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Topological quantum computation depends on the 
existence in nature of non Abelian topological phases 
of matter.

ν = 12/5

The leading candidate is 
             .

Perhaps                as well ....

ν = 5/2
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FIG. 1: Rxx and Rxy between ν = 2 and ν = 3 at 9mK.
Major FQHE states are marked by arrows. The horizontal
lines show the expected Hall value of each FQHE state. The
dotted line is the calculated classical Hall resistance.

J.S. Xia et al., ’04;
J.P. Eisenstein et al., ’02.



How will we know if they are?

The belief that the 5/2 state is non-Abelian
comes primarily from numerical solutions
of small systems.
Morf ’98; Rezayi and Haldane ’00; Feiguin et al. ’07; Peterson et al. ’08

Ultimately, experimental proof will have to come
from experiments in which quasiparticles are
braided, e.g. two point contact interferometers.
Chamon et al. ’97; Fradkin et al. ’98;
Das Sarma, Freedman, and Nayak ’05;
Bonderson et al. ’06; Stern and Halperin ’06

However, some simpler experiments can give
important corroborating evidence about these states.
And are a partial step towards interferometry anyway.



One important resource at our disposal in a 
chiral topological state: gapless edge excitations.

The edge of the system provides us with a 
cheap supply of ‘test’ quasiparticles with which 
we can probe quasiparticles in the bulk by, e.g. 
the non-Abelian version of the Aharonov-
Bohm effect.

On the other hand, the edge does not seem 
like a good way to probe the topological 
structure of a state. It is gapless, so there 
may not be well-defined quasiparticles.

Edge Excitations



To have a useful probe of topological properties, we 
need some kind of interplay between edge and bulk:
quasiparticle tunneling from one edge to 
another.

V
G

!!"
V
G

!!#$"

Point Contacts

The edge need not 
have well-defined 
quasiparticles, but the
bulk does.

Tunneling through the 
bulk selects these.



Effective Theory for the MR Pfaffian Edge

L
edge =

1

4π
∂xφc(∂t + vc∂x)φc +

1

2π
ψ(∂t + vn∂x)ψ

V
G

!!"
V
G

!!#$"

L
tun = λ1/4 σασβ ei(φcα−φcβ)/2

√

2 + h.c.

+ λ1/2 ei(φcα−φcβ)/
√

2 + h.c. + iλ1ψαψβ

The ‘quasiparticles’ of this edge 
theory are just free bosons and 
fermions.

However, tunneling favors the edge 
counterparts of bulk qps.

Milovanovic and Read ’95



expect λ1/2 ! λ1/4 because λ1/2 ∼ λ2

1/4

Tunneling of charge e/4 
qps. is the most 
relevant perturbation.

d

d!
λ1/2 =

1

2
λ1/2

d

d!
λψ,0 = 0

d

d!
λ1/4 =

3

4
λ1/4

L
tun = λ1/4 σασβ ei(φcα−φcβ)/2

√

2 + h.c.

+ λ1/2 ei(φcα−φcβ)/
√

2 + h.c. + iλ1ψαψβ

Therefore, we expect e/4 qps to dominate 
tunneling transport. If they do ... good news 
for interferometry.



If there is no Landau-level mixing, the Hamiltonian 
is particle-hole symmetric. c

†
m

→ cm, cm → c
†
m

H2 =
∑

klmn

Vklmnc
†
kcmc

†
l cn − µ

∑

m

c†mcm ,

H̃2 =
∑

klmn

Vklmnc
†
kcmc

†
l cn +

(

µ − 2µ1/2

)

∑

m

c†mcm.

σxy → 1 − σxy, κxy → 1 − κxyParticle-hole transf:

in units of e2

h
,
π2k2

B
T

3h

Effective Theory for anti-Pfaffian Edge

The Pfaffian state is not particle-hole symmetric.

L
edge =

1

4π
∂xφc(∂t + vc∂x)φc +

1

2π
ψ(∂t + vn∂x)ψ κxy =

3

2



Analogy to Lattice p-wave SC

Spinless electrons,
square lattice,
p-wave SC order.

Particle-hole symmetric if 

H =
∑

〈i,j〉

(

−tc†i cj + ∆ijc
†
i c

†
j + h.c.

)

−µ
∑

i

c†i ci −

∑

〈〈i,j〉〉

ϕ c†i cj + h.c.

µ = 0, ϕ = 0

spontaneous 2nd neighbor hopping

Gapless Majorana fermion
at (π, 0), (0π)

If p/h symm is broken,
then

ϕ != 0

κxy = ±
1

2



U(1) SU(2)2

Edge Theory of the Anti-Pfaffian

Pf

ν = 0ν = 1

Pf

L =
1

4π
∂xφ1(−i∂t + v1∂x)φ1 + LPf(ψ1, φ2)

+
1

4π
2v12∂xφ1∂xφ2 + ξ(x) ψ1 ei(φ1−2φ2) + h.c..

L =
2

4π
∂xφρ(−i∂t + vρ∂x)φρ + ψa(−∂t + ivσ∂x)ψa

+2iψ1(ξ1ψ3 + ξ2ψ2) + δv1ψ1i∂xψ1 + ivψ2ψ3 ∂xφρ



Tij = Φ
(i)†
a Φ

(j)
b

Φ
(1)

= σ3 e
i(φρ−φσ)/2

Φ
(2)

= µ3 e
i(φρ+φσ)/2

Anti-Pfaffian Point Contact

There are two charge e/4 qp ops. at the
anti-Pfaffian edge:

eiφσ = ψ1 + iψ2where:

4 qp tunneling ops. at a point contact:

All four have scaling dim. =1/2,
(different from the Pfaffian, dim=1/4).
Charge e/2 tunneling has same scaling dim.

Fendley, Fisher, Nayak, in prep.



!d = x̂ − iŷ

ΨPf =
∏

j<k

(zj − zk)m
∏

j

e
−|zj |

2/4 Pf

(

| ↑〉j | ↑〉k
zj − zk

)

!d = ẑ

Ψ(3,3,1) =
∏

j<k

(zj − zk)m
∏

j

e
−|zj |

2/4 Pf

(

|↑〉j |↓〉k+|↓〉j |↑〉k

zj − zk

)

(3,3,1) Point Contact

L331 =
1

4π
KIJ∂φa

I∂φa
J + (a → b) + t

∑

I

cos
(

φa
I − φb

I

)

Pf:             tripletSz = 1

(3,3,1):        Sz = 0

e/4 qp tunneling op. has scaling dim=3/8.



anti-Pfaffian: Rxx ∼ λ2

1/4
T−1

Lee, Ryu, Nayak, Fisher ’07;   Levin, Halperin, Rosenow ’07 

Rxx ∼ λ
2

1/4
T

−3/2MR Pfaffian:

Fendley,Fisher, Nayak PRL ’06

(3,3,1): Rxx ∼ λ
2

1/4
T

−5/4

Weak Backscattering Limit

3 Majorana
fermions

V
G

!!"
V
G

!!#$"



T and V  Dependence in Weak-BS. Limit

I = |Γ|2 |V |2g−1 A

(

eV/4

kBT

)

At finite T and V, 

A(x) =
1
√

2

e

4

πx1−2g

Γ(2g)

∣

∣

∣
Γ
(

g + i
x

2π

)
∣

∣

∣

2

sinh(x/2)g =
1

4
,

3

8
,

1

2

Bishara and Nayak ’08Pf
(3,3,1)

Pf
for Laughlin states:  Wen ‘91

Since T dependence is difficult to measure at
very low temps., it is useful to have both T and V.
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Fractional quantum Hall effect in a quantum point contact
at filling fraction 5/2

J. B. Miller,1 I. P. Radu,2 D. M. Zumbühl,2, 3 E. M. Levenson-Falk,4

M. A. Kastner,2 C. M. Marcus,4 L. N. Pfeiffer,5 and K. W. West5

1Division of Engineering and Applied Science, Harvard Univerisity, Cambridge, Massachusetts 02138
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3Department of Physics and Astronomy, University of Basel,
Klingelbergstrasse 82, CH-4056 Basel, Switzerland

4Department of Physics, Harvard University, Cambridge, Massachusetts 02138
5Bell Labs, Lucent Technologies, Murray Hill, New Jersey 07974

(Dated: May 14, 2007)

Recent theories suggest that the excitations of certain quantum Hall states may have exotic
braiding statistics which could be used to build topological quantum gates. This has prompted an
experimental push to study such states using confined geometries where the statistics can be tested.
We study the transport properties of quantum point contacts (qpcs) fabricated on a GaAs/AlGaAs
two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including
at bulk filling fraction νbulk = 5/2. We find that a plateau at effective filling factor νQPC = 5/2

is identifiable in point contacts with lithographic widths of 1.2 m and 0.8 m, but not 0.5 m.
We study the temperature and dc-current-bias dependence of the νQPC = 5/2 plateau as well as
neighboring fractional and integer plateaus in the qpc while keeping the bulk at νbulk = 3. Transport
near νQPC = 5/2 in the qpcs is consistent with a picture of chiral Luttinger liquid edge-states with
inter-edge tunneling, suggesting that an incompressible state at νQPC = 5/2 forms in this confined
geometry.

The discovery [1] of a fractional quantum Hall effect
(fqhe) at the even-denominator filling fraction ν = 5/2

has sparked a series of experimental [2, 3, 4, 5, 6] and
theoretical [7, 8, 9] studies, leading to a prevailing inter-
pretation of the 5/2 state as comprised of paired fermions
condensed into a BCS-like state [10, 11, 12, 13]. Within
this picture, excitations of the 5/2 ground state possess
nonabelian statistics [14, 15, 16] and associated topolog-
ical properties. The possibility that such a topological
state can be accessed in the laboratory has prompted re-
cent theoretical work aimed at experimentally testing the
nonabelian character of the 5/2 state [17, 18, 19, 20, 21],
and building topologically protected quantum gates con-
trolled by manipulating the excitations of the 5/2 state
[22, 23, 24].

While proposed tests of the statistics of excitations
of the 5/2 state make use of confined (∼ few micron)
geometries, previous studies of the 5/2 state have been
conducted in macroscopic (100 m - 5 mm) samples. Al-
though experiments using mesoscopic samples with a
quantum point contact (qpc) are now routine, the 5/2

state is exceptionally fragile; only the highest quality
GaAs/AlGaAs heterostructures exhibit a 5/2 state even
in bulk samples. Experimental investigation of the statis-
tics of the 5/2 ground state is crucial, especially since al-
ternative models have been proposed to explain the 5/2

state in confined geometries [25] and in the bulk [12, 26].

In this paper we study the 5/2 state in the vicinity of
a quantum point contact. Near a qpc, the electron den-
sity is not uniform, so the notion of a qpc-filling frac-
tion is not well defined. However, based on transport

measurements, it is possible to define an effective filling
fraction in the vicinity of the qpc (νQPC), as discussed
below. Below 30mK, a plateau-like feature with diago-
nal resistance (also defined below) near, but above, the
bulk quantized value of 0.4h/e2 is evident at νQPC = 5/2

in qpcs with 1.2 m and 0.8 m spacings between the
gates. On this plateau, we find a peak in the differential
resistance at dc-current bias Idc = 0 and a dip around

!""
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&'
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! "
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FIG. 1: Device and measurement setup. (a) sem micrograph
of the 0.5 m qpc. (b) Optical micrograph of the entire device
(the outline of the wet-etched Hall bar has been enhanced for
clarity). The measurement circuit for the red-highlighted qpc

is drawn schematically, with the direction of the edge-current
flow indicated by the yellow arrows.

Radu et al. ‘08:

Point contact
in 5/2 state

0.6

0.5

0.4

0.3

0.2

0.1
g

0.50.40.30.20.1
e*

3.5

3.0

2.5

2.0

1.5

1.0

N
orm

alized fit error

 1.2 
 1.1 

 1 

(1/4,1/8)

(1/4,1/4)

(1/4,3/8)

(1/4,1/2)

Fig. 5: Map of the fit quality. Normalized fit error is the residual from the least-squares fit,

divided by the number of points and by the noise of the measurement. Also marked on the map

are proposed theoretical pairs (e∗, g).

14

0.43

0.42

R
D
 (

h
/e
!)

-5 0 5 -5 0 5 -5 0 5

Idc (nA)

-5 0 5 -5 0 5

e*=0.18 
g =0.35

1
3
m

K

1
6
m

K

2
0
m

K

4
0
m

K

6
0
m

K

0.43

0.42

R
D
 (

h
/e
!)

-5 0 5 -5 0 5 -5 0 5

Idc (nA)

-5 0 5 -5 0 5

e*=1/4
g =1/8

1
3
m

K

1
6
m

K

2
0
m

K

4
0
m

K

6
0
m

K

0.43

0.42

R
D
 (

h
/e
!)

-5 0 5 -5 0 5 -5 0 5

Idc (nA)

-5 0 5 -5 0 5

e*=1/4
g =1/4
 

1
3
m

K

1
6
m

K

2
0
m

K

4
0
m

K

6
0
m

K

A

B

C

Fig. S3: A. Best fit to the data in Fig. 4. The fit returns e∗ = 0.18 and g = 0.35. B. Fit to the
data holding e∗ = 1/4 and g = 1/8 as predicted for the K8 state (3). C. Fit to the data holding
e∗ = 1/4 and g = 1/4 as predicted for the Pfaffian state (4,5).

4

0.43

0.42

R
D
 (

h
/e
!)

-5 0 5 -5 0 5 -5 0 5

Idc (nA)

-5 0 5 -5 0 5

e*=1/4
g =3/8

1
3
m

K

1
6
m

K

2
0
m

K

4
0
m

K

6
0
m

KA

B

C

0.43

0.42

R
D
 (

h
/e
!)

-5 0 5-5 0 5-5 0 5

Idc (nA)

-5 0 5-5 0 5

1
3
m

K

1
6
m

K

2
0
m

K

4
0
m

K

6
0
m

K

e*=1/4
g =1/2

0.43

0.42

R
D
 (

h
/e
!)

-5 0 5 -5 0 5 -5 0 5

Idc (nA)

-5 0 5 -5 0 5

e*=1/2
g =1/2

1
3
m

K

1
6
m

K

2
0
m

K

4
0
m

K

6
0
m

K

Fig. S4: A. Fit to the data holding e∗ = 1/4 and g = 3/8 as predicted for the 331 state (6, 7).
B. Fit to the data holding e∗ = 1/4 and g = 1/2 as predicted for the anti-Pfaffian (8–10) and
the U(1)× SU2(2) (11) states. C. Fit to the data holding e∗ = 1/2 and g = 1/2 as expected for
the composite fermions.

5
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Shot Noise

〈S(ω)〉 =
e∗

2
It[|1 − ω/ω0|

δ−1 + |1 + ω/ω0|
δ−1]

The ratio between the low-freq. noise
and the tunneling current at a point contact
is the qp. charge:

Laughlin states: Kane and Fisher ‘93;
                      Chamon, Freed, Wen ’95
Expts on LLL: Samindayar et al. ‘97;
                    de Picciotto et al. ‘97.

Pfaffian state: Bena and Nayak ‘06

Recent Dolev et al. expt.
is consistent with e/4.



Taken together, these two
experiments point towards
e/4 qps with point contact I-V 
curves consistent with the
anti-Pfaffian state.
But only a true probe of topological
properties will be definitive.
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Beyond the Weak-BS. Limit
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As temperature or voltage is 
decreased, tunneling becomes 
effectively stronger.

Eventually, the droplet will pinch off 
and there will be weak hopping from 
left to right.

Experiments are probably 
somewhere in the crossover regime.



Non-Perturbative Treatment

L
edge =

1

4π
∂xφc(∂t + vc∂x)φc +

1

2π
ψ(∂t + vn∂x)ψ

L
tun = λ1/4 σασβ ei(φcα−φcβ)/2

√

2 + h.c.

+ λ1/2 ei(φcα−φcβ)/
√

2 + h.c. + iλ1ψαψβ

b

weak constriction

flip

flip

strong constriction

a

b

a

b

a a

b b

aa

b

1. Redraw with one 
edge flipped.

2. Combine the two 
Majorana fermions 
into a single Dirac 
fermion.

3. Bosonize. 



σaσb ∼ S
+
e
−iφ/2

+ S
−

e
iφ/2

ψa + iψb ∼ eiφ

iψaψb ∼ ∂φ
Standard bosonization:

However, to recover the pert. 
expansion of e/4 tunneling:

bookkeeping
Fendley, Fisher, Nayak PRL, PRB ’06.

H5/2 =

∫

dx
( vc

2π
(∂xφρ)

2 +
vn

2π
(∂xφσ)2

)

+ λ1/4

(

S+e−iφσ(0)/2 + S−eiφσ(0)/2
)

cos(φρ(0)/2)

+ λ1/2 cos φρ(0) +
λψ,0

2π
∂xφσ(0),



Crossover from Weak to Strong Tunneling

Pf. point contact can be rewritten as resonant 
tunneling between Luttinger liquids

Tunneling current can be computed by time-
dependent DMRG.

Hres =
∫ ∞

0
dx

v

2π

(
(∂xφa)2 + (∂xφb)

2
)

+t d†eiφa(0)/
√

g + t d†eiφb(0)/
√

g + h.c.



Feiguin, Fendley,
Fisher, Nayak ’08

Agrees with perturbative calculations
around the weak- and strong-backscattering
limits.  Only way to compute the current in
the crossover regime.
Agrees with Bethe ansatz for 1/3 point contact.

Future: time-dep. DMRG for anti-Pfaffian, 331.
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What about 12/5?

One Abelian candidate, several non-Abelian 
ones: BS = Pf + hierarchy,  BS = Pf + hierarchy
         

        RR = p/h conjugate of RR.

Rxx ∼ T
−6/5Abel. 2/5:

Rxx ∼ T
−31/20BS: BS: Rxx ∼ T

−21/20

Rxx ∼ T
−6/5RR:

2e/5 at low-T e/5 and 2e/5 at low-T

Thermal Hall conductance distinguishes these
states, and also Pfaffian and anti-Pfaffian.

Bishara, Fiete, Nayak ’08



Summary

Quasiparticle tunneling at point contacts
is a good probe of the topological character
of possible non-Abelian quantum Hall states.

Multiple point contacts enable quasiparticle 
interferometry.

Single point contact in MR Pfaffian: closely 
related to 2-channel Kondo.
Current can be computed outside weak-
backscatt. regime by time-dep. DMRG.

Measurements of current, noise through 
a pt. contact at 5/2 indicate e/4 qps., 
consistent with anti-Pfaffian.


