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The Insulating State

The Integer Quantum Hall State

IQHE with zero net magnetic field
Graphene with a  periodic magnetic field B(r)   (Haldane PRL 1988)

Band structure
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Topological Band Theory
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The distinction between a conventional insulator and the quantum Hall state 
is a topological property of the manifold of occupied states
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Insulator         :   n = 0
IQHE state     :   σxy = n e2/h

The TKNN invariant can only change
when the energy gap goes to zero

Classified by the TKNN (or Chern) topological invariant (Thouless et al, 1984)

QHE state
n=1

Vacuum
n=0

Edge States at a domain wall Gapless Chiral Fermions
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Topological Insulator : A New B=0 Phase 
2D Time reversal invariant band structures have a  Z2 topological invariant, ν = 0,1 

ν=0 : Conventional Insulator ν=1 : Topological Insulator

Kramers degenerate at
time reversal invariant momenta 

k* = −k* + G
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Edge States

1.  Sz conserved : independent spin Chern integers :                       (due to time reversal)   n n
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ν is a property of bulk bandstructure.   Easiest to compute if there is extra symmetry:
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2.  Inversion (P) Symmetry : determined by Parity of occupied 2D Bloch states at Γ1,2,3,4
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Two dimensions :  Quantum Spin Hall Insulator

Theory: Bernevig, Hughes and Zhang, Science ’06
Experiement:  Konig et al. Science ‘07

HgTe

HgxCd1-xTe

HgxCd1-xTe
d

d < 6.3 nm
Normal band order

d > 6.3 nm:
 Inverted band order

Conventional Insulator QSH Insulator
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II.  HgCdTe quantum wells

I.  Graphene
• Intrinsic spin orbit interaction 
       ⇒ small (~10mK-1K) band gap 

• Sz conserved :   “| Haldane model |2”
• Edge states : G = 2 e2/h

Kane, Mele PRL ‘05
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G ~ 2e2/h  in QSHI



Three Dimensional Topological Insulators
In 3D there are 4 Z2 invariants:  (ν0 ; ν1ν2ν3) characterizing 
the bulk.   These determine how surface states connect.

Fu, Kane & Mele PRL 07
Moore & Balents PRB 07
Roy, cond-mat 06
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ν0 = 1 : Strong Topological Insulator

Fermi surface encloses odd number of Dirac points
Topological Metal
     • Berry’s phase π around Fermi surface
     • Robust to disorder  (antilocalization)

ν0 = 0 : Weak Topological Insulator
Fermi surface encloses even number of Dirac points
Normal Metal
     • Berry’s phase 0, less robust.
     • Equivalent to layered 2D QSHI
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Bi1-xSbx
Pure Bismuth

semimetal
Alloy :  .09<x<.18

semiconductor Egap ~ 30 meV
Pure Antimony

semimetal
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Theory:  Predict Bi1-xSbx is a  topological insulator  by exploiting 
               inversion symmetry of Bi, Sb   (Fu,Kane PRL’07)

Experiment:  ARPES (Hsieh et al. Nature ’08)

• 5 surface state bands cross EF  
   between Γ and M
    
•  Proves that Bi1-x Sbx  is a Strong 
   Topological Insulator



Proximity Effects, Energy Gaps
Minimal surface
state model: 
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Gap for M>Mc(µ)
Broken time reversal symmetry
“half quantized” QHE  σxy = e2/2h

Two Gapped Phases :
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TI
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No broken time reversal

Bogoliubov Spectrum (µ=0) ( )
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|Δ|>|M|  :  Superconducting phase
|Δ|<|M|  :   Insulating phase
|Δ|=|M|  :  Critical : 2D gapless Majorana 
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S-TI-M interface
Majorana Fermions

S.C.M  ↑Gapless 1D chiral 
Majorana fermions 
bound to domain wall

Vortex in 2D SC :
Zero energy 
Majorana bound state
at vortex

h/2e

S-QSHI-M junction

Zero energy 
Majorana bound state
at junction
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S.C.M

QSHI

Kitaev 2003 :  2N Majoranas = N qubits: fault tolerant quantum memory
                       Braiding : Quantum computation
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Manipulation of Majorana Fermions

S-TI-S Tri-Junction :  

φ1φ2

0

Create, Transport and Fuse Majorana fermions along line junctions

Majorana bound state 
present at tri-junction
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S-TI-S Line Junction :  A 1D “wire” for Majorana fermions

φ = 0
φ = π

0<φ<π

E

Gapless 1D Majorana
Fermions for φ = π
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Evidence for good contact between BiSb and Nb :  minimal Shottky barrier

The challenges :
•  Find suitable topological insulator (Bi1-x Sbx ?   Eg ~ 30 meV)
•  Find suitable superconductor which makes good interface ( Nb ? )
•  Optimize proximity induced gap and discrete Andreev bound states
•  Control the superconducting phases with Josephson junctions
•  Measure current difference when Majoranas are fused  ………



S-QSHI-S Josephson Junction Fu, Kane cond-mat/08

Andreev bound states in the junction
B = 0 B ≠ 0

B = 0 :   “Half” a perfectly transmitting 
                  superconducting quantum point contact

B ≠ 0 :  “Fractional Josephson Effect”
                 (Kitaev 2001; Kwon, Sengupta, Yakovenko, 2004)

              • 4π periodicity of E(φ) protected by local
                      conservation of fermion parity.
              • Two coupled Majoranas

“Telegraph noise” at φ ∼ π 
              •  Switch fermion parity by inelastic scattering of
                      thermally activated quasiparticles
              •  τ ~ exp( Δ0/T )
              •  Noise S(ω→0) ~ exp( Δ0/T )
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Conclusion
•  A new electronic phase of matter has been predicted and observed

            - 2D :  Quantum spin Hall insulator in HgCdTe QW’s
            - 3D :  Strong topological insulator in Bi1-xSbx

•  Experimental Challenges

            - Spin dependent Transport Measurements
            - Transport and magneto-transport measurements on Bi1-xSbx

                  - Superconducting proximity effect :
                -  BiSb-Nb ?    HgCdTe-Nb  ??
                -  Characterize S-TI-S junctions
                -  Create the Majorana bound states
                -  Detect the Majorana bound states

•  Theoretical Challenges

            - Effects of disorder, interactions on surface states,
                  superconductivity and critical phenomena

            - Other Materials?


