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Kramers-Wannier duality of two-dimensional classical lattice models and the ”topological

symmetry” of interacting anyonic chains are the same symmetry.

1



This has applications to both classical and quantum lattice models.

In classical models, this allows us to generalize duality to essentially any lattice model

with an integrable critical point.

In quantum models, this allows one to find ground states with non-abelian topological

order, and moreover construct relatively simple local Hamiltonians with such ground

states.
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What is Kramers-Wannier duality?

The classical Q-state Potts model has a spin σi = 1..Q at each site i of a lattice. The

energy is simply

E = −J
∑

<ij>

δσiσj

so the partition function is

ZL(K) =
∑

{σi}
eK

P
<ij> δσiσj .

where K ≡ J/T and L indicates the lattice the spins live on.

Lots of interesting structure in this model: critical point in 2d for Q ≤ 4; Temperley-Lieb

algebra; Tutte polynomial,. . .
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Perhaps the most remarkable thing about the Potts model is its (Kramers-Wannier)

duality.

Duality is the very non-obvious statement that with appropriate boundary conditions,

ZL(K) = ZbL(K̃)

where L̂ is the dual lattice to L, while K and the dual coupling K̃ are related by

(eK − 1)(e eK − 1) = Q .

The self-dual point is at K = Kc, where (eKc − 1) =
√

Q. In general, the duality

maps between a model in the “high-temperature” phase K < Kc and one in the

“low-temperature” (ordered) phase K > Kc.
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In terms of domain walls, the weight for a link separating spins σi = a, σj = b is

(1− δab) + eKδab .

a b a a

In the dual model, the analogous weight is

(1− δαβ) + e
eKδαβ

α

α

α

β

where µi = α and µj = β are the values of the spins in the dual model.
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Build up the transfer matrix by taking products of these, for both horizontal and vertical

links. Think in terms of the domain walls, so each link is a two-state system: either the

domain wall is there, or it isn’t.

Using (eK − 1)(e eK − 1) = Q relates the couplings for each state of the two-state

system and the dual two-state system

e

eK
1


 ∝


1 Q− 1

1 −1





eK

1




Everything can be generalized to non-integer Q by using the Temperley-Lieb algebra;

note that (1− δab) and δab are (orthogonal) projectors. Then the TL parameter d (the

weight of each closed loop) obeys d =
√

Q.
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Topological aficionados note: this “duality matrix” changing the two bases is precisely the

SU(2)k four-anyon fusion matrix for
√

Q = 2 cos(π/(k + 2)) !

Moreover, the standard pictures even look similar:

+

= F
11

01

+ F

F00

10

= F

So what does duality have to do with non-abelian anyons?
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Duality = topological symmetry

Topological symmetry is by construction a symmetry of interacting anyonic chains.

Feiguin, Trebst, Ludwig, Troyer, Kitaev, Wang and Freedman
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The degrees of freedom in an interacting anyon chain are the fusion channels.

For Ising fusion rules σ × σ = I + ψ; σ × ψ = σ; the fusion channels of 2N

anyons are specified by the picture (unlabeled links are σ)

c2N

anyon 1 anyon 2

c2 c4 . . .

anyon 2N

c2N

This is an Ising Hilbert space! Each c2i can be either I or ψ, while each c2i−1 = σ.

Thus we have an Ising chain with σi = +1 when c2i = I , while σi = −1 corresponds

to c2i = ψ.
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The Hamiltonian of an interacting anyonic chain is then defined by demanding that it

commute with “adding a loop”.

The Potts F matrix acts as

c′2i

¡¡@@

=
∑

c Fc2i′c2i

c2i

where as before all unlabeled line segments are σ.

By particular combination of F matrix moves, one can convert the process of adding a

loop into an operation on the Hilbert space

Levin and Wen; California stars
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The topological symmetry is easiest to see in the classical model. The Potts transfer

matrix acts on a QN -dimensional space of spins, the same Hilbert space as the 1d

quantum Hamiltonian:

i−1

T i−1 i

s
i

s s

s

In this picture, the domain walls are either horizontal or vertical lines connecting the sites

on the dual lattice. The dual sites correspond to c2i−1 = σ channels on the chain. For

more general models, need to have varying degrees of freedom here.
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The F matrix in the lattice model acts as:

µ

s

or 

sii

F F

i+1/2
µ

i−1/2

The arrow indicates that F or F̂ can be thought of as changing the value of the spin at

the bottom of the arrow to the value at the top, depending on the values of the other two

spins.

For Ising,

F =
1√
2


1 1

1 −1


 , F̂ = (−1)δsiµi+1/2
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The topological symmetry generator in the classical lattice model is then simply

i+1
s

i
si−1

F F F F F F F

µ µ µ
i−3/2 i−1/2 i+1/2

F

s

Note that the the non-trivial states shift; they are now on the dual lattice!
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To prove that this is a symmetry, it needs to “commute” with the transfer matrix. More

precisely, when commuted, it needs to give the dual transfer matrix:

= 

FF

T

T

s
i

i−1/2µ µ
i+1/2i+1/2

µ µi−1/2

F F

s
i

Integrability aficionados will recognize this as the Yang-Baxter equation. Up to (important)

phases which cancel in the YBE, F is the limit of T with infinite spectral parameter.
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This construction enables one to generalize duality to many critical integrable models.

Integrable lattice models are known which in the continuum limit yield all CFTs

Gk ×Gl

Gk+l

In fact, there can be even more than one duality for a given CFT. For example, for each

minimal CFT, there is both a Potts duality (what the California stars study) and a tricritical

Potts duality.

Once you have the duality, there is no need to demand integrability: you can e.g. study

how perturbations and operators in the lattice model and the CFT behave under the

duality.
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This duality is also useful when studying 2d quantum nets.

Quantum self-duality allows the construction of a simple(r) Hamiltonian annihilating a

topologically-ordered ground state consisting of a sum over nets.

For the square lattice, it requires only four-spin interactions.

16



To build a quantum loop/net model,

1. find a 2d classical loop model where loops are critical but local degrees of freedom

are not (e.g. percolation)

2. use each loop configuration as a basis element of the quantum Hilbert space

3. find a Hamiltonian whose ground state a sum over loop configurations with the

appropriate weighting, so that

4. if you “cut” a loop, you end up with two deconfined anyonic excitations

Kitaev; Moessner and Sondhi; Freedman
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The quantum Potts model uses the 2d classical Potts model for its underlying degrees of

freedom.

The domain wall on each link forms a two-state quantum system, i.e. the presence of the

domain wall is one state |1〉, while the absence is the orthogonal state |0〉.

a b a a
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Each domain-wall configuration is a net: by construction, it has no ends.

2

2

2

3 3

3 3

3

2

1

The Hilbert space of the quantum model for N links is still fully 2N -dimensional.

Configurations with “net ends” are by construction anyonic excited states.
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The weight of each net |N〉 in the ground state |Ψ〉 of the quantum model is found from

the classical model:

〈N |Ψ〉 = (Q− 1)−LN χ bN (Q)

Fendley and Fradkin

χ bN (Q) is the number of spin configurations allowed for each domain-wall configuration

N . χ bN (Q) is called the chromatic polynomial, and depends only on the topology of N .

Its definition can be extended to all Q, not just integers.

LN is the “length” of each net, the number of |1〉 states. This factor is put there to ensure

that...
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The quantum Potts model is quantum self-dual.

This means we can equivalently define the model in terms of dual domain walls, |0̂〉, |1̂〉.

+

= F
11

01

+ F

F00

10

= F

F =


〈0̂|0〉 〈0̂|1〉
〈1̂|0〉 〈1̂|1〉


 =

1√
Q


 1

√
Q− 1

√
Q− 1 −1



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The weight of each dual net |D〉 in the ground state is

〈D|Ψ〉 =
(

1√
Q− 1

)LD

χ bD(Q)

This is the same ground state |Ψ〉 in a new basis!

This quantum self-duality is highly non-obvious, and extremely useful.
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A Hamiltonian H with |Ψ〉 a ground state can be found simply by demanding that H

annihilate all states which are not nets and annihilate all states which are not dual nets.

For the square lattice:

H =
∑
+

[P1P0P0P0 + rotations]

+
∑

¤
[Pb1Pb0Pb0Pb0 + rotations]

where Pi projects onto the states |i〉, and Pbi = FPiF .
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Conclusions

It has long been known that integrability and topological order are related: integrable

models yield essentially all the known knot polynomials. Now we see that even old-school

Kramers-Wannier duality has a topological interpretation.

Thinking about topology leads to a natural extension of self-duality to two-dimensional

quantum systems.

This in turn leads to a much simpler Hamiltonian annihilating topologically-ordered

ground states.
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