Chapter 3

Symmetric Stress-Energy Tensor

We noticed that Noether’s conserved currents are arbitrary up to the addition of a

divergence-less field. Exploiting this freedom the canonical stress-energy tensor " can

be modified to a new tensor 7" such that dﬂT”‘” =0 and Id”xTOV = Id”x@o"
M M

n n

(here M, denotes the spatial sub-manifold of the space-time M ). The second condition

guarantees that the new tensor T*' defines the same physical observable (namely,
energy-momentum of the field). From Green’s theorem, such a modification of @

require the existence of an anti-symmetric Belinfante [1] tensor field B (x) such that
™ =" +0d,B™" B = —BHY 3.1
a > .

In this chapter we will discuss a necessary and sufficient conditions for the existence of a

Belinfante tensor such that 7% is symmetric. Our main goal here is to introduce

notations, and to summarize the results necessary to make the thesis self-contained.
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3.1 Necessary and Sufficient Conditions

Theorem: The anti-symmetric part of the conserved canonical stress-energy tensor is a

total divergence, if and only if there exists a symmetric stress-energy tensor [1]. m

Proof of Sufficiency: Suppose

O —@% = -3, HW™ (3.2)
By definition, H*" = -H™" . Choose
auv 1 auv va 2/
B =E(H” +H" —H™) (3.3)

Hav: " and also

This tensor have the right anti-symmetry B*" = -B
B — B™ = HW (3.4)

Applying eqns. (3.2) and (3.4) in the definition (3.1), we find

™ -T% = (0" %) +4,(B™ -B™) =0 (3.5)

Hence given H®" one can explicitly construct a Belinfante tensor B*" such that

" =0" +0J,B™ is symmetric. m
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Proof of Necessity: This is in fact trivial. If there exists a symmetric 7*" then from

definition (3.1), (0 - ©%) = -4, (B™ -B™)  a total divergence. m

3.2 Construction of Belinfante Tensor

From eqn. (2.19) on angular momentum conservation we have seen that a necessary

condition for a translation invariant theory be Lorentz invariant is

O -% = —da(l'l"Z”"¢) , a total divergence. Therefore as a consequence of eqn. (3.3)

a full Poincaré invariant field theory always have the following Belinfante tensor which

makes 7% = ©* +J,B%" a symmetric stress-energy tensor

B™ =%(r|”z”” +MF5 —NYZ™ )¢ (3.6)

It is important to note that, in general, the choice of symmetric stress-energy tensors
is not unique. This will be our key to the analysis in chapter 5 to construct an improved
tensor, if exists, for the scale invariant field theories.

There is an alternative definition of symmetric stress-energy tensor in general
relativity [35]. The functional derivative of the action minimally generalized to a metric

compatible Riemannian manifold M, through the correspondence relations
Q}W - g (x),dy - 0,,0,84 =0,d’x - d’x |g|) is defined as a symmetric stress-

energy tensor in general relativity. We will show in appendix A that these two symmetric

stress-energy tensors are identical in flat space-time [32-34]
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as =7 (3.7)

2
\/E @/JV Hv

8ap (x ):’7 aB

We wish to express the angular momentum in terms of symmetric stress-energy

tensor. Substituting ©* =T =g ,B™" in eqn. (2.18), we find

XATH —xPTH = M +9, F™ (3.8)

where F™¥ = (x” B — xP B ) is anti-symmetric in (a, /J) and in (A, p). Dropping

this anti-symmetric divergence, we obtain the conventional angular momentum tensor

JHP = xATH — xPTH (3.9)

It defines the same Lorentz generators as M**. Due to the symmetry of T, the

conservation law d,J #¥ =0 is now an identity.

It is important to note that 7% and hence J** are gauge independent. The action is

invariant under a gauge transformation of the Lagrangian i(x) - i’(x) = i(x) +d, 7" (x)
such that Z* (x)‘d/\ =0. The -canonical stress-energy tensor transforms as

oY L, 0" =" +(d"Z” —n””o"'aZ") . Treating Z"(x) as an independent vector field

in the Lagrangian, one finds from eqns. (2.15b) and (3.6) that
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B*" _, B'* = BW —(lf" " -z ) which clearly shows the gauge independence

of T, namely T'* =@'* +J_B'™ = @ +J,B™ =T".

3.3 Some Examples

We can now apply the definition (3.6) of Belinfante tensor with the spin-matrices

(2.15a,b) and (2.16a,b,c) to construct the symmetric stress-energy tensor for real scalar,

vector, and Dirac bi-spinor fields.

3.3.1 Real Scalar Field

Scalar fields are spinless: £ =0 = T =©@" and J** = M** . These results also

follow from a direct calculation using the standard Lagrangian

2= %MW ~v(p)

Explicit calculation shows

T =@ =0"9 3" -0

JHP = A = d”¢(xAdp¢ —xpéM(b) +(,7;M ¥P _,Iupr )i
It is important to note that the trace of 7" is

T+, = (1 —%jd”q)o"ﬂ& +dV(p)
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Notice that, if V(¢)=0, then the trace vanishes identically in d =2. This is a

consequence of general conformal invariance.

3.3.2 Vector Field

The Lagrangian for a massive free U (1) vector field is

1 aB m? o
L==——F,F" +—A4,4 (3.13a)
1677 87T
Fop = daAﬁ —o"ﬂAa (3.13b)

If m# 0 the gauge freedom does not exist and the Lorentz gauge condition d,4% =0 is
an ad-hoc constraint on the vector field A* (x) due to the equation of motion

2,F” +m* A" =0. The canonical stress-energy tensor is
" = —LF”M?"A” -t (3.14)
4

From the spin-matrices (2.15b), we find the Belinfante tensor for the vector field as:

B = —%F % 4" . Applying the equation of motion, one finds the well-known
T

symmetric stress-energy tensor

2
T :%(FNAFAV +%/7"VFaﬁF”ﬁ) +’:—(A”A” —%rz"“AaA") (3.15)
s s
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Notice that the trace of 7" is

2
T, :%(%—l)FaﬁF”ﬁ +%7f1—%)AaA” (3.16)
m

fm=0 (U (1) gauge theory of photons), the trace of the symmetric stress-energy tensor

identically vanishes in d =4. This is again a consequence of general conformal

invariance.

3.3.3 Dirac Bi-Spinor Field

A real scalar Lagrangian for the free Dirac field is
— 1 LUy _l .ou
i—EW(zy J, m)l,[/ 2@(1;/15# +m)(// (3.17)

The arrow on top of the differential operator denotes its direction of operation. The

canonical stress-energy tensor is
o =—w(y“b” - yfo”)z// (3.18)

Recalling the spin-matrices (2.16a,b,c), we obtain the Belinfante tensor

B* =é¢7([y", 0’“"]+ +[ Vo, d"’] . ~[ v, é‘”] +) (. This expression can be further

21



simplified by using the Clifford algebra of Dirac matrices [y” , y”]+ =21 and the

identity [ 4,[8,C] |, ~[8[C.4]], =[[4.5],.q].

B™ :éw[y",a‘”L W (3.19)

Using the commutation relation [y”, 0"“’]_ = 2i(lf“ y' =" V’) and then applying the

equations of motion (i % B’# - m)t// =0= Zz(i y"?i# +m), we obtain the symmetric stress-

energy tensor for Dirac bi-spinor field
=gy T ey -y -y o)y (3.20)
Straightforward calculation yields the angular momentum tensor as

o :éw(yu;jpxﬂ N L N RN Y R T w“ﬁl) W (3.21)

def
Here we have used the notation: Q[”‘” 1l = %(Q”“ﬂ - Qﬁ‘“’). The trace of T is

T, = myy (3.22)

If m=0, then it is traceless for all space-time dimensions. Massless Dirac field is

general-conformal invariant in all space-time dimensions.
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