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Chapter 3

Symmetric Stress-Energy Tensor

We noticed that Noether’s conserved currents are arbitrary up to the addition of a

divergence-less field. Exploiting this freedom the canonical stress-energy tensor Θµν  can

be modified to a new tensor T µν  such that ∂ µ
µνT = 0  and d x T d xn

M

n

Mn n

� �=0 0ν νΘ

(here nM  denotes the spatial sub-manifold of the space-time M ). The second condition

guarantees that the new tensor T µν  defines the same physical observable (namely,

energy-momentum of the field). From Green’s theorem, such a modification of Θµν

require the existence of an anti-symmetric Belinfante [1] tensor field ( )B xαµν  such that

T B B Bµν µν
α

αµν αµν µαν∂= + = −Θ ,                                 (3.1)

In this chapter we will discuss a necessary and sufficient conditions for the existence of a

Belinfante tensor such that T µν  is symmetric. Our main goal here is to introduce

notations, and to summarize the results necessary to make the thesis self-contained.



16

3.1 Necessary and Sufficient Conditions

Theorem: The anti-symmetric part of the conserved canonical stress-energy tensor is a

total divergence, if and only if there exists a symmetric stress-energy tensor [1]. ■

Proof of Sufficiency: Suppose

Θ Θµν νµ
α

αµν∂− = − H                                               (3.2)

By definition, H Hαµν ανµ= − . Choose

( )B H H Hαµν αµν µνα ναµ= + −1
2

                                      (3.3)

This tensor have the right anti-symmetry B Bαµν µαν= − , and also

B B Hαµν ανµ αµν− =                                                  (3.4)

Applying eqns. (3.2) and (3.4) in the definition (3.1), we find

( )T T B Bµν νµ µν νµ
α

αµν ανµ∂− = − + − =Θ Θ ( ) 0                           (3.5)

Hence given H αµν  one can explicitly construct a Belinfante tensor Bαµν  such that

T Bµν µν
α

αµν∂= +Θ  is symmetric. ■
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Proof of Necessity: This is in fact trivial. If there exists a symmetric T µν  then from

definition (3.1), ( )Θ Θµν νµ
α

αµν ανµ∂− = − −( )B B , a total divergence. ■

3.2 Construction of Belinfante Tensor

From eqn. (2.19) on angular momentum conservation we have seen that a necessary

condition for a translation invariant theory be Lorentz invariant is

( )Θ Θ Π Σµν νµ
α

α µν∂ ϕ− = − , a total divergence. Therefore as a consequence of eqn. (3.3)

a full Poincaré invariant field theory always have the following Belinfante tensor which

makes T Bµν µν
α

αµν∂= +Θ  a symmetric stress-energy tensor

( )Bαµν α µν µ να ν αµ ϕ= + −1
2

Π Σ Π Σ Π Σ                                   (3.6)

It is important to note that, in general, the choice of symmetric stress-energy tensors

is not unique. This will be our key to the analysis in chapter 5 to construct an improved

tensor, if exists, for the scale invariant field theories.

There is an alternative definition of symmetric stress-energy tensor in general

relativity [35]. The functional derivative of the action minimally generalized to a metric

compatible Riemannian manifold M R  through the correspondence relations

( )( )gxdxdgxg dd →=∇∇→→ ,0,, αβµµµµνµν ∂η  is defined as a symmetric stress-

energy tensor in general relativity. We will show in appendix A that these two symmetric

stress-energy tensors are identical in flat space-time [32-34]
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( )

µν

η

µν

αβαβ

δ
δ T
g
S

g
xg

=
=

2                                             (3.7)

We wish to express the angular momentum in terms of symmetric stress-energy

tensor. Substituting Θµν µν
α

αµν∂= −T B  in eqn. (2.18), we find

x T x T M Fλ µρ ρ µλ µλρ
α

αµλρ∂− = +                                      (3.8)

where ( )F x B x Bαµλρ λ αµρ ρ αµλ= −  is anti-symmetric in ( )α µ,  and in ( )λ ρ, . Dropping

this anti-symmetric divergence, we obtain the conventional angular momentum tensor

J x T x Tµλρ λ µρ ρ µλ= −                                               (3.9)

It defines the same Lorentz generators as M µλρ . Due to the symmetry of T µν , the

conservation law ∂ µ
µλρJ = 0  is now an identity.

It is important to note that T µν  and hence J µλρ  are gauge independent. The action is

invariant under a gauge transformation of the Lagrangian ( ) ( ) ( ) ( )x x x Z x→ ′ = +∂ µ
µ

such that Z xµ
∂

( )
Λ

= 0 . The canonical stress-energy tensor transforms as

( )Θ Θ Θµν µν µν ν µ µν
α

α∂ η ∂→ ′ = + −Z Z . Treating ( )Z xµ  as an independent vector field

in the Lagrangian, one finds from eqns. (2.15b) and (3.6) that
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( )B B B Z Zαµν αµν αµν αν µ µν αη η→ ′ = − −  which clearly shows the gauge independence

of T µν , namely ′ = ′ + ′ = + =T B B Tµν µν
α

αµν µν
α

αµν µν∂ ∂Θ Θ .

3.3 Some Examples

We can now apply the definition (3.6) of Belinfante tensor with the spin-matrices

(2.15a,b) and (2.16a,b,c) to construct the symmetric stress-energy tensor for real scalar,

vector, and Dirac bi-spinor fields.

3.3.1 Real Scalar Field

Scalar fields are spinless: Σ Θµν µν µν= � =0 T  and J Mµλρ µλρ= . These results also

follow from a direct calculation using the standard Lagrangian

( )= −1
2

∂ ϕ∂ ϕ ϕµ
µ V                                              (3.10)

Explicit calculation shows

T µν µν µ ν µν∂ ϕ ∂ ϕ η= = −Θ                                      (3.11a)

( ) ( )J M x x x xµλρ µλρ µ λ ρ ρ λ µλ ρ µρ λ∂ ϕ ∂ ϕ ∂ ϕ η η= = − + −               (3.11b)

It is important to note that the trace of T µν  is

( )T d dVµ
µ

µ
µ∂ ϕ ∂ ϕ ϕ= −�

�
�

�
�
� +1

2
                                    (3.12)
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Notice that, if ( )V ϕ = 0 , then the trace vanishes identically in d = 2 . This is a

consequence of general conformal invariance.

3.3.2 Vector Field

The Lagrangian for a massive free ( )U 1  vector field is

= − +1
16 8

2

π παβ
αβ

α
αF F m A A                                   (3.13a)

F A Aαβ α β β α∂ ∂= −                                             (3.13b)

If m ≠ 0 the gauge freedom does not exist and the Lorentz gauge condition ∂ α
αA = 0  is

an ad-hoc constraint on the vector field ( )A xµ  due to the equation of motion

∂ α
αβ βF m A+ =2 0 . The canonical stress-energy tensor is

Θµν µ
λ

ν λ µν

π
∂ η= − −1

4
F A                                       (3.14)

From the spin-matrices (2.15b), we find the Belinfante tensor for the vector field as:

B F Aαµν αµ ν

π
= − 1

4
. Applying the equation of motion, one finds the well-known

symmetric stress-energy tensor

T F F F F m A A A Aµν µ
λ

λν µν
αβ

αβ µ ν µν
α

α

π
η

π
η= +�

�
�

�
�
� + −�

�
�

�
�
�

1
4

1
4 4

1
2

2

         (3.15)
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Notice that the trace of T µν  is

T d F F m d A Aµ
µ αβ

αβ
α

α

π π
= −�

�
�

�
�
� + −�

�
�

�
�
�

1
4 4

1
4

1
2

2

                         (3.16)

If m = 0 ( ( )U 1  gauge theory of photons), the trace of the symmetric stress-energy tensor

identically vanishes in d = 4 . This is again a consequence of general conformal

invariance.

3.3.3 Dirac Bi-Spinor Field

A real scalar Lagrangian for the free Dirac field is

( ) ( )= − − +1
2

1
2

ψ γ ∂ ψ ψ γ ∂ ψµ
µ

µ
µi m i m

� �

                             (3.17)

The arrow on top of the differential operator denotes its direction of operation. The

canonical stress-energy tensor is

( )Θµν µ ν µ νψ γ ∂ γ ∂ ψ= −i
2

� �

                                        (3.18)

Recalling the spin-matrices (2.16a,b,c), we obtain the Belinfante tensor

[ ] [ ] [ ]( )Bαµν α µν µ να ν αµψ γ σ γ σ γ σ ψ= + −
+ + +

1
8

, , , . This expression can be further
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simplified by using the Clifford algebra of Dirac matrices [ ]γ γ ηµ ν µν,
+

= 2  and the

identity [ ][ ] [ ][ ] [ ][ ]A B C B C A A B C, , , , , ,
− + − + + −

− =

[ ]Bαµν α µνψ γ σ ψ=
+

1
8

,                                             (3.19)

Using the commutation relation [ ] ( )γ σ η γ η γα µν αµ ν αν µ,
−

= −2i  and then applying the

equations of motion ( ) ( )i m i mγ ∂ ψ ψ γ ∂µ
µ

µ
µ

� �

− = = +0 , we obtain the symmetric stress-

energy tensor for Dirac bi-spinor field

( )T iµν µ ν ν µ µ ν ν µψ γ ∂ γ ∂ γ ∂ γ ∂ ψ= + − −
4

� � � �

                            (3.20)

Straightforward calculation yields the angular momentum tensor as

[ ] [ ] [ ] [ ]( )J i x x x xµλρ µ ρ λ ρ µ λ ρ µ λ ρ µ λψ γ ∂ γ ∂ ∂ γ γ ∂ ψ= + + +
2

� � � �

             (3.21)

Here we have used the notation: ][ ( )βµααµββµα QQQ
def

−=
2
1 . The trace of T µν  is

T mµ
µ ψψ=                                                   (3.22)

If m = 0, then it is traceless for all space-time dimensions. Massless Dirac field is

general-conformal invariant in all space-time dimensions.


