Classify FQH states through pattern of zeros

Zhenghan Wang, Maissam Barkeshli, Xiao-Gang Wen

Oct 25, 2008; UIUC

PRB, arXiv:0807.2789 PRB, arXiv:0803.1016 Phys. Rev. B 77, 235108 (2008) arXiv:0801.3291

Zhenghan Wang, Maissam Barkeshli, Xiao-Gang Wen Classify FQH states through pattern of zeros

向下 イヨト イヨト

We used to believe that symmetry breaking describe all phases and phase transitions. ${\mbox{\tiny Landau, 1937}}$

向下 イヨト イヨト

We used to believe that symmetry breaking describe all phases and phase transitions. $_{\mbox{Landau, 1937}}$ But

- an ideal symmetry breaking state at T = 0 has a form $|\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes \cdots$, which contain no entanglement.
 - \rightarrow a symmetry breaking state has only short range entanglement.

・ 同 ト ・ ヨ ト ・ ヨ ト …

We used to believe that symmetry breaking describe all phases and phase transitions. $_{\mbox{Landau, 1937}}$ But

• an ideal symmetry breaking state at T = 0 has a form $|\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes \cdots$, which contain no entanglement. \rightarrow a symmetry breaking state has only short range entanglement. $\prod U_i | symm. br \rangle = | dir. prod. \rangle$

・ 同 ト ・ ヨ ト ・ ヨ ト …

We used to believe that symmetry breaking describe all phases and phase transitions. $_{\tt Landau,\ 1937}$ But

- an ideal symmetry breaking state at T = 0 has a form $|\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes \cdots$, which contain no entanglement. \rightarrow a symmetry breaking state has only short range entanglement. $\prod U_i |symm. br\rangle = |dir. prod.\rangle$
- Quantum states with pattern of long range entanglement (such as topologically ordered states wen, 1989) are beyond the symmetry breaking paradigm and represent new states of matter.

▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶

We used to believe that symmetry breaking describe all phases and phase transitions. $_{\tt Landau,\ 1937}$ But

- an ideal symmetry breaking state at T = 0 has a form $|\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes \cdots$, which contain no entanglement. \rightarrow a symmetry breaking state has only short range entanglement. $\prod U_i |symm. br\rangle = |dir. prod.\rangle$
- Quantum states with pattern of long range entanglement (such as topologically ordered states wen, 1989) are beyond the symmetry breaking paradigm and represent new states of matter.
- Understanding the pattern of long range entanglement = classify wave functions of infinity variables

We used to believe that symmetry breaking describe all phases and phase transitions. $_{\tt Landau,\ 1937}$ But

- an ideal symmetry breaking state at T = 0 has a form $|\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes \cdots$, which contain no entanglement. \rightarrow a symmetry breaking state has only short range entanglement. $\prod U_i |symm. br\rangle = |dir. prod.\rangle$
- Quantum states with pattern of long range entanglement (such as topologically ordered states wen, 1989) are beyond the symmetry breaking paradigm and represent new states of matter.
- Understanding the pattern of long range entanglement = classify wave functions of infinity variables
- Non-chiral topological orders in 2D appear to be classified by string-net condensations and unitary tensor categories.Levin & Wen, 04

We used to believe that symmetry breaking describe all phases and phase transitions. $_{\tt Landau,\ 1937}$ But

- an ideal symmetry breaking state at T = 0 has a form $|\uparrow\rangle \otimes |\downarrow\rangle \otimes |\uparrow\rangle \otimes |\downarrow\rangle \otimes \cdots$, which contain no entanglement. \rightarrow a symmetry breaking state has only short range entanglement. $\prod U_i |symm. br\rangle = |dir. prod.\rangle$
- Quantum states with pattern of long range entanglement (such as topologically ordered states wen, 1989) are beyond the symmetry breaking paradigm and represent new states of matter.
- Understanding the pattern of long range entanglement = classify wave functions of infinity variables
- Non-chiral topological orders in 2D appear to be classified by string-net condensations and unitary tensor categories.Levin & Wen, 04
- Here we try to classify the chiral topological orders in FQH states by classifying symmetric polynomials of infinite variable.

FQH state in the first Landau level (bosonic electrons) $\Psi = \Phi(z_1, \dots, z_N) e^{-\frac{1}{4} \sum_{i=1}^N |z_i|^2}, \quad \Phi = \text{ a symmetric polynomial}$

- (回) (三) (三) (三) (三)

FQH state in the first Landau level (bosonic electrons) $\Psi = \Phi(z_1, \dots, z_N) e^{-\frac{1}{4} \sum_{i=1}^N |z_i|^2}, \quad \Phi = \text{ a symmetric polynomial}$

• $\nu = 1/2$ Laughlin state $\Phi_{1/2} = \prod_{i < j} (z_i - z_j)^2, \qquad V_{1/2}(z_1, z_2) = \delta(z_1 - z_2)$

Zhenghan Wang, Maissam Barkeshli, Xiao-Gang Wen Classify FQH states through pattern of zeros

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

FQH state in the first Landau level (bosonic electrons) $\Psi = \Phi(z_1, \dots, z_N) e^{-\frac{1}{4} \sum_{i=1}^N |z_i|^2}, \quad \Phi = \text{ a symmetric polynomial}$

- $\nu = 1/2$ Laughlin state $\Phi_{1/2} = \prod_{i < j} (z_i - z_j)^2, \qquad V_{1/2}(z_1, z_2) = \delta(z_1 - z_2)$
- $\nu = 1/4$ Laughlin state

$$\Phi_{1/4} = \prod_{i < j} (z_i - z_j)^4$$
$$V_{1/4}(z_1, z_2) = v_0 \delta(z_1 - z_2) + v_2 \partial_{z_1^*}^2 \delta(z_1 - z_2) \partial_{z_1}^2$$

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

FQH state in the first Landau level (bosonic electrons) $\Psi = \Phi(z_1, \dots, z_N) e^{-\frac{1}{4} \sum_{i=1}^N |z_i|^2}, \quad \Phi = \text{ a symmetric polynomial}$

•
$$\nu = 1/2$$
 Laughlin state
 $\Phi_{1/2} = \prod_{i < j} (z_i - z_j)^2, \qquad V_{1/2}(z_1, z_2) = \delta(z_1 - z_2)$

• $\nu = 1/4$ Laughlin state

$$\Phi_{1/4} = \prod_{i < j} (z_i - z_j)^4$$

 $V_{1/4}(z_1, z_2) = v_0 \delta(z_1 - z_2) + v_2 \partial_{z_1^*}^2 \delta(z_1 - z_2) \partial_{z_1}^2$

• $\nu=1$ Pfaffian state Moore & Read, 1991

$$\Phi_{1/2} = \mathcal{A}\Big(\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \cdots \frac{1}{z_{N-1} - z_N}\Big) \prod_{i < j} (z_i - z_j)$$

$$\mathcal{P}_{Pf}(z_1, z_2, z_3) = \mathcal{S}[v_0 \delta(z_1 - z_2) \delta(z_2 - z_3) - v_1 \delta(z_1 - z_2) \partial_{z_3} \delta(z_2 - z_3) \partial_{z_3} \delta(z_2 - z_3) \partial_{z_3} \delta(z_2 - z_3) \partial_{z_3} \delta(z_2 - z_3) \partial_{z_3} \delta(z_3 - z_3$$

Zhenghan Wang, Maissam Barkeshli, Xiao-Gang Wen

Classify FQH states through pattern of zeros

Pattern of zeros

Let
$$z_i = \lambda \xi_i + z^{(a)}, i = 1, 2, \cdots, a$$

 $\Phi(\{z_i\}) = \lambda^{S_a} P(\xi^1, ..., \xi^a; z^{(a)}, z_{a+1}, z_{a+2}, \cdots) + O(\lambda^{S_a+1})$

- The sequence of integers $\{S_a\}$ characterizes the polynomial $\Phi(\{z_i\})$ and is called the pattern of zeros.
- $\nu = 1/2$ Laughlin state S_1, S_2, \dots : 0, 2, 6, 12, 20, 30, 42, 56, \dots .

(本部) (本語) (本語) (語)

Pattern of zeros

Let
$$z_i = \lambda \xi_i + z^{(a)}$$
, $i = 1, 2, \dots, a$
 $\Phi(\{z_i\}) = \lambda^{S_a} P(\xi^1, ..., \xi^a; z^{(a)}, z_{a+1}, z_{a+2}, \dots) + O(\lambda^{S_a+1})$

- The sequence of integers $\{S_a\}$ characterizes the polynomial $\Phi(\{z_i\})$ and is called the pattern of zeros.
- $\nu = 1/2$ Laughlin state S_1, S_2, \dots : 0, 2, 6, 12, 20, 30, 42, 56, \dots .
- Unique fusion cond.: P does not depend on the "shape" $\{\xi^i\}$ $P(\{\xi^i\}; z^{(a)}, z_{a+1}, z_{a+2}, \cdots) \propto P(z^{(a)}, z_{a+1}, z_{a+2}, \cdots)$
- Pattern of zeros and orbital/occupation distribution Let $l_a = S_a - S_{a-1}$ or $S_a = \sum_{i=1}^{a} l_i$, then $\Phi(\{z_i\}) \sim S[z_1^{l_1} z_2^{l_2} \cdots] + \cdots, \qquad l^{\text{th}} \text{ orbital} = z^l$

The pattern of zero of $\nu = 1/2$ Laughlin state is also described by

 $l_1, l_2, \cdots : 0, 2, 4, 6, 8, 10, \cdots$

 $n_0 n_1 n_2 \cdots$: 1010101010101010 ...

• $\nu = 1/4$ Laughlin state

 $S_1, S_2, \dots : 0, 4, 12, 24, 40, 60, 84, \dots$ $l_1, l_2, \dots : 0, 4, 8, 12, 16, 20, \dots$ $n_0 n_1 n_2 \dots : 100010001000100010001 \dots$

A cluster (unit cell): 1 particles 4 orbitals • $\nu = 1$ Pfaffian state

> $S_1, S_2, \dots : 0, 0, 2, 4, 8, 12, 18, 24, \dots$ $l_1, l_2, \dots : 0, 0, 2, 2, 4, 4, 6, 6, \dots$ $n_0 n_1 n_2 \dots : 2020202020202020202 \dots$

A cluster (unit cell): 2 particles 2 orbitals

• $\nu = 1/4$ Laughlin state

 $S_1, S_2, \dots : 0, 4, 12, 24, 40, 60, 84, \dots$ $l_1, l_2, \dots : 0, 4, 8, 12, 16, 20, \dots$ $n_0 n_1 n_2 \dots : 100010001000100010001 \dots$

A cluster (unit cell): 1 particles 4 orbitals • $\nu = 1$ Pfaffian state

> $S_1, S_2, \dots : 0, 0, 2, 4, 8, 12, 18, 24, \dots$ $l_1, l_2, \dots : 0, 0, 2, 2, 4, 4, 6, 6, \dots$ $n_0 n_1 n_2 \dots : 2020202020202020202 \dots$

A cluster (unit cell): 2 particles 2 orbitals

• FQH <=> 1D "CDW" (on thin cylinder)

Haldane & Rezayi, 94; Seidel & Lee, 06; Bergholtz, Kailasvuori, Wikberg, Hansson, Karlhede, 06; Bernevig & Haldane, 07

• We have seen that

each symmetric polynomial $\Phi(\{z_i\}) \rightarrow \{S_a\}$ a pattern of zeros. But each sequence of integers $\{S_a\} \not\rightarrow \Phi(\{z_i\})$

• Find all the conditions a sequence $\{S_a\}$ must satisfy, such that $\{S_a\}$ describe a symmetric polynomial that satisfies the unique fusion condition. \rightarrow

A classification of symmetric polynomials (FQH states) through pattern of zeros.

伺下 イヨト イヨト

Derived polynomials

• Let
$$z_1, ..., z_a \rightarrow z^{(a)}$$

$$\Phi(\{z_i\}) = \lambda^{S_a} P(z^{(a)}, z_{a+1}, z_{a+2}, \cdots) + O(\lambda^{S_a+1})$$

we get a derived polynomial $P(z^{(a)}, z^{(b)}, z^{(c)}, \cdots)$.

Derived polynomials

• Let
$$z_1, ..., z_a \to z^{(a)}$$

 $\Phi(\{z_i\}) = \lambda^{S_a} P(z^{(a)}, z_{a+1}, z_{a+2}, \cdots) + O(\lambda^{S_a+1})$

we get a derived polynomial $P(z^{(a)}, z^{(b)}, z^{(c)}, \cdots)$.

• Zeros in derived polynomials $D_{a,b}$ $P(z^{(a)}, z^{(b)}, z^{(c)}, \cdots) \sim (z^{(a)} - z^{(b)})^{D_{a,b}} P'(z^{(a+b)}...) + \cdots$

also characterize the pattern of zeros.

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

Derived polynomials

• Let $z_1, ..., z_a \to z^{(a)}$ $\Phi(\{z_i\}) = \lambda^{S_a} P(z^{(a)}, z_{a+1}, z_{a+2}, \cdots) + O(\lambda^{S_a+1})$

we get a derived polynomial $P(z^{(a)}, z^{(b)}, z^{(c)}, \cdots)$.

• Zeros in derived polynomials $D_{a,b}$ $P(z^{(a)}, z^{(b)}, z^{(c)}, \cdots) \sim (z^{(a)} - z^{(b)})^{D_{a,b}} P'(z^{(a+b)}...) + \cdots$

also characterize the pattern of zeros.

• The data $D_{a,b}$ and S_a are related:

$$D_{a,b}=S_{a+b}-S_a-S_b.$$

イロト イボト イヨト イヨト 二日

Conditions on pattern of zeros - ground state

Concave conditions

$$\Delta_2(a,b) \equiv S_{a+b} - S_a - S_b = D_{a,b} \ge 0,$$

通 と く ヨ と く ヨ と

æ

Conditions on pattern of zeros - ground state

Concave conditions

$$\Delta_2(a,b) \equiv S_{a+b} - S_a - S_b = D_{a,b} \ge 0,$$

 $\Delta_3(a,b,c) \equiv S_{a+b+c} - S_{a+b} - S_{b+c} - S_{a+c} + S_a + S_b + S_c \geq 0$

(本間) (本語) (本語) (語)

Conditions on pattern of zeros - ground state

Concave conditions

$$\Delta_2(a,b) \equiv S_{a+b} - S_a - S_b = D_{a,b} \ge 0,$$

 $\Delta_3(a,b,c) \equiv S_{a+b+c} - S_{a+b} - S_{b+c} - S_{a+c} + S_a + S_b + S_c \geq 0$

The second one comes from

$$D_{a+b,c} \ge D_{a,c} + D_{b,c}$$

which can be shown by considering $P(z^{(a)}, z^{(b)}, z^{(c)}, \cdots)$ as a function of $z^{(c)}$

Zhenghan Wang, Maissam Barkeshli, Xiao-Gang Wen Classify FQH states through pattern of zeros

n-cluster condition: No off-particle zeros when *c* = *n* (or the wave function for the *n*-clusters is the Laughlin wave function)

$$D_{a+b,n} = D_{a,n} + D_{b,n} \rightarrow$$

 $S_{a+kn} = S_a + kS_n + \frac{k(k-1)nm}{2} + kma$

 \rightarrow

(本部) (本語) (本語) (語)

• *n*-cluster condition: No off-particle zeros when c = n (or the wave function for the *n*-clusters is the Laughlin wave function)

$$ightarrow D_{a+b,n} = D_{a,n} + D_{b,n}
ightarrow$$
 $S_{a+kn} = S_a + kS_n + rac{k(k-1)nm}{2} + kma$

Since $S_1 = 0$, (m, S_2, \dots, S_n) carries all the information about the pattern of zeros from an *n*-cluster symmetric polynomial.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

n-cluster condition: No off-particle zeros when *c* = *n* (or the wave function for the *n*-clusters is the Laughlin wave function)

$$ightarrow D_{a+b,n} = D_{a,n} + D_{b,n}
ightarrow$$

 $S_{a+kn} = S_a + kS_n + rac{k(k-1)nm}{2} + kma$

Since $S_1 = 0$, (m, S_2, \dots, S_n) carries all the information about the pattern of zeros from an *n*-cluster symmetric polynomial.

• Additional conditions

 $\Delta_2(a, a) = \text{even}, \quad m > 0, \quad mn = \text{even}, \quad 2S_n = 0 \mod n.$

• A mysterious condition (the one we want but cannot prove):

 $\Delta_3(a, b, c) = even$

n-cluster condition: No off-particle zeros when *c* = *n* (or the wave function for the *n*-clusters is the Laughlin wave function)

$$ightarrow D_{a+b,n} = D_{a,n} + D_{b,n}
ightarrow$$
 $S_{a+kn} = S_a + kS_n + rac{k(k-1)nm}{2} + kma$

Since $S_1 = 0$, (m, S_2, \dots, S_n) carries all the information about the pattern of zeros from an *n*-cluster symmetric polynomial.

• Additional conditions

 $\Delta_2(a, a) = \text{even}, \quad m > 0, \quad mn = \text{even}, \quad 2S_n = 0 \mod n.$

• A mysterious condition (the one we want but cannot prove):

$$\Delta_3(a, b, c) = even$$

(m; S₂, ···, S_n) that satisfy the above conditions correspond to symmetric polynomials. => Those (m; S₂, ···, S_n) "classify" symmetric polynomials and FQH states (with ν = n/m).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Primitive solutions for pattern of zeros

The conditions are semi-linear \rightarrow if $(m; S_2, \dots, S_n)$ and $(m'; S'_2, \dots, S'_n)$ are solutions, then $(m''; S''_2, \dots, S''_n) = (m; S_2, \dots, S_n) + (m'; S'_2, \dots, S'_n)$ is also a solution $\sim \Phi'' = \Phi \Phi'$

向下 イヨト イヨト

Primitive solutions for pattern of zeros

The conditions are semi-linear \rightarrow if $(m; S_2, \dots, S_n)$ and $(m'; S'_2, \dots, S'_n)$ are solutions, then $(m''; S''_2, \dots, S''_n) = (m; S_2, \dots, S_n) + (m'; S'_2, \dots, S'_n)$ is also a solution $\sim \Phi'' = \Phi \Phi'$

1-cluster state: $\nu = 1/m$ Laughlin state

 $\Phi_{1/m}$: **S** = (m;), (n_0, \cdots, n_{m-1}) = (1, 0, ..., 0).

2-cluster state: Pfaffian state (Z_2 parafermion state) $\Phi_{\frac{2}{2};Z_2}$: ($m; S_2$) = (2; 0), (n_0, \cdots, n_{m-1}) = (2, 0)

3-cluster state: Z_3 parafermion state

$$\Phi_{\frac{3}{2};Z_3}: \quad (m; S_2, S_3) = (2; 0, 0),$$
$$(n_0, \cdots, n_{m-1}) = (3, 0)$$

4-cluster state: Z_4 parafermion state

$$\Phi_{\frac{4}{2};Z_4}:(m;S_2,\cdots,S_n)=(2;0,0,0),$$

$$(n_0,\cdots,n_{m-1})=(4,0),$$

5-cluster states: Z_5 (generalized) parafermion state $\Phi_{\frac{5}{2};Z_5} : (m; S_2, \dots, S_n) = (2; 0, 0, 0, 0),$ $(n_0, \dots, n_{m-1}) = (5, 0)$

$$\Phi_{\frac{5}{8};Z_5^{(2)}}: (m; S_2, \cdots, S_n) = (8; 0, 2, 6, 10),$$
$$(n_0, \cdots, n_{m-1}) = (2, 0, 1, 0, 2, 0, 0, 0)$$

6-cluster state:

$$\Phi_{\frac{6}{2};Z_6}:(m;S_2,\cdots,S_n)=(2;0,0,0,0,0),$$

$$(n_0,\cdots,n_{m-1})=(6,0)$$

同下 イヨト イヨト ニヨ

7-cluster states:

$$\Phi_{\frac{7}{2};Z_7}:(m;S_2,\cdots,S_n)=(2;0,0,0,0,0,0),$$

$$(n_0,\cdots,n_{m-1})=(7,0)$$

$$\Phi_{\frac{7}{8};Z_7^{(2)}}: (m; S_2, \cdots, S_n) = (8; 0, 0, 2, 6, 10, 14),$$
$$(n_0, \cdots, n_{m-1}) = (3, 0, 1, 0, 3, 0, 0, 0)$$

$$\Phi_{\frac{7}{18};Z_7^{(3)}}:(m;S_2,\cdots,S_n)=(18;0,4,10,18,30,42),$$

(n_0,\cdots,n_{m-1})=(2,0,0,0,0,1,0,0,0,2,0,0,0,0,0,0)

$$\Phi_{\frac{7}{14};C_7}:(m;S_2,\cdots,S_n)=(14;0,2,6,12,20,28),\\(n_0,\cdots,n_{m-1})=(2,0,1,0,1,0,1,0,2,0,0,0,0,0)$$

• Also get composite parafermion state $\Phi = \Phi_{Z_{n_1}} \Phi_{Z_{n_2}}$

・ロン ・回 と ・ ヨ と ・ ヨ と

If the pattern of zeros can characterize the FQH states, then we should be able to calculate the topological properties of FQH states from the data $(m; S_2, \dots, S_n)$.

向下 イヨト イヨト

If the pattern of zeros can characterize the FQH states, then we should be able to calculate the topological properties of FQH states from the data $(m; S_2, \dots, S_n)$.

We have seen that $\nu = n/m$.

伺下 イヨト イヨト

If the pattern of zeros can characterize the FQH states, then we should be able to calculate the topological properties of FQH states from the data $(m; S_2, \dots, S_n)$.

We have seen that $\nu = n/m$.

- Number of quasiparticle types (topological degeneracy on torus)
- Quasiparticle charges
- Quasiparticle fusion algebra
- The corresponding CFT (chiral vertex algebra)

・ 同 ト ・ ヨ ト ・ ヨ ト

•
$$\Phi_{\gamma}(\{z_i\})$$
 has a quasiparticle at $z = 0$

白 ト イヨト イヨト

æ

- $\Phi_{\gamma}(\{z_i\})$ has a quasiparticle at z = 0
- Let $z_i = \lambda \xi_i$, $i = 1, 2, \dots, a$ (bring *a* electrons to the quasiparticle) $\Phi_{\gamma}(\{z_i\}) = \lambda^{S_{\gamma;a}} P_{\gamma}(z^{(a)}, z_{a+1}, z_{a+2}, \dots) + O(\lambda^{S_a+1})$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- $\Phi_{\gamma}(\{z_i\})$ has a quasiparticle at z = 0
- Let $z_i = \lambda \xi_i$, $i = 1, 2, \cdots, a$ (bring *a* electrons to the quasiparticle) $\Phi_{\gamma}(\{z_i\}) = \lambda^{S_{\gamma;a}} P_{\gamma}(z^{(a)}, z_{a+1}, z_{a+2}, \cdots) + O(\lambda^{S_a+1})$

The sequence of integers $\{S_{\gamma;a}\}$ characterizes the quasiparticle γ .

• $\{S_a\}$ correspond to the trivial quasiparticle $\gamma = 0$: $\{S_{0;a}\} = \{S_a\}$

(4)同() (4) ほう (4) ほう (5) ほう

- $\Phi_{\gamma}(\{z_i\})$ has a quasiparticle at z = 0
- Let $z_i = \lambda \xi_i$, $i = 1, 2, \cdots, a$ (bring *a* electrons to the quasiparticle) $\Phi_{\gamma}(\{z_i\}) = \lambda^{S_{\gamma;a}} P_{\gamma}(z^{(a)}, z_{a+1}, z_{a+2}, \cdots) + O(\lambda^{S_a+1})$

The sequence of integers $\{S_{\gamma;a}\}$ characterizes the quasiparticle γ .

- $\{S_a\}$ correspond to the trivial quasiparticle $\gamma = 0$: $\{S_{0;a}\} = \{S_a\}$
- To find the allowed quasiparticles, we simply need to find
 (i) the conditions that S_{γ;a} must satisfy and
 (ii) all the S_{γ;a} that satisfy those conditions.

Conditions on $S_{\gamma;a}$

Concave condition

$$\begin{split} S_{\gamma;a+b} - S_{\gamma;a} - S_b &\geq 0, \\ S_{\gamma;a+b+c} - S_{\gamma;a+b} - S_{\gamma;a+c} - S_{b+c} + S_{\gamma;a} + S_b + S_c &\geq 0 \end{split}$$

n-cluster condition

$$S_{\gamma;a+kn} = S_{\gamma;a} + k(S_{\gamma;n} + ma) + mn\frac{k(k-1)}{2}$$

 $(S_{\gamma;1}, \cdots, S_{\gamma;n})$ determine all $\{S_{\gamma;a}\}$.

Conditions on $S_{\gamma;a}$

Concave condition

$$\begin{split} S_{\gamma;a+b} - S_{\gamma;a} - S_b &\geq 0, \\ S_{\gamma;a+b+c} - S_{\gamma;a+b} - S_{\gamma;a+c} - S_{b+c} + S_{\gamma;a} + S_b + S_c &\geq 0 \end{split}$$

n-cluster condition

$$S_{\gamma;a+kn} = S_{\gamma;a} + k(S_{\gamma;n} + ma) + mn\frac{k(k-1)}{2}$$

 $(S_{\gamma;1}, \cdots, S_{\gamma;n})$ determine all $\{S_{\gamma;a}\}$.

• Find all $(S_{\gamma;1}, \dots, S_{\gamma;n})$ that satisfy that above conditions \rightarrow obtain all the quasiparticles.

(日本) (日本) (日本)

For the $\nu = 1$ Pfaffian state (n = 2 and m = 2) $S_1, S_2, \dots : 0, 0, 2, 4, 8, 12, 18, 24, \dots$ $n_0 n_1 n_2 \dots : 20202020202020202 \dots$

• Quasiparticle solutions:

Unit cell: *m* orbitals + n electrons

 All other quasiparticle solutions can obtained from the above three by removing extra electrons → only 3 quasiparticle types.

・ 同 ト ・ ヨ ト ・ ヨ ト

For the $\nu = 1$ Pfaffian state (n = 2 and m = 2) $S_1, S_2, \dots : 0, 0, 2, 4, 8, 12, 18, 24, \dots$ $n_0 n_1 n_2 \dots : 20202020202020202 \dots$

• Quasiparticle solutions:

Unit cell: *m* orbitals + n electrons

- All other quasiparticle solutions can obtained from the above three by removing extra electrons → only 3 quasiparticle types.
- Ground state degeneracy on torus = number of quasiparticle types

For the $\nu = 1$ Pfaffian state (n = 2 and m = 2) $S_1, S_2, \dots : 0, 0, 2, 4, 8, 12, 18, 24, \dots$ $n_0 n_1 n_2 \dots : 20202020202020202 \dots$

• Quasiparticle solutions:

Unit cell: *m* orbitals + n electrons

- All other quasiparticle solutions can obtained from the above three by removing extra electrons → only 3 quasiparticle types.
- Ground state degeneracy on torus = number of quasiparticle types
- Charge of quasiparticles

$$Q_{\gamma} = \frac{1}{m} \sum_{a=1}^{n} (l_{\gamma;a} - l_a)$$

In terms of $I_{\gamma;a} = S_{\gamma;a} - S_{\gamma;a-1}$, the concave condition for quasiparticles becomes

$$\sum_{k=1}^{b} l_{\gamma;a+k} \geq S_b,$$
 $\sum_{k=1}^{c} (l_{\gamma;a+b+k} - l_{\gamma;a+k}) \geq S_{b+c} - S_b - S_c = D_{b,c}$

for any $a, b, c \in Z_+$. Setting c = 1: b electrons must spread over $D_{b,1} + 1$ orbitals or more.

・ 同 ト ・ ヨ ト ・ ヨ ト

Quasiparticle solutions (for states related to known CFT)

For the parafermion states $\Phi_{\nu=\frac{n}{2};Z_n}$ (m = 2),

$\Phi_{\frac{2}{2};Z_{2}}$	$\Phi_{\frac{3}{2};Z_{3}}$	$\Phi_{\frac{4}{2};Z_4}$	$\Phi_{\frac{5}{2};Z_{5}}$	$\Phi_{\frac{6}{2};Z_6}$	$\Phi_{\frac{7}{2};Z_7}$	$\Phi_{\frac{8}{2};Z_8}$	$\Phi_{\frac{9}{2};Z_9}$	$\Phi_{\frac{10}{2};Z_{10}}$
3	4	5	6	7	8	9	10	11

For the parafermion states $\Phi_{\nu=\frac{n}{2+2n};Z_n}$ (m = 2 + 2n)

$\Phi_{\frac{2}{6};Z_2}$	$\Phi_{\frac{3}{8};Z_3}$	$\Phi_{\frac{4}{10};Z_4}$	$\Phi_{\frac{5}{12};Z_5}$	$\Phi_{\frac{6}{14};Z_6}$	$\Phi_{\frac{7}{16};Z_7}$	$\Phi_{\frac{8}{18};Z_8}$	$\Phi_{\frac{9}{20};Z_9}$	$\Phi_{\frac{10}{22};Z_{10}}$
9	16	25	36	49	64	81	100	121

For the generalized parafermion states $\Phi_{\nu=\frac{n}{m};Z_{n}^{(k)}}$

$\Phi_{\frac{5}{8};Z_5^{(2)}}$	$\Phi_{\frac{5}{18};Z_5^{(2)}}$	$\Phi_{\frac{7}{8};Z_7^{(2)}}$	$\Phi_{\frac{7}{22};Z_7^{(2)}}$	$\Phi_{\frac{7}{18};Z_7^{(3)}}$	$\Phi_{\frac{7}{32};Z_7^{(3)}}$	$\Phi_{\frac{8}{18};Z_8^{(3)}}$	$\Phi_{\frac{9}{8};Z_9^{(2)}}$
24	54	32	88	72	128	81	40

・ 同 ト ・ ヨ ト ・ ヨ ト

where k and n are coprime.

For the composite parafermion states $\Phi_{\frac{n_1}{m_1};Z_{n_1}^{(k_2)}}\Phi_{\frac{n_2}{m_2};Z_{n_2}^{(k_2)}}$ obtained as products of two parafermion wave functions

$\Phi_{\frac{2}{2};Z_{2}}\Phi_{\frac{3}{2};Z_{3}}$	$\Phi_{\frac{3}{2};Z_3}\Phi_{\frac{4}{2};Z_4}$	$\Phi_{\frac{2}{2};Z_2}\Phi_{\frac{5}{2};Z_5}$	$\Phi_{\frac{2}{2};Z_2}\Phi_{\frac{5}{8};Z_5^{(2)}}$
30	70	63	117

where n_1 and n_2 are coprime. The inverse filling fractions of the above composite states are $\frac{1}{\nu} = \frac{1}{\nu_1} + \frac{1}{\nu_2} = \frac{m_1}{n_1} + \frac{m_2}{n_2}$.

 \bullet Those results from the pattern of zeros all agree with the results from parafermion CFT: $_{\rm Barkeshli\ \&\ Wen,\ 2008}$

$$\#$$
 of quasiparticles $=rac{1}{
u}\prod_{i}rac{n_{i}(n_{i}+1)}{2}$

for the generalized composite parafermions state

$$\Phi = \prod_{i} \Phi_{\frac{n_i}{m_i}; Z_{n_i}^{(k_i)}}, \quad \{n_i\} \text{ coprime,} \quad (k_i, n_i) \text{ coprime.}$$
$$1/\nu = \sum m_i/n_i$$

Quasiparticle fusion algebra: $\gamma_1 \gamma_2 = \sum_{\gamma_3} N_{\gamma_1 \gamma_2}^{\gamma_3} \gamma_3$

Consider a particular fusion channel $\gamma_1\gamma_2 \rightarrow \gamma_3$. Its occupation representation is a "domain wall" Ardonne etc, 2008

$$n_{\gamma_1;0}n_{\gamma_1;1}\cdots n_{\gamma_1;a}[\gamma_2]n_{\gamma_3;a+1}n_{\gamma_3;a+2}\cdots$$

$$\gamma_1 \underbrace{\bullet}_{\gamma_2} \gamma_3$$

From the domain wall, we can see $n_{\gamma_1;l}$ and $n_{\gamma_3;l}$, but we do not know $n_{\gamma_2;l}$.

(本間) (本語) (本語) (語)

Quasiparticle fusion algebra: $\gamma_1 \gamma_2 = \sum_{\gamma_3} N_{\gamma_1 \gamma_2}^{\gamma_3} \gamma_3$

Consider a particular fusion channel $\gamma_1\gamma_2 \rightarrow \gamma_3$. Its occupation representation is a "domain wall" Ardonne etc, 2008

$$n_{\gamma_1;0}n_{\gamma_1;1}\cdots n_{\gamma_1;a}[\gamma_2]n_{\gamma_3;a+1}n_{\gamma_3;a+2}\cdots$$

$$\gamma_1 \underbrace{\frown}_{\gamma_2} \gamma_3$$

From the domain wall, we can see $n_{\gamma_1;l}$ and $n_{\gamma_3;l}$, but we do not know $n_{\gamma_2;l}$.

• The key is to find a condition on $n_{\gamma_2;l}$ so that it can induce a domain wall between $n_{\gamma_1;l}$ and $n_{\gamma_3;l}$

Quasiparticle fusion algebra: $\gamma_1 \gamma_2 = \sum_{\gamma_3} N_{\gamma_1 \gamma_2}^{\gamma_3} \gamma_3$

Consider a particular fusion channel $\gamma_1\gamma_2 \rightarrow \gamma_3$. Its occupation representation is a "domain wall" Ardonne etc, 2008

$$n_{\gamma_1;0}n_{\gamma_1;1}\cdots n_{\gamma_1;a}[\gamma_2]n_{\gamma_3;a+1}n_{\gamma_3;a+2}\cdots$$

$$\gamma_1 \underbrace{\bullet}_{\gamma_2} \gamma_3$$

From the domain wall, we can see $n_{\gamma_1;l}$ and $n_{\gamma_3;l}$, but we do not know $n_{\gamma_2;l}$.

• The key is to find a condition on $n_{\gamma_2;l}$ so that it can induce a domain wall between $n_{\gamma_1;l}$ and $n_{\gamma_3;l}$: Barkeshli & Wen, 2008

$$\sum_{j=1}^{b} l_{\gamma_2+c;j}^{sc} \leq \sum_{j=1}^{b} \left(l_{\gamma_3+a+c;j}^{sc} - l_{\gamma_1+a;j}^{sc} + l_j^{sc} \right)$$
for any $a, b, c \in Z_+$, where $l_{\gamma;a}^{sc} = l_{\gamma;a} - \frac{m(Q_{\gamma}+a-1)}{n}$

マロト イヨト イヨト ニヨ

- The condition only determine when $N_{\gamma_1\gamma_2}^{\gamma_3} \neq 0$. If we assume $N_{\gamma_1\gamma_2}^{\gamma_3} = 0, 1$, then the fusion algebra is fixed.
- For generalized composite parafermion states, the pattern-of-zeros approach and the CFT approach give rise to the same fusion algebra.
- The pattern-of-zeros approach applies to other FQH states whose CFT may not be known.

(4月) (3日) (3日) 日

Summary

- Symmetric polynomials (FQH states)
- Pattern of zeros
- Tensor category theory
- Conformal field theory (chiral algebra)

(4) E > (4) E >

A ₽

æ

Summary

- Symmetric polynomials (FQH states)
- Pattern of zeros
- Tensor category theory
- Conformal field theory (chiral algebra)

Pattern of long range entanglement

Mathematical foundation of topological/quantum orders

4 B M 4 B M