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Motivation for spin Hall effect and topological insulators:
Physics allows at least two ways to drive charge currents without 
dissipation:

Superconductivity:

Quantum Hall effect:

Note: QHE (and SQHE) is dissipationless; it is the process of 
going from 3D to 1D that introduces the contact resistance

Are there similar phases that are related to spin?
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IQHE Background:
1. A system of noninteracting lattice fermions with broken time-
reversal symmetry (T) can show the integer quantum Hall effect 
(Haldane model, PRL 1988).

2. The IQHE is characterized by a topological invariant (“Chern 
number”) and is stable to interactions and disorder.

Basic idea:
2D and 3D systems of noninteracting Bloch fermions with 
unbroken T have “topological insulator” phases.  In 2D, these can 
show a spin Hall effect carried by edge states.

The topological insulator phase is stable to nonmagnetic disorder, 
and to sufficently weak interactions.



The quantum spin Hall effect
Haldane showed that although broken time-reversal is necessary 
for the QHE, it is not necessary to have a net magnetic flux.

Imagine constructing a system (“model graphene”) for which 
spin-up electrons feel a pseudofield along z, and spin-down 
electrons feel a pseudofield along -z.

Then SU(2) (spin rotation symmetry) is
broken, but time-reversal symmetry is not:

an edge will have (in the simplest case)
a clockwise-moving spin-up mode
and a counterclockwise-moving
spin-down mode
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from JEM, Nature Physics N&V, 2008



Motivation beyond the SQHE
It turns out that in realistic models with an odd number of 
Kramers pairs of edge states, there is a stable phase.  There are

exactly two phases of T-invariant band insulators (Kane and Mele, 2005; 
Bernevig, Haldane, Murakami, Nagaosa, Zhang, ...)

the “ordinary” insulator, which has an even number of Kramers 
pairs of edge modes (possibly zero)

and the “topological” insulator, which has an odd number of 
Kramers pairs of edge modes (requires SO coupling and broken 
inversion symmetry)

In 3D there are 16 classes of insulators, but only 2 are stable to 
disorder: ordinary and “strong topological”



Some intuition for stability of edge state
The edge of the zero-Rashba model has a spin up mode moving 
clockwise and a spin-down mode moving counterclockwise. 

There is an enhanced stability to backscattering when there is a 
single pair of time-reversed edge modes, i.e., one right-mover 
and one left-mover: a spin-half particle cannot scatter within a 
time-reversed pair (a “Kramers pair”)
 if the Hamiltonian is time-reversal invariant.

(Xu and JEM, PRB 2006;
Wu, Bernevig, and Zhang, PRL 2006)
Note that this absence of mixing is required
to preserve Kramers degeneracies.

How can we tell, just from the band structure of a 2D or 3D 
material, whether that material will have this edge state?

〈ψ|H ′|φ〉 = 〈Tφ|H ′|Tψ〉 = 〈ψ|H ′|T 2φ〉 = −〈ψ|H ′|φ〉



TKNN, 1982: the Hall conductance is related to an 
integral over the magnetic Brillouin zone:

Niu, Thouless, Wu, 1985: many-body generalization
more generally, introducing “twist angles” around the two circles of a torus and 
considering the (assumed unique) ground state as a function of these angles,

This quantity is an integer and vanishes with T invariance.  The integrand is the “Berry 
flux” F, where  
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What about T-invariant systems?
For general spin-orbit coupled bands, there is no integer conserved quantity 
that can be used to classify individual bands in this way, and no integer 
topological invariant.

Instead, a fairly technical analysis shows

1. each pair of spin-orbit-coupled bands in 2D has a Z2 invariant (is either 
“even” or “odd”), essentially as an integral over half the Brillouin zone;

2. the state is given by the overall Z2 sum of occupied bands:
if the sum is odd, then the system is in the “topological insulator” phase

The fundamental object in T-invariant systems is a Kramers-degenerate pair 
of bands, and “half” the Brillouin zone is sufficient to characterize the 
system....



Z2 topological invariants (results)
Each Kramers band pair of a time-reversal-invariant insulator has a Z2 invariant 
(“odd” or “even”) analogous to the integer Chern number, even when no additional 
quantities are conserved.

Consider a 2D Brillouin torus.

In terms of the Berry field A and flux F, the topological invariant is (Fu and Kane, ‘07)

Where does this come from?  A and F generalize the single-band formulas

A is a “Berry connection in momentum space”.
Ordinary Chern number is integral of F over entire Brillouin zone.
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What about higher dimensions?

The 2D conclusion is that band insulators come in two classes:
ordinary insulators (with an even number of edge modes, generally 0)
“topological insulators” (with an odd number of Kramers pairs of edge modes, generally 1).

What about 3D?  The only 3D IQHE states are essentially layered versions of 2D states:

Cxy (for xy planes in the 3D Brillouin torus), Cyz, Cxz

However, there is an unexpected 3D topological insulator state that does not have any 
simple quantum Hall analogue.  For example, it cannot be realized in any model where up 
and down spins do not mix!

General description of invariant from JEM and L. Balents, PRB RC 2007.
The connection to physical consequences in inversion-symmetric case:  Fu, Kane, Mele, PRL 
2007.  See also R. Roy, arXiv.



Build 3D from 2D
Note that only at special momenta like k=0 is the “Bloch Hamiltonian” time-reversal 
invariant: rather, k and -k have T-conjugate Hamiltonians.  Imagine a square BZ:
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H(−k) = TH(k)T−1

“effective BZ”
In 3D, we can take the BZ to be a cube (with periodic boundary conditions):

think about xy planes

2 inequivalent planes
look like 2D problem

kz = π/a

kz = −π/a

kz = 0

3D “strong topological insulators” go 
from an 2D ordinary insulator to a 2D 
topological insulator (or vice versa) in 
going from kz=0 to kz=±π/a.

This is allowed because intermediate 
planes have no time-reversal constraint.



Physical consequences: “boundary chiral fermions”

The topological invariant predicts a gapless surface state.  In the 1D edge, this was “half” of 
an ordinary quantum wire.  In the 2D surface of the topological insulator, it seems:

1. The one-surface (2D) Fermi surface encloses an odd number of Dirac points (say 1);

2. The Fermi surface has only one spin state at each k;

3. The Berry’s phase in going around the Fermi surface is π (Haldane).

Note that T is still unbroken, but there is a single spin state (the # of degrees of freedom is 
like a spinless Fermi surface).

E=μ
kx

ky



Topological Insulator with surface Hall modes

D. Hsieh, M.Z. Hasan et.al., Princeton University (Nature, 2008)

STI:  Z2 = -1  topological surface modes



Prehistory of topological insulators in 3D:
Part I

For any 3D insulator, consider the possibility of an induced 
coupling between electric and magnetic fields:

(“axion electrodynamics”: Wilczek, PRL 1987)

The angle θ turns out to be periodic with period 2π.  The values 
θ=0 and θ=π are consistent with time-reversal invariance.  The 
boundary between the two supports massless Dirac fermions.
(Volkov and Pankratov, 1985;
Fradkin, Dagotto, and Boyanovsky, 1986)

Axion electrodynamics involves the second Chern invariant (the 
4D Chern form) of the electromagnetic fields, a U(1) bundle in 3+1 
dimensions.  How to compute this in solids?

∆LEM =
θe2

2πh
E · B =

θe2

16πh
εαβγδFαβFγδ.



Prehistory of topological insulators in 3D:

Physical consequences (Wilczek,1987) of the total derivative term

1. In a T-invariant system, 2D boundaries between regions of different θ (0 
and π) are gapless.

2. A small T-breaking perturbation at the edge, or a material with T-breaking 
in bulk, leads to a quantum Hall layer at a boundary with conductance

(The metallic behavior = an ambiguity in how to go from 0 to π.)

3. These surface currents mean that an electric field induces a magnetic 
dipole, or a magnetic field induces an electric dipole.

4. “Witten effect”: magnetic monopoles pick up electrical charge & vv.
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θe2

2πh
E · B =

θe2

16πh
εαβγδFαβFγδ.
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Prehistory of topological insulators in 3D:

Physical consequences (Wilczek,1987) of the total derivative term

2. A small T-breaking perturbation at the edge, or a material with T-breaking 
in bulk, leads to a quantum Hall layer at a boundary with conductance

∆LEM =
θe2

2πh
E · B =

θe2

16πh
εαβγδFαβFγδ.

Topological insulator slab
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Connection between θ=π and 3D topological insulator:

A boundary at which θ changes shows a surface quantum Hall 
effect of magnitude 

How is this consistent with what we said before?

We said before that the topological insulator has a metallic 
surface state with an odd number of Dirac fermions.

Under an infinitesimal T-breaking perturbation (e.g., a weak 
magnetic field), this becomes a half-integer quantum Hall effect.

Hence a boundary between θ=π and θ=0 is consistent with the 
“axion electrodynamics” picture, as long as some infinitesimal 
perturbation is present to eliminate the metallic surface.

∆LEM =
θe2

2πh
E · B =

θe2

16πh
εαβγδFαβFγδ.

σxy = (∆θ)e2/2πh



Prehistory of topological insulators in 3D:
Part II

Avron, Sadun, Seiler, Simon,1988:
The set of “quaternionic Hermitian” matrices (i.e., Hamiltonians 
that can describe T-invariant Fermi systems) without accidental 
degeneracies has a nontrivial fourth homotopy group:

Here n is the quaternionic dimension (twice the complex 
dimension), and n-1 appears because of a zero sum rule.

This is a 4D version of the 2D IQHE homotopy,

The 4D invariant is the integral of the 4D Chern form of the 
nonabelian bundle.  This corresponds in band structure to 4D 
systems with PT symmetry, but not P or T separately.
(PT symmetry forces every Bloch Hamiltonian H(k) to be T-invariant.)

π4(Mn(H)) = Zn−1

π2(Cn(H)) = Zn−1



General idea: this term describes the orbital magnetic 
polarizability, which is a bulk property in 3D in the same way 
as polarization.  For crystals, this leads to a simple derivation.

In other words, given any 3D band insulator, we compute
the coupling in

by the orbital magnetoelectric polarizability

from integrating the “Chern-Simons form” of Bloch states:
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We already understand (since 2006) the odd-even effect 
of T-invariant fermions, and how to determine whether a 
given T-invariant band structure realizes the ordinary or 
topological insulator.

How can we make the connection directly between 
axion electrodynamics (the second Chern form of the 
EM field) and the Berry phases of a band structure?

1987 2008



Recent appearances of second Chern form of a band 
structure:

Xiao, Shi, Clougherty and Q. Niu, arxiv:0711.1855
Second Chern form arises in computing the polarization 
induced by a slowly varying crystal inhomogeneity

Qi, Hughes, and Zhang, arxiv:0802.3537
Second Chern form of EM field arises in 4D from 
integrating out fermions; derived expression for theta in 
3D in terms of non-Abelian Chern-Simons form.

 

JEM, Ran, and Wen, arxiv:0804.4527 (more later)

θ =
1
2π

∫

BZ
d3k εijk Tr[Ai∂jAk − i

2
3
AiAjAk]



Here we focus on crystalline insulators: sufficiently far 
from a boundary, there is a well-defined unit cell.

We introduce an explicit model to compute physical 
consequences of axion electrodynamics:

The first terms are the Fu-Kane-Mele diamond lattice model of a 
3D topological insulator.  The last term is a staggered Zeeman field, 

The linearized Dirac mass is

We first study this model in a slab geometry in order to see one 
of the “axion electrodynamics” signatures: applying T-breaking 
edge perturbations leads to half-IQHE surface layers.
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To compute this we look at the Chern number,

Can define layer-resolved Chern number using a real-space 
projection operator:

Computation for 20-layer slab in topological insulator phase
Changing boundary condition switches by an integer times e2/h.
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How can we understand why this surface Hall conductance is always 
a bulk property, for general theta?

Claim:  Theta is nothing more or less than the bulk magnetoelectric 
polarizability, which can be computed in many ways:

This gives a quick derivation using the Xiao et al. formula for 
polarization in a smoothly inhomogeneous crystal:

Sketch: A weak magnetic field can be considered as inhomogeneity.

Choose a gauge with A along x and slowly increasing on y.  The first 
semiclassical term in the polarization (Xiao et al.) corresponds to

(Can equally well derive by considering orbital magnetization 
response to an applied electric field.)
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How can we confirm that this surface Hall conductance is always a 
bulk property, for general theta?

Claim:  Theta is nothing more or less than the bulk magnetoelectric 
polarizability, which can be computed in many ways:

I. apply a flux through a supercell, and extrapolate to limit of small 
flux

2. compute Chern-Simons integral directly from a “smooth gauge”

Comparison:
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Equivalence of four measures of theta:

The magnetoelectric polarizability θ (in units of e2/2πh). The curve is ob-
tained from the second Chern integral. The filled squares are computed by the
Chern-Simons form. The open squares are the slopes of P vs. B. The remaining
points are obtained from layer-resolved σxy.
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We can make many analogies between the Berry phases that 
determine magnetoelectric polarizability, and the Berry-phase 
theory of polarization (King-Smith and Vanderbilt, ’93)

A difference: magnetoelectric polarizability results from twisting of bands 
around each other (i.e., includes off-diagonal parts), unlike polarization

Polarization Magnetoelectric
polarizability

dmin 1 3
Observable P = ∂〈H〉/∂E Mij = ∂〈H〉/∂Ei∂Bj

= δijθe2/(2πh)
Quantum ∆P = eR/Ω ∆M = e2/h
Surface q = (P1 −P2) · n̂ σxy = (M1 − M2)

EM coupling P ·E ME ·B
CS form Ai εijk(AiFjk + iAiAjAk/3)

Chern form εij∂iAj εijklFijFkl



Mathematical properties of Chern-Simons band 
structure integral for theta

θ =
1
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Not gauge-invariant: a “large” (non-null-homotopic) gauge 
transformation changes the magnetoelectric polarizability by

which corresponds to adding an integer quantum Hall layer, or the 
periodicity of theta (closely related to gauge-dependence of 
polarization in a crystal).

e2

h

e2

h

= contact resistance in 0D or 1D
= Hall conductance quantum in 2D
= magnetoelectric polarizability in 3D



“Band twisting” as origin of theta
Electric polarization is diagonal in band indices.  The magnetoelectric 
polarizability is not, and off-diagonal terms can be significant.

Actually some “twisting” of occupied bands around each other is 
necessary.  To see this, note that in a 2-band model with one occupied 
band, the Chern-Simons integral (now Abelian)

computes a gauge-invariant integer; this is the Hopf invariant
(JEM, Ran, Wen),

because nondegenerate 2-band Hamiltonians are the sphere and maps 
from T3 with zero Chern are like maps from S3 (Pontryagin).

Hence any model that can be separated into occupied bands that do 
not mix in Hilbert space has zero theta.

n =
1

4π2

∫
d3k εijkFijAk

π3(S2) = Z



Conclusions
1. There are experimentally observed 1D edge states that are 
predicted to have spin direction perfectly correlated with direction of 
motion.  Can we test this and use this?

(2. The disorder physics of this system shows some interesting 
differences from the IQHE, including a metallic phase.)

3. Some 3D insulators show protected surface states.  This phase is 
less like the IQHE, and the description of its surface states has more in 
common with graphene physics.

4. 3D insulators have an “orbital magnetoelectric polarizability” 
analogous to polarization in 1D.  For T-invariant insulators there are 
only two possible values; general insulators are characterized by a 
magnetoelectric polarizability angle.

Surface optical conductivity can measure this in principle.



Defining the topological
insulator with disorder

!
2

!
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Suppose that the parameters in H do not 
have exact lattice periodicity.

Imagine adding boundary phases to a finite 
system, or alternately considering a 
“supercell”.  Limit of large supercells -> 
disordered system.

Effect of boundary phase is to shift k: 
alternate picture of topological invariant is 
in terms of half the (Φ1,Φ2) torus.

Can define Chern parities by pumping, analogous to Chern 
numbers, and study phase diagram w/disorder



In addition to the supercell argument, we can give a physical definition of 
the topological insulator in a disordered system as follows: (mathematical 
content is the same)

Pumping and interactions
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Spin-orbit T=0 phase diagram (fix spin-independent part):
instead of a point transition between ordinary and topological 
insulators, have a symplectic metal in between. 

We compute this numerically using Fukui-Hatsugai algorithm (PRB 2007) to 
compute invariants in terms of boundary phases (A. Essin and JEM, PRB 2007).  
See also Obuse et al., Onoda et al. for other approaches with higher 
accuracy->scaling exponents for transitions; Ryu et al. for theory.

The 2D topological insulator with disorder
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transition

2D spin-orbit (symplectic) metal

Symplectic metal-insulator transitions


