Investigating Magnetic Order in Mesoscopic Superconductors Using Cantilever Torque Magnetometry

Raffi Budakian Joonho Jang

1 µm

Outline

➢ Introduction to superconductivity in Sr₂RuO₄

Describe torque magnetometry measurements to detect moments from edge currents in mesoscopic SRO samples

> Measurements in NbSe₂ (Model system that is layered and s-wave)

SRO Measurements

- Preliminary evidence of moment due to edge currents
- Nonlinear diamagnetic susceptibility
- Concluding Remarks

Superconductivity in Sr₂RuO₄

> Layered perovskite structure similar to high T_c cupra

> Normal state is metallic

$$T_{c} = 1.5 \text{ K}$$

$$a, b = 0.38 \ nm$$

 $c = 1.27 \ nm$

Evidence for Unconventional Superconductivity

 $\vec{S} = 1$ Spin component of wavefunction is even parity

Evidence for Time Reversal Symmetry Breaking

> Domains with orbital order have a net magnetic moment.

> Magnetic fields from domains are screened by the collective motion of CP.

Screening Currents Around Chiral Domains

Experimental Evidence for TRS Breaking

Experiment	Status	Domain Size	
μSR			
Josephson tunneling		< 1 µm	
Kerr Rotation		~ 50 – 100 µm	
SQUID Imaging	0	< 2 µm	
Hall probe Imaging	0	< 1 µm	

Vortex Matter in Chiral Superconductors

2 Vectors are needed to describe the SC order
 (1) d-vector - direction normal to the spin polarization
 (2) L-vector - the angular momentum

$ec{d} \mid\mid ec{L}$

Integer quantum vortex: Orbital phase winds by 2π d-vector is stationary

Half-integer quantum vortex: Orbital phase winds by π d-vector winds by $\pm \pi$

Cantilever Torque Magnetometry Measurements

$$\begin{cases} f_0 = 5.3 \ kHz \\ k = 3 \times 10^{-4} N/m \\ Q = 60,000 \\ l_{eff} = 63 \ \mu m \end{cases}$$

$$S_{\mu}^{1/2} = 3.3 \times 10^4 \ \mu_B / \sqrt{Hz} \ T \\ T = 4.2 \ K \end{cases}$$

300 mK Force Microscope

Micron-Size Superconducting NbSe₂ Particles

Vortex State in Mesoscopic NbSe₂ Samples

Diamagnetic Susceptibility of NbSe₂

$$\Delta f = \frac{f_0}{2kl_{eff}^2} \Delta \chi \left(H_x^2 - H_z^2 \right)$$

Response to ab-Plane Field

Switching Noise in Vortex Dynamics

Torque Magnetometry of Micron-Size Sr₂RuO₄ Particles

Samples grown by Y. Maeno

➤ Samples are cleaved from bulk crystals and glued to the cantilever with the c-axis normal to the cantilever face.

Parameter		ab	С
$\mu_0 H_{c2\parallel c}(0)$ (T)	0.075		
$\mu_0 H_{c2\ ab}(0)$ (T)	1.50		
$\mu_0 H_c(0)$ (T)	0.023		
$\xi(0)$ (Å)		660	33
$\lambda(0)$ (Å)		1520	3.0×10^{4}
<i>κ</i> (0)		2.3	46
$\gamma_s = \xi_{ab}(0) / \xi_c(0)$	20		

Zero-Field Magnetization Measruements

$$H_x = H_0 + \Delta H \cos(\omega_m t)$$
$$H_z = 0 \quad H_x^{min} = 1.25 \ Oe$$

 $\Delta f = a_1 \cos (\omega_m t) + a_2 \cos (2\omega_m t) + const.$ $a_1 = \frac{f_0 \Delta H}{2k l_{eff}^2} (2H_0 \Delta \chi + \mu_x)$ $a_2 = \frac{f_0}{4k l_{eff}^2} \Delta \chi \ (\Delta H)^2$

Assume the particle is a single chiral domain

perimeter: $S \approx 4 \ \mu m$ thickness: $h = 440 \ \mu m$ $m_0 \approx (0.5 - 1.0) \times 10^{-13} \ emu$

Diamagnetic Susceptibility Measurements in Sr₂RuO₄

Frequency (Hz)

Sr₂RuO₄

Particle dimensions: $3 \mu m \times 4 \mu m \times 0.5 \mu m$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

 $\begin{array}{c}
4488.34 \\
4488.32 \\
4488.30 \\
4488.28 \\
4488.26 \\
-20 \\
-10 \\
0 \\
10 \\
20 \\
H_x (Oe)
\end{array}$

$$\Delta f \propto \Delta \chi_0 \left(1 - rac{H_x^2}{H_0^2}
ight) H_x^2$$

 $\Delta \chi_0 = -8.8 \times 10^{-13} \ emu$ $H_0 = 26.7 \ Oe$

$$\Delta f \propto \left(1 - \frac{H_x^2}{H_0^2}\right) \Delta \chi_0 \left(H_x^2 - H_z^2\right)$$

$$\Delta \chi_0 = -5.5 \times 10^{-13} \ emu$$

 $H_0 = 20.0 \ Oe$

Remarks

Torque magnetometry measurements of mesoscopic samples is a promising technique for detection of edge currents

> Mesoscopic anular geometry might be useful in stabilizing fractional vortices

Questions

> Why do we not observe training effects in the zero-field magnetization ?

> What is the origin of the nonlinear diamagnetic susceptibility ?

