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Single Component Fractional Quantum 
Hall States

• Unified description of FQH ground states and excitations (Read-Rezayi, 
Jain, Jack and others) in terms of squeezed polynomials

• Generalized Pauli principles: exclusion statistics, clustering, counting of 
multiplets

• Quasihole (and quasi-electron) excitations of Read-Rezayi, Jack states; 
pinned and un-pinned

• Non-Abelian Hierarchy States

• Specific Heat, electron and quasi-hole propagators, a first principle study

• Connection to Conformal Field Theory/Nonunitarity



Free Boson Many Body Wavefunctions

• Boson analog of Slater det. Orbital occupation basis

Orbital occupation                                Monomial basis

• Monomials (Permanents) = Det. with all signs positive

• Squeezing Rules in Orbital Space : 
Rezayi and Haldane 1994 A

BB Squeezed from A (A>B)



Squeezed Polynomials/Talk Outline
• Linear combinations of free many-body states squeezed from a root occupation 

• Once the root occupation is known, it is sometimes easy to obtain unique local 
Hamiltonian; always very easy to obtain part of the Hamiltonian

• With a bit of work, one can obtain rule for counting excitation multiplets - Pauli Principle: 
for Read-Rezayi – obtained by Haldane in 2006 - but rule much more general. From Pauli 
principle -> quantum dimension, effective central charge

• If (assumption) polynomial is CFT then very easy to obtain central charge, CFT scaling 
dimensions, identify unitary VS non-unitary

• Pinned quasihole wavefunctions easily formulated; same for quasielectron (of Read-
Rezayi, for ex); can form abelian/non-abelian hierarchy

• Occupation number – like picture for quasihole: good chance of obtaining edge 
propagators/check some screening properties from first principles



Jack Polynomials (Jacks)

• Eigenstates of the Laplace Beltrami Operator are explicitly known

Henry Jack, 1976

• Decomposition of Jack polynomials in free boson many-body states known

• Jacks at : 1D integrable at RG fixed point. Haldane Shastry, CS eigenst.

• Jacks at  first studied in 2001! (Feigin et al math.QA/0112127 showed 
that the Jacks span the ideal of polynomials vanishing when k+1 arguments come 
together)



Laughlin and Moore-Read FQH States
• Annihilation operators on the

Laughlin state

• Linear combination of the annihilation operators = Laplace Beltrami Operator

• Laughlin and Moore-Read (also Read-Rezayi): eigenstates of the Laplace-Beltrami; 
Large number of single component CFT FQH states are eigenstates of the same two-
body operator.

DMR
i• Annihilation operators on the Pfaffian state
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Generalized Pauli Principle
• Model WF: Highest Weight (no quasiholes)  and Lowest Weight (no quasiparticles)

• These uniquely define ALL good FQH Jacks :

• r=2 is the Read-Rezayi Z_k sequence. Laughlin(k=1), Read-Moore(k=2)

The FQH ground states above are the maximum density states 
satisfying a generalized Pauli principle of not more than k
particles in r consecutive orbitals!

• For r=2, see Haldane, APS 2006
• Natural generalization of Read-Rezayi states; q-hole excit also Jacks but NOT qp

• Torus GS degenaracy:



• Pauli principle + squeezing rule  =  Clustering  =  (part of) Hamiltonian. Take GS:

•Form a k particle cluster at origin:

Clustering Conditions

k particle cluster

k+1’th particle

• Zero modes of pseudopotential Hamiltonians:     
• For r>3 Jack not unique GS of these psudopot Hamilt

• For the (k,r) sequence, the GS and 
quasihole Jack WF vanish as the r’th power 
of the difference between coordinates:



Central Charge and Electron Scaling Dimension

• Is a coefficient embedded in the polynomial ground-state wave-function

• Put k-1 particles at 1 point (say origin) to form conjugate             field 

• Expand over      , isolate quadratic term



Particles

• For Laughlin States (Wen,1990):

nM =
R 2π
0
e−iMφG(φ) ∼ (Nφ −M)

ge−1

Luttinger Liquid Behavior

nM ∼ (Nφ−M+ge−1)!
(ge−1)!(Nφ−M)!

k r nNφ
nNφ−1 nNφ−2

1 2 1 2 2.88
2 2 1 2.21 3.4
4 3 1 3.07 6.24
3 4 1 3.93 8.43

ge = r

Electron Scaling Dimension Without CFT Assumption



Unpinned Excitation Wavefunctions
• Maintain Pauli principle of (k,r) statistics (not more than k particles in r consecutive 
orbitals) but add fluxes (zeroes) on the sphere:

Laughlin GS
(k,r)=(1,2)

1-Quasihole 
Multiplet
L=N/2

Pfaffian GS
(k,r)=(2,2)

Abelian 
Quasiholes

Non-Abelian 
Fractionalized
Quasihole 

• For r=2 (Read-Rezayi sequence) this gives the known counting of CFT (Haldane 2006)

• For any (k,r) have all counting of modes (have analytic formulas)  



Edge Thermal Hall Coefficient
• Edge entropy of non-abelian k/r states: We performed High Temperature expansion

• We computed        using the theory of partitions 
(Andrews book)

Fermi Sea Excitations

F = −T ln(Z)

2π/L

• c =(effective) central charge in CFT;  (asymptotic 
growth)

C = −T ∂2F
∂T 2 =

πLT
3vF

c

c = 1 + r(k−1)
r+k

U(1) charge part Non-abelian part >0

eff



Pinned Quasiholes
• Coherent State superposition of un-pinned quasiholes (Jack polynomials)QN

i (zi − zA)
QN
i<j(zi − zj)

r =
PN

i=1 z
i
APi(z1, ..., zN )

• k-1 fractionalized quasiholes at the origin, one at        . Example for k=2 and k=3:zA

QN
i (zi − zA)

QN
i<j(zi − zj)

r =
PN

i=1 z
i
AJi(z1, ..., zN )

|0i→ |0202...0202i

|1i→ |1102...0202i

|2i→ |1111...0202i
...
|N2 − 1i→ |1111...1102i

|N2 i→ |1111...1111i

Ψ(zA, 0
k−1; z1, ..., zN ) =

PN
k
i=0

1
ki z

i
A|ii

zA

k-1



Quasihole Scaling Dimension
• Bring the remaining quasihole at         close to the k-1 existing at the origin

• Even if we assume a CFT, since quasihole wavefunction is (unnormalized) 
polynomial, obtaining scaling dim is not trivial (unlike in the electron case) 

Ψ(zA, 0
k−1; z1, ..., zN ) =

PN
k

i=0
1
ki z

i
A|ii

zA

Also with S. 
Simon

• Assume CFT, then using Jack properties we compute the quasihole scaling dim

• In these models, negative scaling dimension related to negative central charge
• Qh Scaling dimension = coefficient embedded in the qh wavefunction



• c (as coefficient in wavefunction) = c     (as from counting edge excitations) only for 
r=2; for r>2 (and k>1), c < 0, hence non-unitary CFT

• electron scaling dim. same from wavefunction and occupation number numerics

• (k,r) Jacks are corr. func of                              models (conjectured: Jimbo, et al,2003; 
strong evidence this is true: BAB, Haldane 2008, Fusion rules: Ardonne 2008).

• r>2 (and k>1), c < 0, non-unitary CFTs;

• Conjecture (Read, 2008): Non-Abelian sector doesn’t screen for nonunitary CFT

• Hard to check from first principles. If nonunitary CFT = wavefunction: immediate 
consequence:

CFT Connection

eff

Wk(k + 1, k + r)

eff



One Quasiparticle States (Abelian)

Quasiparticle States:

Start with Laughlin state:

Add 3 fluxes:

Add 2 particles at north pole:

Generalized Clustering properties satisfied by polynomials:

Not Jacks but generalized Jacks (BAB and Haldane, PRB 2007; arxiv 2008)



One Quasiparticle States (Abelian)
• Laughlin quasiparticle satisfies first clustering 
but not second

• Our quasiparticle has more zeroes, due to 
generalized clustering



Jack Hierarchy States

Jack Quasiparticle Jain Quasiparticle

1

2

3

4

Hierarchy leads to the Jack polynomial state: (k,r)=(2,3)

This  is identical to Gaffnian state, previously proposed by Simon, Rezayi, Cooper 2007; 
Non-Unitary. 



Numerics on the Gaffnian State
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Simon, Rezayi, Cooper, Berdnikov, PRB 2007
• Overlaps >0.96 on sphere (Rezayi; Regnault) for 
N=12, 14

N=16!

(With Ronny Thomale and M. Greiter)(With N. Regnault)



Quasihole Propagators

Quasiholes

• For Laughlin States: (k,r) =(1,2)

(k,r) =(2,2)

(k,r) =(2,3)

(k,r) =(3,2)

(k,r) =(1,4)

φ

Gaffnian state (Jack (2,3) ) has negative scaling dimension in nonabelian sector; if only the 
U(1) sector screens, then g=1/6 – 1/10



Quasihole “Occupation Number” and Plasma Screening

R
r

IF in screening phase, 
image charge interaction

For (k,r) sequence quasiholes, can prove exactly

g cannot be obtained exactly (yet) but: We know 
the expression of n(r) in terms of Jacks:

k=2, r=2 Moore Read

N=6: g=0.36;         N=8: g= 0.37085;         N=10: g=0.378535

CFT prediction 3/8=0.375; First time from a first principle calculation

k=3, r=2 Read-Rezayi

N=9: g=0.292355;         N=12: g= 0.296632;        

CFT prediction 3/10; First time from a first principle calculation

k=2, r=3 Non-Unitary Gaffnian

N=6: g=0.2825;         N=9: g= 0.31075;         Conjecture: N=Large: g=0.33333  

CFT prediction 1/15 (plasma almost doesn’t screen); 



More on Zeroes of Jain States at k/k+1

•Divide a Jain state at k/2k+1 by one filled Landau level to mod out trivial fermionic term.
• All Jain states are squeezed polynomials:

2/3:

3/4:

4/5:

• Jain state at k/k+1 zero mode of 

•Jain state NOT uniquely defined by the root partition (so no full Hamiltonian, just part)

• Method used for large size N=16 Jain entanglement entropy (Rengault, BAB)



Series of States With Exact Hamiltonians

•States at k/k+1, different shift than Jain states

•Pauli Principle available for all these states; counting

• When k large, Moore-Read state. Same unique states exist for all Read 
Rezayi states

With R. Thomale and M. Greiter



Conclusions
• A unified description of large class of FQH states in terms of squeezed 
polynomials (good for numerics, see Prodan and Haldane; Jain state up to 
16 particles, see Regnault, BAB) 

• Easy to identify part of the Hamiltonian, clustering conditions, degeneracy 
counting, quasihole multiplet counting, central charge, effective central 
charge, electron and quasihole scaling dimensions (as CFT would define 
them), pinned quasihole wavefunctions. All these ONLY use the polynomial 
structure and NOT the scalar product

• Scalar product used to compute electron propagators on the edge; seem to 
match CFT for both unitary and nonunitary

• Scalar product used to compute quasihole propagators on the edge: very 
good CFT match for unitary, no match for non-unitary (but overscreening of 
the charge sector).

• New series of hierarchy states w. unique Hamiltonians, ending in RR states
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