspect ratio of sample Pb#2, which we explained in Section 3.5. Also

in the same figure is the BCS expression for ρs in the pure local limit (dashed line). From

the figure and its inset, we see that the nonlocal expression fits the G = 2.2 data better for

the entire temperature range, while the local expression fits the low-T region better, though

with a larger value of ∆(0)/Tc (2.66). Our BCS expressions are valid for the extreme local or

nonlocal limit, while in Pb, λ/ξ = 0.48 [159], implying that Pb is only a moderately nonlocal

superconductor. This might be the reason for the discrepancy between data and fits.

If we assume that the total change in penetration depth from the two orientations are

equal, it is then instructional to normalize both sets of data to the same total change in

frequency, say 10 kHz, and plot them on the same graph. Fig. 10.9 shows ∆f(T ) normalized

to 10 kHz vs T for Pb#1 and Pb#2 samples. Inset shows the low-temperature region —

the curves have been offset by 0.5 Hz for clarity. Above 1 K it seems that the temperature

dependence of both signals are identical, i.e. we cannot see any qualitative or quantitative

difference between the two samples, but we can’t be entirely sure about this.

10.3 Conclusion

We therefore cannot say anything conclusive about both samples: Pb#1 may have some

impurities in it, while Pb#2 is too thick for the calibration method to work nicely. We have
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Figure 10.9: ∆f(T ) normalized to 10 kHz for Pb#1 and Pb#2 samples. Inset shows low-
temperature region — the curves have been offset by 0.5 Hz for clarity.

already ordered two samples of exactly identical dimensions, of large aspect ratios (i.e. thin

samples), one each of (111) and (110) orientation. Having identical dimensions will allow us

to directly compare the raw ∆f(T ) data from these two samples, thereby eliminating the

need to calculate G. Of course if we want to convert to ρs we still need G, but at least G,

being a purely geometrical factor, will be the same for both samples.

I wish to thank Professor Jim Wolfe, Jonathan Short, and Tim Head for enlightening

discussions about ballistic phonon experiments in Pb.
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Chapter 11

Concluding Remarks

In this thesis we present measurements of the temperature-dependence of the penetration

depth of a number of unconventional superconductors. We see that penetration depth is

a very direct way of probing the symmetry of the order parameter of the superconducting

gap. We can deduce, if the temperature-dependence is exponential (or power-law), that the

superconducting gap is fully-gapped (or has nodes) on the Fermi surface. We also see how

different types of magnetic order influences superconductivity, by suppressing it, destroying

it, or having negligible effect on it.

In the heavy-fermion superconductor CeCoIn5 (Tc = 2.3 K), we obtain a T 3/2 dependence,

which we take to be a crossover from T to T 2. Two models could explain this crossover

— Hirschfeld and Goldenfeld’s Resonant Impurity Scattering (RIS) [18] and Kosztin and

Leggett’s nonlocal theory [20], both for d-wave superconductors. By calculating the the-

oretical crossover temperature T ∗ in these two models, and comparing them with the ex-

perimental crossover temperature, it would seem at first sight that the nonlocal theory is a

better model for explaining the crossover in this material. However the coefficients in the

RIS theory are approximations [39]. Taking this into account, we therefore conclude that

both impurity scattering and nonlocality are viable theories to explain the crossover effect,

and it is not clear which is better.

In another heavy-fermion superconductor PrOs4Sb12 (Tc = 1.8 K), we measured the pen-

etration depth when the probing field is in each of the three crystallographic axes, and found
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that in all three cases λ ∼ T 2 at low temperatures. We examined four candidate gap func-

tions, calculated their quasiparticle density of states and superfluid densities, and concluded

that the superconducting gap in this material has two point nodes on the fermi surface,

and the gap dispersion is similar to that of the A-phase of superfluid 3He. We also come

to an interesting conclusion that this material has multi-domains — a consequence of the

field-direction-independence of the superfluid density and the good fit of the experimental su-

perfluid density and the calculated superfluid density averaged across three crystallographic

directions.

We next measured ∆λ of the non-magnetic members of the borocarbide family, YNi2B2C

(Tc = 15.9 K) and LuNi2B2C (Tc = 15.5 K). We found an additional downturn below 1 K,

and concluded that this downturn must be due to extrinsic effects like surface flux or surface

oxide layer. We tried to apply Suhl’s two-band model [90] to fit the superfluid density,

but found that a very large gap opens up on the band with a very small density of states,

contradicting de Haas-van Alphen data. We also tried to apply Maki’s pure and dirty s + g

model [93] to explain our data.

The magnetic member of the borocarbide family, ErNi2B2C (Tc = 10.1 K) has a supercon-

ducting transition temperature of 11 K. It exhibits an antiferromagnetic spin-density-wave

phase below 6 K, and a weak ferromagnetic component appears below 2.3 K. We found

that the antiferromagnetic phase has negligible effect on the superconductivity, whereas the

weak ferromagnetic component slightly depresses, but does not completely destroy, super-

conductivity. We used Chi and Nagi’s model [115] to calculate the superfluid density in the

paramagnetic (TN < T < Tc) and antiferromagnetic (T < TN) phase, as well as extending it

to include the weak ferromagnetic phase below 2.3 K. We find good fit between theory and

experiment. We also suggest an alternative explanation, that the increased pair-breaking due

to partial nesting on one FS sheet in ErNi2B2C is compensated by decreased pair-breaking

by the other two sheets, resulting in negligible change in pair-breaking at TN .

The other magnetic member, HoNi2B2C (Tc = 8 K) show three types of magnetic order

in the Ho f electron sublattice [97]: (a) a commensurate antiferromagnetic structure below
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5 K, which consists of sheets of ferromagnetic moments in the a − b plane, with adjacent

sheets coupled antiferromagnetically along the c-axis; (b) an incommensurate c-axis helical

magnetic state at ≈ 8.5 K; (c) another incommensurate a-axis modulation at ≈ 6.3 K. Our

data reveal a coexistence of these three types of magnetic order and superconductivity. The

c-axis helical phase slightly suppresses, but does not completely destroy, superconductivity.

Penetration depth measurements on a pure spin-triplet superconductor Sr2RuO4 (Tc =

1.5 K), shows an approximate T 2-behavior at low temperatures. Its Fermi surface consists of

an active γ-band that is fully-gapped, and passive α or β bands (treated as one band) with

horizontal line nodes. A one-band picture, even in the Pippard limit, is unable to explain the

T2-behavior over a large temperature range as seen in penetration depth data. Kusunose and

Sigrist [5] proposed a two-band model to explain this temperature-dependence. The same set

of intraband and interband coupling parameters is able to explain both penetration depth

and heat capacity data. However, Kusunose and Sigrist did not attempt to use the model

to explain the low-temperature T 3-behavior of dirty samples, as seen in two of our samples

with Tc’s of 0.82 K and 1 K. We ran two additional samples, one with Tc ≈ 1.5 K (pure) and

the other with Tc ≈ 1 K (dirty). We confirmed the T 2 and T 3 low-temperature dependence

of the pure and dirty sample, respectively. We propose that Kusunose and Sigrist’s one-band

model is able to explain T 3-dependence of dirty samples, suggesting that for dirty samples,

there is effectively only one superconducting gap. The one-band model is not able to explain

the T 2-dependence of pure samples. We also present an alternative explanation by Golubov

and Martin [150] which examined the effects of impurites on multi-band superconductors,

and suggest that the two gaps in Sr2RuO4 are suppressed by impurities following the two-

band Abrikosov-Gorkov relation [150]. One then can use the same intraband and interband

expressions of the momentum-dependent pairing interactions as in the pure case to calculate

the temperature dependence of the penetration depth in dirty samples. This will be the

object of future theoretical work.
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Finally, we look at the “conventional” BCS superconductor, Pb. Overhauser [6] proposed

that the electronic ground state of Pb possesses a spin density wave (SDW) structure. This

SDW interferes with Cooper pairing, such that the superconducting gap is reduced at the

intersection of SDW planes and the Fermi surface. This leads to a large anisotropy in the

superconducting gap, and explains the anomalous temperature dependencies of the specific

heat, acoustic attenuation, and phonon imaging experiments. We measured the penetration

depth of two Pb cylinders with cylindrical axis pointing in the [111]-, and [110]-, directions,

but with different diameters and thicknesses, and hope to see a difference in the temperature

dependence of λ. Unfortunately we cannot see any qualitative or quantitative difference

between the two samples, within experimental uncertainty. We plan to repeat the mea-

surements on two more cylindrical samples of exactly the same dimensions, so that one can

eliminate errors due to calibration.
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