In search of topological states with half quantum vortices.

Eun-Ah Kim
Cornell University

Suk-Bum Chung (Stanford) Subroto Mukerjee (Berkeley) Daniel Agterberg (UWM)

In search of topological states with half quantum vortices

- Topological order and fractionalization
- $1 / 2$ QV's
- Stability of $1 / 2-$ QV's in SrRuO
- 1/2 QV lattices

Ground state degeneracy

Ground state degeneracy

Conventional order

Ground state degeneracy

Conventional order

Ground state degeneracy

Conventional order

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\leftrightarrow reduced symmetry

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\leftrightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\leftrightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Topological order

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\leftrightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Topological order

- Gapped spectrum

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\leftrightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Topological order

- Gapped spectrum
- No local order parameter.

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\Leftrightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Topological order

- Gapped spectrum
- No local order parameter.
- Topological degeneracy N_{g}.

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\rightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Topological order

- Gapped spectrum
- No local order parameter.
- Topological degeneracy Ng_{g}.

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\Leftrightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Topological order

- Gapped spectrum
- No local order parameter.
- Topological degeneracy Ng_{g}.

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\Leftrightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Topological order

- Gapped spectrum
- No local order parameter.
- Topological degeneracy Ng_{g}.

Ground state degeneracy

Conventional order

- Symmetry of the underlying Hamiltonian.
\leftrightarrow reduced symmetry
- Local measurements \Leftrightarrow order parameter

Topological order

- Gapped spectrum
- Topological invariance
\leftrightarrow emergent symmetry
- No local order parameter.
- Topological degeneracy N_{g}.

Sweet Topology

Sweet Topology

Sweet Topology

N_{g} \& fractionalization

Wen and Niu, PRB, 1990 Stone and Chung, PRB, 2006

Hansson, Oganesyan, Sondhi Ann.Phys, 2004 Oshikawa et al, Ann.Phys, 2007

N_{g} \& fractionalization

(2) Fractional charge $e^{*}=e / q$ $N_{g}=q^{9}$ e.g., $N_{1}=3$

(2n Non-abelian vortices

Wen and Niu, PRB, 1990 Stone and Chung, PRB, 2006

Hansson, Oganesyan, Sondhi Ann.Phys, 2004 Oshikawa et al, Ann.Phys, 2007

N_{g} \& fractionalization

(2) Fractional charge $e^{*}=e / q$ $N_{g}=q^{9}$ e.g., $N_{1}=3$

(2) Non-abelian vortices

Wen and Niu, PRB, 1990 Stone and Chung, PRB, 2006

Hansson, Oganesyan, Sondhi Ann.Phys, 2004 Oshikawa et al, Ann.Phys, 2007

N_{g} \& fractionalization

(2) Fractional charge $e^{*}=e / q$
$N_{g}=q^{9}$ e.g., $N_{1}=3$

(2n Non-abelian vortices

$N_{2 n}=2^{n-1}$ for MR state or $p+i p$ SF

Wen and Niu, PRB, 1990
Stone and Chung, PRB, 2006

Hansson, Oganesyan, Sondhi Ann.Phys, 2004 Oshikawa et al, Ann.Phys, 2007

N_{g} \& fractionalization

(2) Fractional charge $e^{*}=e / q$
$N_{g}=q^{9}$ e.g., $N_{1}=3$

(2n Non-abelian vortices

$N_{2 n}=2^{n-1}$ for MR state or $p+i p$ SF

Wen and Niu, PRB, 1990
Stone and Chung, PRB, 2006

Hansson, Oganesyan, Sondhi Ann.Phys, 2004 Oshikawa et al, Ann.Phys, 2007

Abelian statistics

en- abelian vortex states

Abelian statistics

©n- abelian vortex states

$$
\Psi\left(x_{1}, \cdots, x_{n}\right)=c-\text { number }
$$

Abelian statistics

(2n- abelian vortex states

$\Psi\left(x_{1}, \cdots, x_{n}\right)=c$-number exchange of qp's:

phase multiplication to a complex number

$$
\begin{aligned}
& \Psi\left(x_{1} \leftrightarrow x_{3}\right)=e^{i \theta} \Psi \\
& \Psi\left(x_{1} \leftrightarrow x_{2}\right)=e^{i \theta} \Psi
\end{aligned}
$$

Nonabelian statistics

©n- nonabelian vortex states \Rightarrow set of Qubits

Nonabelian statistics

©n- nonabelian vortex states \Rightarrow set of Qubits

$$
\Psi\left(x_{1}, \cdots, x_{n}\right)=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{d(n)}
\end{array}\right)
$$

Nonabelian statistics

en- nonabelian vortex states \Rightarrow set of Qubits

$$
\Psi\left(x_{1}, \cdots, x_{n}\right)=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{d(n)}
\end{array}\right)
$$

Nonabelian statistics

©n- nonabelian vortex states \Rightarrow set of Qubits

$$
\Psi\left(x_{1}, \cdots, x_{n}\right)=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{d(n)}
\end{array}\right)
$$

exchange of qp's:

rotation in $d(n)$ dim Hilbert space

Nonabelian statistics

©n- nonabelian vortex states \Rightarrow set of Qubits

$$
\begin{gathered}
\Psi\left(x_{1}, \cdots, x_{n}\right)=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{d(n)}
\end{array}\right) \Rightarrow \begin{array}{l}
\text { exchange of qp's: } \\
\text { rotation in } d(n) \operatorname{dim} \\
\text { Hilbert space }
\end{array} \\
\Psi\left(x_{1} \leftrightarrow x_{3}\right)=\underline{=} \Psi\left(x_{1}, \cdots, x_{n}\right) \\
\Psi\left(x_{1} \leftrightarrow x_{2}\right)=\underline{N} \Psi\left(x_{1}, \cdots, x_{n}\right)
\end{gathered}
$$

Nonabelian statistics

©n- nonabelian vortex states \Rightarrow set of Qubits

$$
\begin{gathered}
\Psi\left(x_{1}, \cdots, x_{n}\right)=\left(\begin{array}{c}
\psi_{1} \\
\vdots \\
\psi_{d(n)}
\end{array}\right) \rightarrow \begin{array}{l}
\text { exchange of qp's: } \\
\text { rotation in } d(n) \mathrm{dim} \\
\text { Hilbert space }
\end{array} \\
\Psi\left(x_{1} \leftrightarrow x_{3}\right)=\underline{M \Psi}\left(x_{1}, \cdots, x_{n}\right) \\
\Psi\left(x_{1} \leftrightarrow x_{2}\right)=\underline{N \Psi}\left(x_{1}, \cdots, x_{n}\right) \\
\mathrm{d}(2 n)=2^{n-1} \text { for MR state or } \mathrm{p}+\mathrm{ip} \mathrm{SC}
\end{gathered}
$$

In search of topological states with fractionalized excitations.

- Topological order and fractionalization
- $1 / 2 Q$ V's
- Stability of $1 / 2-$ QV's in SrRuO
- 1/2 QV lattices

Triplet superfluidity, d-vector

A. Leggett, RMP 1975 Sigrist \& Ueda RMP 1991

Triplet superfluidity, d-vector

A. Leggett, RMP 1975 Sigrist \& Ueda RMP 1991
(6) Gap function $\Delta_{s s^{\prime}}(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}, s_{3}, s_{4}} V_{s^{\prime} s s_{3} s_{4}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\left\langle a_{\mathbf{k}^{\prime} s_{3}} a_{-\mathbf{k}^{\prime} s_{4}}\right\rangle$

Triplet superfluidity, d-vector

A. Leggett, RMP 1975 Sigrist \& Ueda RMP 1991
(6) Gap function $\Delta_{s s^{\prime}}(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}, s_{3}, s_{4}} V_{s^{\prime} s_{5} s_{4}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\left\langle a_{\mathbf{k}^{\prime} s_{3}} a_{-\mathbf{k}^{\prime} s_{4}}\right\rangle$
$\widehat{\Delta}(\mathbf{k})=-\widehat{\Delta}^{T}(-\mathbf{k})$

Triplet superfluidity, d-vector

A. Leggett, RMP 1975 Sigrist \& Ueda RMP 1991
(6) Gap function $\Delta_{s s^{\prime}}(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}, s_{3}, s_{4}} V_{s^{\prime} s_{s_{3}} s_{4}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\left\langle a_{\mathbf{k}^{\prime} s_{3}} a_{-\mathbf{k}^{\prime} s_{4}}\right\rangle$

$$
\widehat{\Delta}(\mathbf{k})=-\widehat{\Delta}^{T}(-\mathbf{k})
$$

(2) Singlet gap function

$$
\widehat{\Delta}(\mathbf{k})=i \widehat{\sigma}_{y} \psi(\mathbf{k})=\left[\begin{array}{cc}
0 & \psi(\mathbf{k}) \\
-\psi(\mathbf{k}) & 0
\end{array}\right]
$$

Triplet superfluidity, d-vector

A. Leggett, RMP 1975 Sigrist \& Ueda RMP 1991
(6) Gap function $\Delta_{s s^{\prime}}(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}, s_{3}, s_{4}} V_{s^{\prime} s s_{3} s_{4}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\left\langle a_{\mathbf{k}^{\prime} s_{3}} a_{-\mathbf{k}^{\prime} s_{4}}\right\rangle$

$$
\widehat{\Delta}(\mathbf{k})=-\widehat{\Delta}^{T}(-\mathbf{k})
$$

(2) Singlet gap function

$$
\widehat{\Delta}(\mathbf{k})=i \widehat{\sigma}_{y} \psi(\mathbf{k})=\left[\begin{array}{cc}
0 & \psi(\mathbf{k}) \\
-\psi(\mathbf{k}) & 0
\end{array}\right]
$$

(2) Odd-Parity: $\hat{\Delta}(\mathbf{k})$ is odd in k, spin triplet

Triplet superfluidity, d-vector

A. Leggett, RMP 1975 Sigrist \& Ueda RMP 1991
(2) Gap function $\Delta_{s s^{\prime}}(\mathbf{k})=-\sum_{\mathbf{k}^{\prime}, s_{3}, s_{4}} V_{s^{\prime} s s_{3} s_{4}}\left(\mathbf{k}, \mathbf{k}^{\prime}\right)\left\langle a_{\mathbf{k}^{\prime} s_{3}} a_{-\mathbf{k}^{\prime} s_{4}}\right\rangle$

$$
\widehat{\Delta}(\mathbf{k})=-\widehat{\Delta}^{T}(-\mathbf{k})
$$

- Singlet gap function

$$
\widehat{\Delta}(\mathbf{k})=i \widehat{\sigma}_{y} \psi(\mathbf{k})=\left|\begin{array}{cc}
0 & \psi(\mathbf{k}) \\
-\psi(\mathbf{k}) & 0
\end{array}\right|
$$

(2) Odd-Parity: $\hat{\Delta}(\mathrm{k})$ is odd in k, spin triplet

- Triplet gap matrix

$$
\begin{aligned}
\widehat{\Delta}(\mathbf{k}) & =i(\mathbf{d}(\mathbf{k}) \cdot \hat{\sigma}) \hat{\sigma}_{y} \\
& =\left(\begin{array}{cc}
-d_{x}(\mathbf{k})+i d_{y}(\mathbf{k}) & d_{z}(\mathbf{k}) \\
d_{z}(\mathbf{k}) & d_{x}(\mathbf{k})+i d_{y}(\mathbf{k})
\end{array}\right)
\end{aligned}
$$

(2) T-breaking (ABM)

$$
\Delta \hat{(\mathbf{k}})=\Delta_{0}(T)\left(p_{x} \pm i p_{y}\right)\left(\begin{array}{cc}
-d_{x}+i d_{y} & d_{z} \\
d_{z} & d_{x}+i d_{y}
\end{array}\right)
$$

where \hat{d} is a real unit vector

- In plane $\hat{\mathrm{d}}$
$d_{z}=0$ ie., $\mathbf{d}=(\cos \alpha, \sin \alpha, 0)$
$\Delta \hat{(k)}=\Delta_{0}(T)\left(p_{x} \pm i p_{y}\right)\left(\begin{array}{cc}-e^{-i \alpha} & 0 \\ 0 & e^{i \alpha}\end{array}\right)$

1/2 QV with in-plane \hat{d}

1/2 QV with in-plane \hat{d}

- The gap matrix

$$
\Delta \hat{\mathrm{k}})=\Delta_{0}(T)\left(p_{x} \pm i p_{y}\right)\left(\begin{array}{cc}
-e^{-i \alpha} & 0 \\
0 & e^{i \alpha}
\end{array}\right)
$$

1/2 QV with in-plane \hat{d}

- The gap matrix

$$
\Delta \hat{\mathrm{k}})=\Delta_{0}(T)\left(p_{x} \pm i p_{y}\right)\left(\begin{array}{cc}
-e^{-i \alpha} & 0 \\
0 & e^{i \alpha}
\end{array}\right)
$$

(2) $1 / 2$ QV when $\mathrm{d}=(\cos \alpha, \sin \alpha, 0)$

1/2 QV with in-plane \hat{d}

- The gap matrix

$$
\Delta \hat{(k)}=\Delta_{0}(T)\left(p_{x} \pm i p_{y}\right)\left(\begin{array}{cc}
-e^{-i \alpha} & 0 \\
0 & e^{i \alpha}
\end{array}\right)
$$

(2) $1 / 2$ QV when $\mathrm{d}=(\cos \alpha, \sin \alpha, 0)$
$\Leftrightarrow 2 \pi$ winding for only one spin component

1/2 QV with in-plane d

- The gap matrix

$$
\Delta \hat{(k)}=\Delta_{0}(T)\left(p_{x} \pm i p_{y}\right)\left(\begin{array}{cc}
-e^{-i \alpha} & 0 \\
0 & e^{i \alpha}
\end{array}\right)
$$

(2) $1 / 2$ QV when $\mathrm{d}=(\cos \alpha, \sin \alpha, 0)$
$\Leftrightarrow 2 \pi$ winding for only one spin component
$\Leftrightarrow \pi$ winding of order parameter phase ϕ $+\pi$ rotation of d vector

$$
\underbrace{\Delta \phi=2 \pi}_{h c / 2 e \text { vortex }}
$$

Why? Exotic nature of $1 / 2$ QV in p+ip
(Vortices of $\mathrm{p}+\mathrm{ip}$ SF \rightarrow zero modes at the core

Das Sarma, Tewari, Nayak (06) Stone \& Chung(06) Ivanov(01)

Why? Exotic nature of $1 / 2$ QV in p+ip

eVortices of p+ip SF \Rightarrow zero modes at the core Kopnin and Salomaa PRB (1991)

Das Sarma, Tewari, Nayak (06) Stone \& Chung(06) Ivanov(01)

Why? Exotic nature of $1 / 2$ QV in p+ip

eVortices of $\mathrm{p}+\mathrm{ip} \mathrm{SF} \Rightarrow$ zero modes at the core Kopnin and Salomaa PRB (1991)

- Zero modes are Majorana

Das Sarma, Tewari, Nayak (06) Stone \& Chung(06) Ivanov(01)

Why? Exotic nature of $1 / 2$ QV in p+ip

eVortices of $\mathrm{p}+\mathrm{ip} \mathrm{SF} \Rightarrow$ zero modes at the core Kopnin and Salomaa PRB (1991)

- Zero modes are Majorana
- BdG qp's $\gamma_{i}^{\dagger}=u \psi_{i}^{\dagger}+v \psi_{i} \quad \gamma_{i}^{\dagger}\left(E_{n}\right)=\gamma_{i}\left(-E_{n}\right)$
, zero mode: $\gamma_{i}^{\dagger}(0)=\gamma_{i}(0)$

Das Sarma, Tewari, Nayak (06) Stone \& Chung(06) Ivanov(01)

Why? Exotic nature of $1 / 2$ QV in p+ip

eVortices of $\mathrm{p}+\mathrm{ip} \mathrm{SF} \Rightarrow$ zero modes at the core Kopnin and Salomaa PRB (1991)

- Zero modes are Majorana
- BdG qp's $\gamma_{i}^{\dagger}=u \psi_{i}^{\dagger}+v \psi_{i} \quad \gamma_{i}^{\dagger}\left(E_{n}\right)=\gamma_{i}\left(-E_{n}\right)$
, zero mode: $\gamma_{i}^{\dagger}(0)=\gamma_{i}(0)$

Das Sarma, Tewari, Nayak (06) Stone \& Chung(06) Ivanov(01)

Why? Exotic nature of $1 / 2$ QV in p+ip

2Vortices of p+ip SF \Rightarrow zero modes at the core Kopnin and Salomaa PRB (1991)

- Zero modes are Majorana
- BdG qp's $\gamma_{i}^{\dagger}=u \psi_{i}^{\dagger}+v \psi_{i} \gamma_{i}^{\dagger}\left(E_{n}\right)=\gamma_{i}\left(-E_{n}\right)$
, zero mode: $\gamma_{i}^{\dagger}(0)=\gamma_{i}(0)$
- Majorana + vortex composite non-Abelian statistics

Das Sarma, Tewari, Nayak (06) Stone \& Chung(06) Ivanov(01)

Why? Exotic nature of $1 / 2$ QV in p+ip

eVortices of p+ip SF \Rightarrow zero modes at the core Kopnin and Salomaa PRB (1991)

- Zero modes are Majorana
, BdG qp's $\gamma_{i}^{\dagger}=u \psi_{i}^{\dagger}+v \psi_{i} \gamma_{i}^{\dagger}\left(E_{m}\right)=\gamma_{i}\left(-E_{n}\right)$
, zero mode: $\gamma_{i}^{\dagger}(0)=\gamma_{i}(0)$
- Majorana + vortex composite
non-Abelian statistics

Das Sarma, Tewari, Nayak (06) Stone \& Chung(06) Ivanov(01)
1/2 QV's: single Majorana zero mode

5/2 state described as p+ip paired stated of composite fermion

Pfaffian is real space many body BCS wave function of $p+i p$ SF

HQV is equivalent to $1 / 4 \mathrm{qP}$
Moore \& Read (91) Read \& Green (00)
Schriffer, p 48

In search of topological states with fractionalized excitations.

- Topological order and fractionalization
- $1 / 2 Q$ V's
- Stability of $1 / 2-$ QV's in SrRuO
- 1/2 QV lattices

K. Ishida et al, Nature (1998)

Spin-triplet superconductivity in $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ identified by ${ }^{17} \mathrm{O}$ Knight shift

Experiments?

(2) NMR on ${ }^{3} \mathrm{He}-\mathrm{A}$ thin films: X Hakonen et al. Physica (89)
© Small angle neutron scattering: X Riseman et al. Nature (98)
(2) Scanning SQUID imaging: X Dolocan et al, PRL (05), Bjorsson et al, PRB (05)
(2) NMR in the presence of $\mathbf{H} \perp a b$
, $\mathbf{d} / / a b$: for $H_{\perp} \approx 200 \mathrm{G}$, Murakawa et al, PRL (04)

Energetics

Energetics

. Energy competition between full-QV and 1/2-QV

Energetics

- Energy competition between full-QV and 1/2-QV
- Reducing vorticity saves magnetic energy

Energetics

- Energy competition between full-QV and 1/2-QV
- Reducing vorticity saves magnetic energy
- d-vector bending costs energy

Energetics

- Energy competition between full-QV and $1 / 2-Q V$
- Reducing vorticity saves magnetic energy
- d-vector bending costs energy
(2) Gradient free energy when $\mathbf{d} \perp \mathrm{L}$ (London limit)

$$
f_{\mathrm{grad}}^{2 \mathrm{D}}=\frac{1}{2}\left(\frac{\hbar}{2 m}\right)^{2}\left[\rho_{\mathrm{s}}\left(\nabla_{\perp} \phi-\frac{2 e}{\hbar c} \mathbf{A}\right)^{2}+\rho_{\mathrm{sp}}\left(\nabla_{\perp} \alpha\right)^{2}\right]+\frac{1}{8 \pi}(\nabla \times \mathbf{A})^{2}
$$

Energetics

- Energy competition between full-QV and $1 / 2-Q V$
- Reducing vorticity saves magnetic energy
- d-vector bending costs energy
(Gradient free energy when $\mathrm{d} \perp \mathrm{L}$ (London limit)

$$
f_{\mathrm{grad}}^{2 \mathrm{D}}=\frac{1}{2}\left(\frac{\hbar}{2 m}\right)^{2}\left[\rho_{\mathrm{s}}\left(\nabla_{\square} \phi-\frac{2 e}{\hbar c} \mathbf{A}\right)^{2}+\rho_{\mathrm{sp}}\left(\nabla_{\perp} \alpha\right)^{2}\right]+\frac{1}{8 \pi}(\nabla \times \mathbf{A})^{2}
$$

© Spin current energy diverges logarithmically!

Energetics

. Energy competition between full-QV and 1/2-QV

- Reducing vorticity saves magnetic energy
- d-vector bending costs energy
(Gradient free energy when $\mathrm{d} \perp \mathrm{L}$ (London limit)

$$
f_{\text {grad }}^{2 \mathrm{D}}=\frac{1}{2}\left(\frac{\hbar}{2 m}\right)^{2}\left[\rho_{\mathrm{s}}\left(\nabla_{\perp} \phi-\frac{2 e}{\hbar c} \mathbf{A}\right)^{2}+\rho_{\mathrm{sp}}\left(\nabla_{\perp} \alpha\right)^{2}\right]+\frac{1}{8 \pi}(\nabla \times \mathbf{A})^{2}
$$

© Spin current energy diverges logarithmically!

$$
\epsilon_{\mathrm{sp}}=\frac{\pi}{4}\left(\frac{\hbar}{2 m}\right)^{2} \rho_{\mathrm{sp}} \ln \left(\frac{R}{\xi}\right)
$$

stability of $1 / 2$ QV

$$
\begin{aligned}
& E_{\text {pair }}^{\text {half }}\left(r_{12}\right)=\frac{1}{2} \frac{\Phi_{0}^{2}}{16 \pi^{2} \lambda^{2}}\left[\ln \left(\frac{\lambda}{\xi}\right)+K_{0}\left(\frac{r_{12}}{\lambda}\right)+\frac{\rho_{\text {sp }}}{\rho_{\mathrm{s}}} \ln \left(\frac{r_{12}}{\xi}\right)\right] \\
& E^{\text {full }}=\pi\left(\frac{\hbar}{2 m}\right)^{2} \rho_{\mathrm{s}} \ln \left(\frac{\lambda}{\xi}\right)=\frac{\Phi_{0}^{2}}{16 \pi^{2} \lambda^{2}} \ln \left(\frac{\lambda}{\xi}\right)
\end{aligned}
$$

$\Delta \chi=2 \pi$

- Competition between screened magnetic repulsion and unscreened spin attraction
- Finite equilibrium size for small $\rho_{s p} / \rho_{s}$

Leggett RMP 75

Mesoscopic sample

- Sample of size $\sim \lambda$ a few micron

$$
L=2 \lambda
$$

Underway in Budakian lab

- Sample of size $\sim \lambda$ a few micron

In search of topological states with fractionalized excitations.

- Topological order and fractionalization
- $1 / 2 Q$ V's
- Stability of $1 / 2-$ QV's in SrRuO
- $1 / 2$ QV lattices

1/2 QV Lattice?

- Natural way to stabilize 1/2 QV

1/2 QV Lattice?

- Natural way to stabilize 1/2 QV
(3) Good track record for full QV lattice
- Agterberg, PRB (98) predicted square lattice
-T. Riseman at el , Nature (98) confirmed square lattice

1/2 QV Lattice?

- Natural way to stabilize $1 / 2$ QV
(2) Good track record for full QV lattice
-Agterberg, PRB (98) predicted square lattice
-T. Riseman at el , Nature (98) confirmed square lattice
(2) Potential of tuning $\rho_{s p} / \rho_{s}$
-Knowledge exist for $\rho_{s p} / \rho_{s}$ as a function of Fermi liquid parameters
-p-wave Feshbach resonance

1/2 QV Lattice?

(2) SC (SF) with additional U(1) symmetry due to $\hat{\mathrm{d}}$ rotation
(2) Interlacing lattices of two types of vortices

-Different geometry depending on density and LL mixing

- Similar case arise in spinor condensate

a व्र्ध	b	

Muller \& Ho(02)
Barnett, Mukergee \& Moore(08)

Prediction

(2) Minimze GL free energy to determine the VL structure
(2) Quartic terms in the free energy determine the structure

Field distribution as can be measured by neutron

Prediction

(2) Minimze GL free energy to determine the VL structure
(2) Quartic terms in the free energy determine the structure

Field distribution as can be measured by neutron

Stiffness engineering?

© p-wave Feshbach resonance can allow for tuning for Fermi liquid parameters

$$
H=\sum_{\mathbf{p}} \epsilon(\mathbf{p}) a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+\sum_{\mathbf{p}, \alpha}\left[\epsilon_{\alpha}+\frac{\epsilon(\mathbf{p})}{2}\right] b_{\mathbf{p} \alpha}^{\dagger} b_{\mathbf{p} \alpha}+\frac{1}{\sqrt{V}} \sum_{\mathbf{p}, \mathbf{q}, \alpha} g_{\mathbf{p}} p_{\alpha}\left(b_{\mathbf{q} \alpha} a_{\mathbf{p}+\frac{\mathbf{a}}{2}}^{\dagger} a_{-\mathbf{p}+\frac{\mathbf{q}}{2}}^{\dagger}+\text { h.c. }\right)
$$

Gurarie, L. Radzihovsky, \& A. V. Andreev (05)

- Hope to arrive at a PD where $\rho_{s p} / \rho_{s}$ can be tuned as a function of microscopic parameter

In search of topological states with half quantum vortices

In search of topological states with half quantum vortices

In search of topological states with half quantum vortices

(2)/2 QV's are not stable in bulk systems

In search of topological states with half quantum vortices

(2) $1 / 2$ QV's are not stable in bulk systems
(2) Mesoscopic samples could favor $1 / 2$ QV's

In search of topological states with half quantum vortices

(2) $1 / 2$ QV's are not stable in bulk systems
(2) Mesoscopic samples could favor $1 / 2$ QV's
(1/2 QV Vortex Lattice can be pursued and detected

