ICMT Workshop on Topological Phases University of Illinois at Urbana-Champaign --- October 25, 2008

*Experimental evidence for Complex Chiral Superconductivity in Sr*<sub>2</sub>*RuO*<sub>4</sub> *and UPt*<sub>3</sub>

### Dale J. Van Harlingen

I

Department of Physics and Materials Research Laboratory

University of Illinois at Urbana-Champaign



Francoise Kidwingira (Stanford)



Joel Strand (Illinois)



Yoshi Maeno (Kyoto)



Bill Halperin (Northwestern)



#### The Quest for Complex Superconductors



Surface states in anisotropic superconductors?



Heavy Fermion superconductors?

# Ruthenate superconductors





p<sub>x</sub>+ip<sub>y</sub>

### Ruthenate superconductor: Sr<sub>2</sub>RuO<sub>4</sub> (Y. Maeno, 1994)



- perovskite structure but Cu-free ( $T_c = 1.5 \text{ K}$ )
- close to a ferromagnetic transition
- electrodynamics strongly non-local ( $\xi \sim \lambda$ )
- unusual interface phases (3K phase at Ru-inclusions)
- suspected multiple superconducting bands
- suspected to be unconventional
- suspected to be p-wave
- suspected to break time-reversal symmetry

 $3\pi/2$ 

Proposed order parameter: complex  $p_x + ip_y$  state (M. Rice and M. Sigrist)  $\mathsf{K}_{\mathsf{v}}$ 2D analogue of <sup>3</sup>He A-phase  $3\pi/2$  $\pi/2$ k<sub>x</sub> Isotropic energy gap (magnitude) Continuous linear phase variation  $\pi$ 0 p<sub>×</sub>+ip<sub>y</sub> π 0 px-ipy

- Broken time-reversal symmetry
- Possibility of chiral domains



### Experimental case for complex p-wave



Evidence for line nodes (many groups)

specific heat penetration depth NMR spin relaxation thermal conductivity



nodes in c-axis (finite k)?



Anomolous flux pinning (Mota ...) Vortex pinning on chiral domain walls

SSM imaging (Moler ...) No spontaneous currents from chiral domains





Kerr effect (Kapitulnik ...) Broken time-reversal symmetry

SQUID interferometry (Y. Liu ...) Sign change between opposite faces

#### Measuring phase anisotropy --- the corner SQUID



Wollman, Ginsberg, Leggett, Van Harlingen (1993)

### Josephson interferometry

measuring the phase shift between different directions



### Josephson phase interferometry



### Sample fabrication

- Cleave or polish single crystal
- Glue on substrate, mask leads
- Ion mill surface to clean
- Thermal evaporation of Cu and Pb
- Can make edge or corner junctions



Measurement setup



- Measurements in <sup>3</sup>He refrigerator
- dc SQUID potentiometer for voltage measurements
- Helmholtz coil to apply vertical field

### Critical current modulation in $Sr_2RuO_4/Au/Pb$ edge junctions



Many features <u>never</u> seen in cuprates or conventional superconductors:

- Polarity asymmetry
- Hysteresis
- Abrupt jumps in critical current
- Two-level "telegraph" switching noise
- Different patterns on different crystals/faces/thermal cycles

#### **Critical current/voltage hysteresis in magnetic field sweeps**



- Retraces below threshold field (~1.2G for this sample)
- Constant hysteresis above threshold field
- Hysteresis "heals" if sweep reduced (de-Gaussing?)

Pinned domains interacting with magnetic field?



#### **Critical current switches noise in SRO junctions**

### Chiral order parameter domains



Chiral currents flow around domain edges --- estimated domain size ~ 0.1-1 $\mu$ m

Evidence for domains

Phase interference explains variety of diffraction patterns Switching between different domains configurations Hysteresis caused by domain wall motion and pinning

Energy competition for domains formation?

COST = Josephson domain wall energy ~ cos(φ)GAIN = lower chiral field energy

### Sensitivity to single domain switching

Motion of a single domain wall dramatically changes the critical current diffraction pattern  $\rightarrow$  accounts for switching noise observed



#### Diffraction patterns: chiral domains



#### Two types of chiral domain walls

PARALLEL chiral domains (change in rotation of phase )



PERPENDICULAR chiral domains (change in alignment of the real component)

### Perpendicular chiral domains



### Field cooling: simulations

Chiral domain currents couple to applied magnetic fields

Applied field breaks chiral degeneracy, favoring on chirality

 $P_R$ : probability of right-hand chiral domains  $P_L$ : probability of left-hand chiral domains



- Enhancement of I<sub>c</sub> from alignment of domains
- Changes structure from "grating-like" to "Fraunhofer-like"

### Field cooling: critical current enhancement





### Field cooling: domain training and memory effects

Critical current increases gradually with successive field-cooling cycles Possible mechanism: domain alignment can be trained by applied field 1000 Field Critical current (A) Cycle #2 Zero-field Field Cycle #1 Critical current (M) Critical current (A) cooled cooled cooled 200 -8 -6 -4 -2 0 2 8 -2 0 -8 -6 2 6 8 -6 -2 0 -8 -4 2 Applied field (mG) Applied field (mG) Applied field (mG)

Critical current retains enhancement after zero-field cooling, decays over time Possible mechanism: ferromagnetic inclusions (Sr<sub>3</sub>Ru<sub>2</sub>O<sub>7</sub>) or surface states



## Summary of Sr<sub>2</sub>RuO<sub>4</sub>



- Evidence for  $p_x + ip_y$  order parameter symmetry
- Observe dynamical chiral domains
- Observe coupling of domains to magnetic fields ⇒ enhanced critical currents
- Observe anomalous domain training and memory effects

Issues:

- Spontaneous moment from chiral currents not yet observed?
- Domain size?
  - Illinois $0.1-1 \ \mu m + dynamics$ Penn Statelarge static domainsStanford< 1 \ \mu mStanford10-100 \ \mu m

interferometry (at surface) interferometry scanning SQUID microscopy Kerr effect

• Non-Abelian quasiparticles states?

Rotating d-vector into plane is expected to nucleate half-integer vortices



### Imaging chiral domains: Scanning SQUID Microscopy

Developing instruments to map domain structure via chiral current distribution Designed for Oxford top-loading dilution refrigerator temperatures (2K-10mK)





Sensors: dc SQUIDs Spatial resolution: <1µm



Simultaneous imaging of topography and magnetic field distribution



## Magnetic measurements on Sr<sub>2</sub>RuO<sub>4</sub> nanocrystals

Dale Van Harlingen, Raffi Budakian, Dan Bahr, Micah Stoutimore

<u>Objective</u>: search for spontaneous supercurrents/magnetic moments and exotic vortex nucleation and dynamics in nanocrystals of  $Sr_2RuO_4$ 

Technique: dc SQUID nanosuceptometry



### **Chiral triplet superconductor?** heavy fermion UPt<sub>3</sub>





#### **Critical current vs. temperature**



Similar to Sumiyama et al.Two regimes of critical current onsets observed:<br/> $\sim 300-400$ mK <<T<sub>c</sub>or<br/>or $\sim 500-600$ mK = T<sub>c</sub>

Likely cause is the condition of the surface --- exploring different annealing and polishing schemes and various tunneling orientations

#### **High temperature regime junctions**



Observe both upper and lower temperature phases --- opportunity to study symmetry transition

#### **Single-face junction measurements**



- Fraunhofer-like patterns
- Patterns retrace → no hysteresis, no switching noise
- Can induce anisotropy by fieldcooling → entry of vortices





#### **Corner junction measurements**

500

- Asymmetric patterns --- consistent with phase shifts other than 0 or  $\pi$
- Patterns change on successive cooling --- consistent with spontaneously broken chiral symmetry or chiral domains or trapped vortices



### Josephson phase interferometry



## Summary of UPt<sub>3</sub>

- Observe two superconducting phases
- Evidence for complex order parameter symmetry in corner junctions at low temperature (well into low T phase)
- No chiral domain structure and dynamics observed in single-face junctions
- Mystery why critical current is suppressed near T<sub>c</sub> in some junctions
- Not as good a candidate for topological QC as Sr<sub>2</sub>RuO<sub>4</sub> because of strong spin orbit coupling and 3D structure --- perhaps in thin films