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FIG. 5: Map of the fit quality. Normalized fit error is the
residual from the least-squares fit, divided by the number of
points and by the noise of the measurement. Also marked on
the map are proposed theoretical pairs (e∗, g).

and scale factor.) All five temperatures are fit simulta-
neously with four free parameters: a single vertical off-
set corresponding to R∞, an amplitude A, and the two
quantities g and e∗. A least-squares fit over the full data
set gives best-fit values g = 0.35—the same value found
from the power law fit of the peak heights (Fig. 4B)—and
e∗ = 0.17. Uncertainties in these values will be discussed
below. Similar analysis performed on data from a dif-
ferent device (device 2 but energizing only gates G1 and
G4) yields quantitatively similar results.

To characterize the uncertainty of these measured val-
ues, a matrix of fits to the weak-tunneling form, Eq. (2),
with g, e∗ fixed and A, R∞ as fit parameters is shown in
Fig. 5. The color scale in Fig. 5 represents the normal-
ized fit error, defined as the residual of the fit per point
divided by 0.0005 h/e2, the noise of the measurement.
A fit error ! 1 indicates that fit is consistent with the
data within the noise of the measurement. Higher values
indicate worse fits (see Supporting Online Material).

This matrix of fits allows various candidate states at
ν = 5/2 to be compared with the tunneling data. All of
the candidate states predict e∗ = 1/4, but g can differ.
States with abelian quasiparticle statistics include the
(331) state [14, 15], which has a predicted g = 3/8 [17],
and the K = 8 state with g = 1/8[16]. States with
non-abelian quasiparticle statistics include the Pfaffian
[6] with g = 1/4 [17], its particle-hole conjugate the anti-
Pfaffian [8, 9] with g = 1/2 [8, 9, 18], and the U(1) ×
SU2(2) state [7], also with g = 1/2. Parameter pairs
(e∗, g) representing these candidate states are marked in
Fig. 5. Evidently, the states with e∗ = 1/4 and g = 1/2,
both non-abelian, are most consistent with our tunneling
data. The abelian state with e∗ = 1/4 and g = 3/8

cannot be excluded. We not! e that weak tunneling
of e∗ = 1/2 quasiparticles appears inconsistent with the
data, suggesting that unpaired composite fermions do not
play a significant role in tunneling for this experimental
situation.

Strong tunneling. In contrast to device 1, the dc bias
data from device 2 show evidence for strong tunneling.
Device 2 has a long, channel-like geometry, which could
increase the number of tunneling sites and hence the tun-
neling strength. Diagonal resistance, RD as a function of
dc bias at several temperatures is shown in Fig. 6A. Com-
paring these data to those from the short QPC (Fig. 4A),
shows qualitative differences at lower temperatures. At
higher temperatures, the zero-bias peak height can be
described by a power law in temperature with an expo-
nent similar to that in the QPC (Fig. 6B), and a FWHM
that is proportional to temperature (Fig. 6C). At lower
temperatures, the peak height deviates from a power law
and saturates at the lowest temperatures at a value of
resistance consistent with the resistance at ν = 7/3 (the
resistance is higher than 3/7 h/e2 by the background
R∞ − 0.4), and the FWHM deviates from the linearity
seen at higher tem! perature. We also observe that the
peak develops a flat top and strong side-dips (Fig. 6A)
at the lowest temperature.

We are not aware of quantitative predictions for the
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FIG. 6: A. RD (device 2) as a function of dc bias at fixed
magnetic field (B = 4.31 T, middle of ν = 5/2) and fixed
gate voltage (Vg = −2.4 V) at several temperatures. Rxy is
independent of dc bias over this range of Idc (not shown).
At the lowest temperature, the peak develops a flat top at a
value of resistance consistent with the resistance at ν = 7/3.
B. Zero-bias peak height as a function of temperature. The
peak height saturates at the lowest temperatures. C. Peak
width as a function of temperature. The red line is best fit
of the high temperature data with a line going through zero.
Note that below ∼30 mK the peak width no longer follows
this line.
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Theory predicts that quasiparticle tunneling between the counter-propagating edges in a fractional
quantum Hall state can be used to measure the effective quasiparticle charge e∗ and dimensionless
interaction parameter g, and thereby characterize the many-body wavefunction describing the state.
We report measurements of quasiparticle tunneling in a high mobility GaAs two-dimensional electron
system in the fractional quantum Hall state at ν = 5/2 using a gate-defined constriction to bring
the edges close together. We find the dc-bias peaks in the tunneling conductance at different
temperatures collapse onto a single curve when scaled, in agreement with weak tunneling theory.
Various models for the ν = 5/2 state predict different values for g. Among these models, the
non-abelian states with e∗ = 1/4 and g = 1/2 are most consistent with the data.

The fractional quantum Hall (FQH) effect [1] results
from the formation of novel states of a two-dimensional
electron system (2DES) at high magnetic field and low
temperature, in which electron-electron interactions lead
to gaps in the bulk excitation spectra. Because of these
gaps, current can only flow via extended states that prop-
agate around the edges of the 2DES [2]. At a constriction
in the 2DES, such as that formed by a quantum point
contact (QPC), counter-propagating edge states come
close enough together that quasiparticles can tunnel be-
tween them. According to theory [3], weak quasiparticle
tunneling depends strongly on the voltage difference be-
tween the edges (or, because of the Hall effect, the current
through the QPC), and should scale with temperature
in a way that provides a measurement of the effective
charge, e∗, of the quasiparticles and the strength of the
Coulomb interaction, g. Since both e∗ and g are specific
to the FQH state, such measurements provide a discrim-
inating probe of FQH wavefunctions.

The FQH state at ν = 5/2 [4] has received partic-
ular attention because the leading candidates for the
wavefunction for this state have elementary excitations
that exhibit non-abelian particle statistics [5, 6, 7, 8, 9].
Whereas the interchange of abelian particles such as elec-
trons multiplies the wavefunction by an overall phase,
the interchange of non-abelian quasiparticles can lead to
a different wavefunction. Identifying a physical system
with non-abelian statistics would be of fundamental in-
terest, but would also provide a basis for a topological
quantum information processing scheme [10] that is re-
sistant to environmental decoherence [11, 12]. Although
wavefunctions with non-abelian excitations are the prime
candidates [13] to describe the state at ν = 5/2, alter-
natives with abelian properties have also been proposed
[14, 15, 16]. All candidate wavefunctions for ν = 5/2
have quasiparticle effective charge e∗ = 1/4, but they
differ in the predicted values of g [8, 9, 17, 18, 19].

Weak tunneling theory, developed originally for Laugh-
lin FQH states [3], has also been extended to non-abelian

states [17, 18, 19, 20, 21]. Tunneling measurements on
a single constriction can distinguish among candidate
wavefunctions for ν = 5/2; existing proposals to find di-
rect evidence for non-abelian statistics, however, require
multiple constrictions to create interference among tun-
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FIG. 1: Magnetic field dependence of the diagonal (RD) and
Hall (Rxy) resistance for device 2 at fixed gate voltage from
ν = 2 to ν = 4 illustrating that both the QPC and the bulk
are at the same filling fraction. The upper inset shows low-
field data from the same device (device 2) emphasizing that
the carrier density in the annealed QPC is nearly the same as
that of the bulk (red and black traces with almost matching
slopes), while in the non-annealed QPC (green trace) the den-
sity shifts significantly. For clarity, the non-annealed data has
been offset vertically by 0.003 h/e2. Lower insets are scanning
electron micrographs of devices with similar gate geometry to
those used in these experiments. In device 2, grounded gates
held are artificially colored gray.
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What is topological order at T≠0 ?

What is the classical counterpart of 
quantum topological order ?

How to define a measure of either ?
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F I G. 1.1. A classification of different orders in matter (and in a vacuum).

and Rezayi, 1985), quasiparticle statistics (Arovas et al., 1984), and edge states

(Halperin, 1982; Wen, 1992).

It was shown that the ground-state degeneracy of a topologically-ordered state

is robust against any perturbations (Wen and Niu, 1990). Thus, the ground-state

degeneracy is a universal property that can be used to characterize a phase. The

existence of topologically-degenerate ground states proves the existence of topo-

logical order. Topological degeneracy can also be used to perform fault-tolerant

quantum computations (Kitaev, 2003).

The concept of topological order was recently generalized to quantum order

(Wen, 2002c) to describe new kinds of orders in gapless quantum states. One

way to understand quantum order is to see how it fits into a general classifica-

tion scheme of orders (see Fig. 1.1). First, different orders can be divided into

two classes: symmetry-breaking orders and non-symmetry-breaking orders. The

symmetry-breaking orders can be described by a local order parameter and can

be said to contain a condensation of point-like objects. The amplitude of the

condensation corresponds to the order parameter. All of the symmetry-breaking

orders can be understood in terms of Landau’s symmetry-breaking theory. The

non-symmetry-breaking orders cannot be described by symmetry breaking, nor

by the related local order parameters and long-range correlations. Thus, they are

a new kind of order. If a quantum system (a state at zero temperature) contains

a non-symmetry-breaking order, then the system is said to contain a non-trivial

quantum order. We see that a quantum order is simply a non-symmetry-breaking

order in a quantum system.

Quantum orders can be further divided into many subclasses. If a quantum

state is gapped, then the corresponding quantum order will be called the topolog-

ical order. The low-energy effective theory of a topologically-ordered state will

X.-G. Wen QFT book, fig 1.1
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T=0 (still)
Levin & Wen, Kitaev & Preskill (2006)

Topological entropy

R

r
R + 2r

(4)(3)(2)(1)

A

B

von Neumann entropy Given a pure state density matrix

ρ̂ = |ΨGS〉〈ΨGS| ρ̂A = trB ρ̂ SA = −trA (ρ̂A ln ρ̂A)

SA = SB = α SAB − γAB + . . .

Stopo = −S1A + S2A + S3A − S4A



T≠0

ρ̂ = |ΨGS〉〈ΨGS|

Finite T:

ρ̂A = trB ρ̂

SA = −trA (ρ̂A ln ρ̂A)

ρ̂(T ) =
1
Z

e−βĤ

SA = SB SA != SB

T=0:

SA = s VA + α SAB − γAB + . . .SA = SB = α SAB − γAB + . . .



Topological piece within T≠0 
equilibrium density matrix

R

r
R + 2r

(4)(3)(2)(1)

A

B

Volume and surface terms do cancel (1-2-3+4)

Castelnovo & C3 (2007)

SA = s VA + α SAB − γAB + . . .

Stopo = −S1A + S2A + S3A − S4A



Case study: toric code in 2D, 3D, ...
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Kitaev (1997)
Hamma, Zanardi, and Wen (2005)



In any D ...

SVN(A;T ) = S(S)
VN(A;T/λA) + S(P )

VN (A;T/λB)

Stopo(T ) = S(S)
topo(T/λA) + S(P )

topo(T/λB).

The contributions to the entropies from the two terms (plaquettes and stars) 
in the Hamiltonian are additive

λA → 0
λB →∞{ λA →∞

λB → 0{
The non-vanishing quantum topological entropy arises from 
the plaquette and star terms in the Hamiltonian as two 
equal and independent (i.e., classical) contributions



In 2D

2 ln 2

topo

B!

ln  N
Tc

(B)~A!

ln  N
Tc

(A)~

S

T

"

ln 2

Ne−λA/B/T ∼ 1

Entropy vanishes when
the number of defects on 
a system of size N is O(1)

Intuitive picture

order parameter to distinguish topological sectors:

at zero temperature T = 0:

Γ0 =

〈
∏

i∈γ

σ̂z
i

〉

0

= ±1

independent of γ

→
at finite temperature T :

Γ(T ) =
1

Nγ

∑

{γ}

〈
∏

i∈γ

σ̂z
i

〉

T

Two (deconfined) defects im-
mediately spoil the order pa-
rameter: Γ(T ) " 0

⇓
protection only if
NO defects at all!

Γ1 =
∏

i∈γ1

σz
i

Two (deconfined) defects immediately spoil 
the order parameter

order only if NO defects at all!



In 3D
Non-local operators distinguishing the different sectors are 

winding loops and winding membranes

Membranes vs Loops (II)

! on a simple cubic lattice, the plaquette operators remain
planar (4-spin) terms, but the star operators become
three-dimensional (6-spin) terms

! the dual loop structure is replaced by closed membranes on
the dual lattice

! non-local operators distinguishing the different sectors are
winding loops and winding membranes
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fragile ROBUST!
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An exact expression can be derived for the von Neumann 
and topological entropies at any T

Shell and donut type partitions, chosen symmetrically 
respective to 

3D continued ...

(5) (8)(7)(6)

r

R

R!2r

(1) (2) (3) (4)

A,B

Stopo = −S1A + S2A + S3A − S4A

−S5A + S6A + S7A − S8A



What about the topological entropy? (II)

! it is able to distinguish
between the fragile and
robust behaviour

! the low temperature
phase has non vanishing
topological entropy

! the classical origin of
topological information is
confirmed (no need for
hard constraints in 3D)

Topological entropy in 3D 

it is able to distinguish between 
the fragile and robust behavior 

the low temperature phase has 
non vanishing topological entropy 

the classical origin of each piece 
of the topological information is 
manifest (no need for hard 
constraints in 3D)

Tc = 1.313346(3)λB
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2
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C
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=
1
2
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C
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∏
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e−2J = tanhβλB3D Ising partition function  with
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g∈G

Ztot
J (g)

Ztot
J (1)

∑

α

eβλAMs (α)

Zs

|α〉〈α|g
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∑
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plus collective ops.



Stopo(T ) = S(S)
topo(T/λA) + S(P )

topo(T/λB).

S(S)
topo(T/λA) =

{
ln 2 T = 0
0 T > 0

S(P )
topo(T/λB) =

{
ln 2 T < Tc

0 T > Tc

S3D
topo(T ) =






2 ln 2 T = 0
ln 2 0 < T < Tc

0 T > Tc

x-basis z-basis

Quantum topological order at T=0 follows from the superposition of 
the two classical pieces



What is the physical interpretation?
Membranes vs Loops (III)

! on a simple cubic lattice, the plaquette operators remain
planar (4-spin) terms, but the star operators become
three-dimensional (6-spin) terms

! the dual loop structure is replaced by closed membranes on
the dual lattice

! non-local operators distinguishing the different sectors are
winding loops and winding membranes

fragile ROBUST!

Membranes vs Loops (III)

! on a simple cubic lattice, the plaquette operators remain
planar (4-spin) terms, but the star operators become
three-dimensional (6-spin) terms

! the dual loop structure is replaced by closed membranes on
the dual lattice

! non-local operators distinguishing the different sectors are
winding loops and winding membranes

fragile ROBUST!

S(S)
topo(T > 0) = 0

 

Prepare the system (at T=0) in a superposition of different sectors at t=ti
Heat it to a temperature below Tc

Cool it to T=0 at t=tf

S(P )
topo(T < Tc) = ln 2

〈Ψin|
∏

i∈γ

σz
i |Ψin〉 = 〈Ψfi|

∏

i∈γ

σz
i |Ψfi〉

〈Ψin|
∏

i∈ξ

σx
i |Ψin〉 #= 〈Ψfi|

∏

i∈ξ

σx
i |Ψfi〉



Physical interpretation...

〈Ψin|
∏

i∈γ

σz
i |Ψin〉 = 〈Ψfi|

∏

i∈γ

σz
i |Ψfi〉

|Ψin〉 =
23−1∑

I=0

√
pI |I〉 |Ψfi〉 =

23−1∑

I=0

√
pI eiϕI |I〉

PBIT - probability bit



What if ...

self-correcting system

S(S)
topo(T < Tc) != 0 and S(P )

topo(T < Tc) != 0

〈Ψin|
∏

i∈γ

σz
i |Ψin〉 = 〈Ψfi|

∏

i∈γ

σz
i |Ψfi〉{〈Ψin|

∏

i∈ξ

σx
i |Ψin〉 = 〈Ψfi|

∏

i∈ξ

σx
i |Ψfi〉

|Ψin〉 =
2n−1∑

I=0

√
pI |I〉 |Ψfi〉 = eiϕ

2n−1∑

I=0

√
pI |I〉

Dennis, Kitaev, Landahl, and Preskill
J. Math. Phys. (2002). 

error correction schemes in 4D



“Boomerang” effect

|Ψfi〉 = eiϕ
2n−1∑

I=0

√
pI |I〉

|Ψin〉 =
2n−1∑

I=0

√
pI |I〉

T<Tc



Hamma, Castelnovo & C3

Toric-boson model

HTb = Htoric + Hboson + Hint

Hboson =
∑

k

ωk a†kak

Hint = gA

∑

s

1−As

2
(
axs

+ a†xs

)

+gB

∑

p

1−Bp

2

(
axp

+ a†xp

)

Vd ({x1, . . . ,x2N}) =






1
m

2Γ(d/2)
πd/2

1
2−d

∑
i<j gigj |xi − xj |2−d d "= 2

1
m

2
π

∑
i<j gigj log |xi − xj | d = 2,

G = 1
m

2Γ(d/2)
πd/2
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Conclusions
Topological order can be well defined for T≠0, mixed states.

There are well-defined classical counterparts in hard constrained models 
in 2D, or in 3D without need for hard constraints.

Quantum order can (in some instances) be thought of superimposed 
classical topologically ordered system. 

Confined defects retain order at finite temperature.

Topological entropy captures finite temperature order with equilibrium 
density matrices as starting point.

Stable memories possible as long as system remains within the finite T 
topological phase.


