# Anomalous Hydrodynamics of Vortex flow in Two-Dimensional Fluid

P. Wiegmann,

University of Chicago

(based on P. Wiegmann and A. G. Abanov arXiv: 1311.4479 (2013))

Discussions with Eldad Bettelheim and Tankut Can acknowledged

March 15, 2014

## HYDRODYNAMICS OF INCOMPRESSIBLE FLUID



2D incompressible flows consist of vortices

### Hydrodynamics of vortex fluid

Vortices as constituencies of a secondary fluid - the vortex fluid (or vortex matter)



- Fast motion: fluid precessing around vortices;
- Slow motion of vortices.
- What is the hydrodynamics of vortex fluid?

Euler Hydrodynamics ⇒ Anomalous hydrodynamics

#### **O**UTLINE

- Hydrodynamics: Incompressible flows in two dimensions
- Search for Conformal Invariance
- Kirchhoff equations
- Onsager ensemble and Random Matrix Theory
- Anomalous forces in hydrodynamics
- Hydrodynamics of vortex flow, superfluids and FQHE

## Hydrodynamics of vortex flow

Hydrodynamics of the vortex flow is anomalous

Assumption: Circulations of vortices are bounded  $> \Gamma$ 

### Anomalous Hydrodynamics

**Euler Equation** 

$$D_t \mathbf{u} = -\nabla p$$

**Anomalous Euler Equation** 

$$D_t \mathbf{v}_a = -\nabla_a p + \nabla_b \tau_{ab}$$

 $D_t \equiv \partial_t + \mathbf{u} \cdot \nabla$  - Material Derivative.

 $au_{ab}$  — anomalous stress - symmetric pseudo-tensor

$$2D: \quad \tau_{xy} = \tau_{yx} = -\eta(\nabla_x u_x - \nabla_y u_y),$$

$$\tau_{xx} = -\tau_{yy} = \eta(\nabla_x u_y + \nabla_y u_x),$$

$$\tau = \tau_{xx} - \tau_{yy} - 2\mathrm{i}\tau_{xy} = -2\mathrm{i}\eta \,\partial \, u, \quad \tau_{z\bar{z}} = 0$$

η

– a universal anomalous kinetic coefficient

## Anomalous Hydrodynamics



#### Hydrodynamics of incompressible forces

Euler Equation 
$$D_t u = -\nabla p$$
,  
Material Derivative  $D_t \equiv (\partial_t + u \cdot \nabla)$ 

Incompressibility 
$$\nabla \cdot \mathbf{u} = 0$$
, Vorticity  $\boldsymbol{\varpi} = \nabla \times \mathbf{u}$ 

Vorticity is transported along the velocity field: the material derivative of the vorticity in that flow vanishes:

Helmholtz Equation: 
$$\frac{D\varpi}{Dt} \equiv \dot{\varpi} + \mathbf{u} \cdot \nabla \varpi = 0.$$

## KIRCHHOFF EQUATIONS

$$\frac{D\varpi}{Dt} \equiv \dot{\varpi} + \mathbf{u} \cdot \nabla \varpi = 0.$$

Helmholtz (and later Kirchhoff)

$$u(z,t) = u_x - iu_y = i \sum_{i=1}^{N} \frac{\Gamma_i}{z - z_i(t)}$$

Kirchhoff equations



$$i\dot{\overline{z}}_i = \sum_{i \neq j}^N \frac{\Gamma_j}{z_i(t) - z_j(t)}$$

## CHIRAL FLOW: CLUSTERING, ROTATING FLUID





Chiral Kirchhoff equations  $\Gamma_i = \Gamma$ 

$$\mathrm{i}\dot{\bar{z}}_i = \Omega \bar{z}_i - \sum_{i \neq j}^N \frac{\Gamma}{z_i(t) - z_j(t)}$$

Object of interest: Large N limit such that the area of the patch is fixed



## CANONICAL STRUCTURE OF KIRCHHOFF EQUATIONS

#### Kirchhoff equations are Hamiltonian

Poisson brackets

$$\{z_i, \bar{z}_j\}_{P.B.} = (\mathrm{i}\pi\Gamma)^{-1}\delta_{ij}.$$

Hamiltonian

$$\mathcal{H} = \Omega |z_i|^2 - \Gamma^2 \sum_{j \neq i} \log |z_i - z_j|^2$$

## Onsager ensemble: Stochastic Hydrodynamics

Thermodynamics of the vortex gas

$$\mathscr{P}(z_1, ..., z_N) = \prod_{i \neq j}^{N} |z_i - z_j|^{2\beta} e^{-\sum_i |z_i|^2/4\ell^2}, \quad 2\beta = \Gamma^2/T$$





## HYDRODYNAMICS OF ONSAGER FLUID OF VORTICES

Start from the many body system

$$\mathrm{i}\bar{z}_i = \mathrm{v}_i = \Omega\bar{z}_i - \sum_{i \neq j}^N \frac{\Gamma}{z_i(t) - z_j(t)}$$

· Reformulate it through the density

$$\rho(r) = \sum_{i} \delta(r - r_i) = (2\pi\Gamma)^{-1}\omega(r).$$

and velocity

$$J = \rho(r)\mathbf{v}(r) \equiv \sum_{i} \delta(r - r_{i})\mathbf{v}_{i},$$

 $\circ$  write evolution equations for density  $\rho$  and velocity v

$$\mathcal{D}_t \rho = ..., \quad \mathcal{D}_t \mathbf{v} = ...$$

o Compare with the Euler equations

$$D_t \rho = 0$$
,  $D_t \mathbf{u} = -\nabla p$ 



#### CHIRAL RELATION

In the chiral flow position of vortices determines their velocity:

$$\mathrm{i} \dot{\bar{z}}_i = \mathrm{v}_i = \Omega \bar{z}_i - \sum_{i \neq j}^N \frac{\Gamma}{z_i(t) - z_j(t)} = \frac{1}{\mathrm{i} \pi \Gamma} \partial_{z_i} \mathscr{H}$$

$$\rho \leftrightarrow v$$

$$\mathbf{v}(z) = \frac{1}{\mathrm{i}\pi\Gamma} \partial_z \frac{\delta \mathcal{H}}{\delta \rho(z)}$$

### OBJECTS IN HYDRODYNAMICS

• Flux 
$$J = \rho \mathbf{v} = (\pi \Gamma) \rho \mathbf{v} = i \bar{\partial} \mathcal{T}$$

 Stress tensor: a response of the energy to a general transformation of coordinates and dilatations

$$z \rightarrow z + \epsilon(z, \bar{z})$$
, and dilatations  $\rho \rightarrow \rho + \lambda(z, \bar{z})\rho$ 

$$\mathscr{T}_{z\bar{z}}(z) = -\rho(z) \frac{\delta \mathscr{H}}{\delta \rho(z)},$$

$$\mathscr{T}(z) = \frac{1}{\pi} \sum_{i} \frac{1}{z - z_{i}} \frac{\partial \mathscr{H}}{\partial z_{i}} = i\Gamma \sum_{i} \frac{v_{i}}{z - z_{i}}.$$

$$\bar{\partial} \mathcal{T} + \rho \partial (\rho^{-1} \mathcal{T}_{z\bar{z}}) = 0$$



### Stress tensor in Anomalous Hydrodynamics

Stress tensor in Euler hydrodynamics (the holomorphic component only):

$$\mathscr{T} = \frac{1}{2}\mathbf{u}^2 = \frac{1}{2}(\partial \psi)^2$$

Stress tensor in vortex (anomalous) hydrodynamics:

$$\mathscr{T} = \frac{1}{2}\mathbf{u}^2 - i\frac{\Gamma}{2}\partial\mathbf{u} = \frac{1}{2}(\partial\psi)^2 - \underbrace{i\frac{\Gamma}{2}\partial^2\psi}_{\text{anomalous term}}$$

$$\psi$$
 – stream function :  $u_x = -\nabla_y \psi$ ,  $u_y = \nabla_x \psi$ 

#### **C**ALCULATIONS

We want to express

$$\mathscr{T}(z) = i\Gamma \sum_{i} \frac{\mathbf{v}_{i}}{z - z_{i}}, \quad \mathbf{v}_{i} = \sum_{i \neq j}^{N} \frac{\Gamma}{z_{i} - z_{j}}$$

Through velocity

$$\mathbf{u} = \sum_{j}^{N} \frac{\Gamma}{z - z_{j}}$$

Use the identity

$$2\sum_{i\neq j} \frac{1}{z-z_i} \frac{1}{z_i-z_j} = \left(\sum_i \frac{1}{z-z_i}\right)^2 + \partial \left(\sum_i \frac{1}{z-z_i}\right)$$

To obtain

$$\mathscr{T} = \frac{1}{2}\mathbf{u}^2 - \mathbf{i}\frac{\Gamma}{2}\partial\mathbf{u}$$

#### Deflection of the velocity and stream lines

#### Anomalous term in the velocity

$$\rho(r) \mathbf{v}(r) = \sum_{i} \delta(r - r_i) \mathbf{v}_i, \quad \mathbf{v}_i = \sum_{i \neq j}^{N} \frac{\Gamma}{z_i - z_j}$$
$$\mathbf{v} = \mathbf{u} + \frac{\Gamma}{2} \mathbf{i} \partial \log |\omega|$$

$$\omega = \nabla \times \mathbf{u}$$

and in terms of the stream lines

$$\boxed{\Psi = \psi + \frac{\Gamma}{4} \log \Delta \psi}$$

$$v = -\nabla \times \Psi$$
,  $u = -\nabla \times \psi$ 

### Hamiltonian and Poisson algebra of the vortex flow

$$\mathcal{H} = \frac{1}{2} \int \left[ \mathbf{v}^2 - (\frac{\Gamma}{4} \nabla \log \rho)^2 \right] d^2 r,$$

The chiral constraint:

$$(2\pi\Gamma)\cdot(\nabla\times\mathbf{v}) = \rho + \frac{\Gamma}{4}\Delta\log\rho.$$

Poisson algebra  $J = \rho v$ 

$$\{\rho(r),\,\rho(r')\} = -\pi\Gamma(\nabla_r \times \nabla_{r'})[(\rho(r) + \rho(r'))\delta(r - r')],$$

$$\{\bar{J}(r),J(r')\} = \left(-\frac{1}{2}(J\times\nabla) + \pi\Gamma\left(\rho^2 + \frac{1}{4}\nabla\rho\cdot\nabla\right)\right)\rho\,\delta(r-r')$$

### Hydrodynamics in a curved space: Trace anomaly

Riemann manifold with a metric  $g_{ab}$ :  $\rho \to \rho \sqrt{g}$  The energy

$$\rho \to \rho \sqrt{g}$$
 The energy

$$H \to H + \underbrace{\frac{\Gamma^2}{32} \int R \, \Delta_g^{-1} \, R \, dV}_{\text{Liouville action}}$$

The stress tensor

$$\mathscr{T}_{z\bar{z}} \to \mathscr{T}_{z\bar{z}} - \frac{\Gamma^2}{4}R$$

Density in a stationary flow



$$\delta \rho = \frac{1}{8\pi} R$$

A cone with a deficit angle  $\theta$  accumulates  $\theta/4\pi$  vortices.

## QUANTIZATION OF INCOMPRESSIBLE FLUID AND SUPERFLUIDS

Kirchhoff Equations are Hamiltonian and finite dimensional - readily for quantization;

$$i\dot{\bar{z}}_i = \sum_{i \neq j}^N \frac{\Gamma_j}{z_i(t) - z_j(t)}$$

$$\{z_i, \bar{z}_j\}_{P.B.} \to [z_i, \bar{z}_j] = \beta^{-1} \delta_{ij}, \quad \Gamma = \beta \hbar.$$

$$\bar{z}_i \to \beta^{-1} \partial_{z_i}$$

Attempts to quantize incompressible Euler's equation failed.

## RELATION TO FQHE

The ground state of the vortex flow is Feynman wave function.

In the chiral case (all vortices are like-sign) is Laughlin's wave function

$$v_i | 0 > = 0$$

$$\left(\partial_{z_i} + \Omega \bar{z}_i - \sum_{i \neq j}^N \frac{\beta}{z_i - z_j}\right) \Psi(z_1, \dots, z_N) = 0$$

### **O**MITTED SUBJECTS

- Relation to CFT
- Application to turbulence (project with Eldad)