Spin MTC and Fermionic QH States a joint-work with N. Read

Zhenghan Wang Microsoft Station Q UCSB

Fermionic QH States

 Laughlin v=1/3, MR State, Read-Rezayi States (RR M=1, Milovanovic-R. SCFT)

Bosonic versions (RR M=0) are modeled by unitary modular tensor categories

• Use spin modular tensor categories to model their topological properties

Category

A category is a directed graph such that (Vertices=objects, edges from x to y are called the morphism set Hom(x,y))

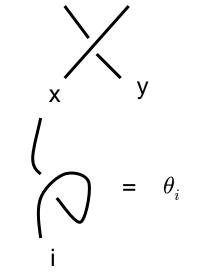
- Each vertex x has a loop id_x
- Every two compatible edges
 f:x→ y,g: y→ z completed to a triangle with
 fg:x→ z, called composition
- Id_x is a two-sided unit for composition

(Unitary) Fusion Category

- A finite label set L, i∈ L, dual label (anti-particle type): i→ i*, and i**=i, trivial 0=|gs>, 0*=0
- Objects isomorphic to finite sum of labels
- Hom(x,y) is a f.d. Hilbert space
- x simple if dimHom(x,x)=1, labels are iso classes of simple objects or a set of representatives.
 Fusion rules: i⊗ j=⊕N_{ii}^k k (tensor product)

Ribbon Fusion Category

- Braiding: $c_{x,y}$: $x \otimes y \rightarrow y \otimes x$
- A twist θ_x : $\mathbf{x} \to \mathbf{x}$
- For a label, θ_i=e^{2πihi},
 h_i=conformal weight mod 1

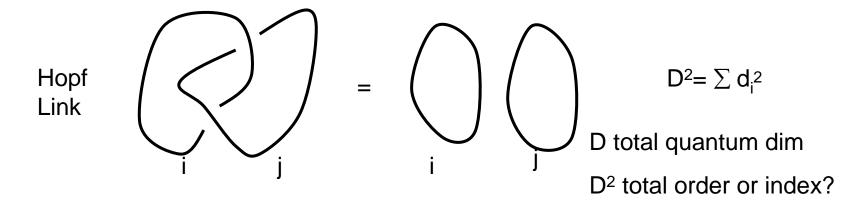


Topological invariant Z(L) for labeled oriented links L, e.g. $(\bigcap_{i})_{=d_i}$

Modular Tensor Category (MTC)

A ribbon fusion category with no degenerate simple objects:

a nontrivial simple object i (=q.p. or q.h. mod local) is degenerate or transparent if $Ds_{ii}=d_id_i$ for any other simple j



Ribbon Fusion Category

If not modular, braid statistics and invariants of closed 3-manifolds are well-defined, but the full TQFT structure such as the rep of the modular group "SL(2,Z)" cannot be defined.

If modular, then the modular s-matrix $s=(s_{ij})$ is not singular, and the full (2+1)-TQFT is defined. E.g. Fusion rules are given by Verlinde formulas.

Spin MTC

- An MTC with a fermion f
- A fermion is a simple object $f^2=1$ and $\theta_f=-1$
- Note if f²=1, then $\theta_f=1$ (boson), $\theta_f=-1$ (fermion), or $\theta_f=\pm i$ (semion)
- In Ising MTC with simples $1, \sigma, \psi$, ψ is a fermion.

Examples

- Laughlin states v=1/Q, Z_{4Q} , L={0,1,...,4Q-1}, Q=odd, f=2Q, charge q_s=s/2Q, θ_s = $e^{2\pi i s^2/8Q}$
- MR state

Ising $\times Z_8$, Z_8 =Laughlin at Q=2 L={x \otimes s}, x=1, σ , ψ ,s=0,1,...,7 f= ψ \otimes 4, charge from Z_8

SU(2)_k, k=2 mod 4, e.g. k=6, L={0,1,...,6}, f=6

c-Spin MC

• A c-spin MC is a spin MTC (F, f) which is unitary and covers a fermionic QH state (tentative).

c-Spin MC Local w.r.t fermion---NS vs R Unitary ribbon fusion category Identify fermion with |gs> Tensor category (without braidings and twists, but with pure braidings and double twists)

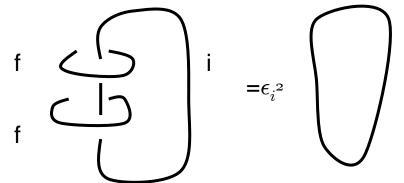
f is a charged fermion

Covering theory (F,f) has two components:

- Statistics/Spin sector: B (UMTC) Charge sector: C (cyclic UMTC) Topological content is in the quotient Q of B ⊗ C, where every anyon has a welldefined electric charge mod 1.
- More general, F is not a product.

Z₂ Grading

- Unitary spin MTC, for any $i \in L$, $Ds_{fi}=\epsilon_i d_i, \epsilon_i=\pm 1$ i is even if $\epsilon_i=1$, odd otherwise
- L=L₀ \cup L₁, f \in L₀
- If $N_{ij}^{k} \neq 0$, then $\varepsilon_i \varepsilon_j \varepsilon_k = 1$



Elementary Properties

- $D_0^2 = D_1^2$, where $D_k^2 = \sum_{i \in L_k} d_i^2$
- $S_{fi,j} = \epsilon_j S_{i,j}$
- θ_{fi} =- $\epsilon_i \ \theta_i$
- f has no fixed points L₀
- Proofs:

1st and fth row are orthogonal, so $\sum s_{f,i}d_i=0$, i.e., $\sum_i \epsilon_i d_i^2=0$

Verlinde s-matrix

Define naive fusion rules $N_{[a][b]}^{[c]} = N_{ab}^{c} + N_{ab}^{fc}$, where [a] are quotient labels, and naive s-matrix, $s^{Q}_{[a],[b]} = 2s_{a,b}$, then

s^Q is a unitary matrix and Verlinde formulas hold for the naive fusion rules.

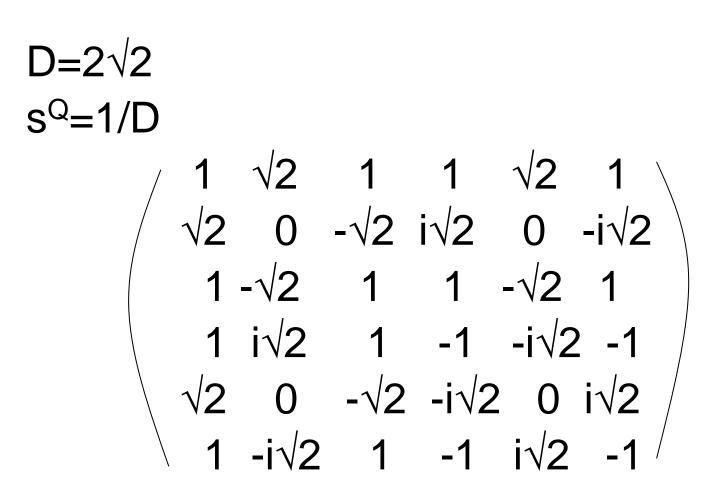
MR Fusion Rules

Labels L_Q={1, ψ , σ , σ ', α , α '} charges={0, 0, 1/4, 3/4, 1/2, 1/2}

$$\begin{array}{ll} \alpha \alpha' = 1, & \sigma \sigma' = 1 + \psi \\ \psi^2 = 1, & \alpha^2 = \alpha'^2 = \psi, & \sigma^2 = \sigma'^2 = \alpha + \alpha', \\ & \psi \sigma = \sigma, & \psi \sigma' = \sigma', & \psi \alpha = \alpha', & \alpha \sigma = \sigma' \end{array}$$

No braided fusion category realizations! (P. Bonderson's thesis)

MR s^Q-matrix



A Puzzle

$$s^{Q}=1/D \left(\begin{array}{cc} 1 & 1+\sqrt{2} \\ 1+\sqrt{2} & -1 \end{array}\right)$$

 $[0]=1, [2]=x, \text{ then } x^2=1+2x$

Verlinde formulas hold for the fusion rules, but {1,x} with x²=1+2x does not exist as a fusion category (V. Ostrik)

(2+1)-TQFTs from MTCs

Two compatible functors (rules)

- A modular functor V: surfaces Y to Hilbert spaces V(Y), mapping classes b: Y→ Y to unitary maps V(b): V(Y)→ V(Y)
- A partition functor Z:

bordisms M³ from Y_1 to Y_2 to linear maps Z(M³): V(Y₁) \rightarrow V(Y₂)

 $Y_i = \emptyset$, $Z(M^3)$ = partition functions in CSW theories

Spin TQFTs from spin MTCs

- Surfaces and 3-mfds are endowed with compatible spin structures
- Spin structure:

given an oriented surface Y, a spin structure σ on Y is a quadratic enhancement q_{σ} : $H_1(Y,Z_2) \rightarrow Z_2$ such that $q(x+y)=q(x)+q(y)+\langle x,y \rangle \mod 2$, where $\langle x,y \rangle$ is the Z₂-intersection form of Y.

Theorem (C. Blanchet)

Given a TQFT, a spin structure σ on closed oriented surface Y, let V^s(Y, σ)={v \in V(Y)| O_{γ}v=(-1)^{q σ (γ)}v, all γ }, where γ is a simple closed curve γ on Y and O_{γ} is an operator,

Then V(Y)=
$$\sum_{\text{spin structures }\sigma} V^{s}(Y,\sigma)$$

Quotient Categories

- Quotient $F \rightarrow Q$ Let $\Gamma=1 \oplus f$, Objects of Q=objects of F, Given objects x, y of Q, Hom_Q(x,y)=Hom_F($\Gamma \otimes x,y$)
- Note that in Q, $f \cong 1$
- \otimes is well-defined
- ? direct sum, semi-simplicity, rigidity

Other Structures

- Braiding, No
- Twist, No
- Pure braidings, Yes
- Double twists, Yes
- Representation of the subgroup of SL(2,Z) generated by s and t²

Possible Applications

- Entanglement entropy: -logD_Q
- Topological stability