
Chains of “Interacting” Non-Abelian
Quasiparticles

NHMFL & Dept. of Physics, 
Florida State University

Nick Bonesteel

Work with: Huan Tran (FSU), Lukasz Fidkowski (Caltech),
Kun Yang (FSU), Gil Refael (Caltech), Joel Moore (Berkeley).

NEB,  K. Yang,  Phys. Rev. Lett. 99, 140405 (2007).
L. Fidkowski, G. Refael, NEB, J. Moore arxiv: 0807.1123
H. Tran, NEB, in preparation.

Support:  US DOE



Non-Abelian FQH States (Moore, Read ’91)

Fractionally charged quasiparticles

Essential features:
A degenerate Hilbert space whose dimensionality is exponentially 
large in the number of quasiparticles.

States in this space can only be distinguished by global 
measurements provided quasiparticles are far apart.



SU(2)k  Non-Abelian Particles

1. Particles have topological charge s = 0, 1/2, 1, 3/2 , …, k/2

topological charge = ½

2. “Fusion Rule” for adding topological charge:
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∞→k ;   Ordinary Spin-1/2 Particles
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Valence Bonds Basis

0 =

Non-crossing valence bond basis:

Any two particles connected by a bond form a singlet

Complete, linearly independent basis for the space of all singlet 
states.



Valence Bonds Basis

Nonorthogonal basis, but easy to compute with:
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2=k (ν=5/2 state)
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Quantum Dimension
Hilbert space of N particles with topological charge ½ grows 
asymptotically as d N where d is the “quantum dimension” of 
the particles.
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Valence Bonds Basis for SU(2)k

0 =

Non-crossing valence bond basis:

Any two particles connected by a bond fuse to trivial topological 
charge 0 if brought together.

A complete, but linearly dependent basis for the space of all states 
with total topological charge 0.



Valence Bonds Basis for SU(2)k

Again, nonorthogonal, but still easy to compute with:
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Quantum Dimension



Interacting Non-Abelian Anyons

Localized quasiparticles

Topological degeneracy is lifted when quasiparticles are close together 
(for FQHE states, this means within a few magnetic lengths).

Assume trivial topological 
charge is energetically favored: ∑−=

ji
jiJ
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Interacting Anyon Chain
(Feiguin et al., PRL 98, 160409 (2007).)

LJi-2 Ji-1 Ji Ji+1 Ji+2L

Assume trivial topological 
charge is energetically favored:
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Uniform SU(2)k Chains
Ordinary spin-1/2 AFM Heisenberg model:
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Conformally invariant quantum critical model with central charge:  c=1

Uniform SU(2)k chains can be mapped onto exactly solvable 
Andrews-Baxter-Forrester models which realize minimal CFTs with
central charges,
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iJH Π−= ∑Random SU(2)k Chains

Given the similarity between ordinary spin and SU(2)k  particles we 
can apply the real space RG.  (Ma, DasGupta, Hu ‘79, D. Fisher ’94)
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Given the similarity between ordinary spin and SU(2)k  particles we 
can apply the real space RG.  (Ma, DasGupta, Hu ‘79, D. Fisher ’94)

SU(2)k “singlet bond”

J1 J3J2
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iJH Π−= ∑Random SU(2)k Chains

Given the similarity between ordinary spin and SU(2)k  particles we 
can apply the real space RG.  (Ma, DasGupta, Hu ‘79, D. Fisher ‘94)

Random Singlet Phase for SU(2)k particles:   Bonds 
freeze into a particular non-crossing valence-bond state.

(NEB, K.Yang, PRL ’07)
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Given the similarity between ordinary spin and SU(2)k  particles we 
can apply the real space RG.  (Ma, DasGupta, Hu ‘79, D. Fisher ‘94)
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Infinite Random Fixed Point (D. Fisher ’94)
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iJH Π−= ∑Random SU(2)k Chains

Given the similarity between ordinary spin and SU(2)k  particles we 
can apply the real space RG.  (Ma, DasGupta, Hu ‘79, D. Fisher ‘94)

New fixed point
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w/ FM bonds (i.e. some Ji < 0), for k=3

(L. Fidkowski, G. Refael, NEB, J. Moore, arxiv:0807.1123)



Entanglement Entropy
A quantum system composed of two parts:  A and B

[ ]GSGSBA Tr=ρ

A B

[ ]AAAS ρρ 2logTr−≡

Entanglement entropyReduced density matrix

Simple example: An  SU(2) singlet bond

A B ( )BABA ↑↓−↓↑=
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Entanglement Entropy

At 1+1 dimensional conformally invariant quantum critical points, 
the entanglement entropy scales logarithmically with the size of
region A with a universal coefficient:

A

L

( ) LcLS 2log
3

≈ c = central charge
(Holzhey et al. ‘94, Calabrese & Cardy ‘04)
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≈ For uniform critical TFIM (c=1/2)



Entanglement Entropy of Random Spin-1/2 Chains
(Refael & Moore  PRL 93, 260602 (2004))

In the random singlet phase the entanglement entropy also scales
logarithmically with L
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For SU(2)k random chains the only thing that is different is the 
entanglement per bond.

Entanglement Entropy of SU(2)k Singlet Bond
(NEB & Kun Yang, PRL 99, 140405 (2007))

Imagine N >> 1 “singlet” pairs:

A

… …
N particles

Dimensionality of Hilbert 
space ~ d N

B

Entropy per bond = d2logdNdS N
A 22 loglog =≈



Entanglement Entropy of Random SU(2)k Chains
(NEB & Kun Yang, PRL 99, 140405 (2007))

In the random singlet phase the entanglement entropy also scales
logarithmically with L
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Valence-Bond Monte Carlo 
(Sandvik, PRL 95, 207203 (2005))

Idea:  Project out ground state of H by repeatedly applying –H to some
initial valence-bond state |S0>
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Sum over “non-crossing” 
valence-bond states.

Initial valence-bond state

Weight factors w(α) are easy to compute and update for efficient 
Monte Carlo sampling.   Straightforward to generalize to SU(2)k
particles.



Valence-Bond Entanglement
(Alet, Capponi, Laflorencie, Matthieu, PRL 99, 117204 (2007))

∑= αα )(wGS

the “valence-bond entanglement”  is defined to be:
For the ground state wavefunction
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Entanglement entropy in 
the valence-bond state |α > 
computed a la Refael and 
Moore.

Exact result for uniform chains (Jacobsen & Saleur, PRL 100, 087205 (2008))
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Valence-Bond Entanglement: Uniform Case

∞→k case first studied
by Alet et al. ‘07 H. Tran, NEB, in preparation



Valence-Bond Entanglement: Uniform Case

Exact result
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∞→k case first studied
by Alet et al. ‘07 H. Tran, NEB, in preparation



Valence-Bond Entanglement
(Alet, Capponi, Laflorencie, Matthieu, PRL 99, 117204 (2007))
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the “valence-bond entanglement”  is defined to be:
For the ground state wavefunction
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Entanglement entropy in 
the valence-bond state |α > 
computed a la Refael and 
Moore.

If bonds “freeze” on long length scales then SVB(L) should show the 
same scaling as the “true” entanglement S(L) for large L.
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For random chains,  how do we know bonds 
are “freezing”?

Look at fluctuations in number of bonds leaving region of size L.
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For random chains,  how do we know bonds 
are “freezing”?

Look at fluctuations in number of bonds leaving region of size L.

L

L
If bonds are frozen, only fluctuations near boundary of region 
change the number of bonds leaving that region.   

222
LLn nn −=σ

Bond fluctuations for particular
realization of disorder

Average over disorder Expect σn
2 to be 

independent of L for 
large L if bonds freeze.



Uniform
chain

Bond Fluctuations: Signature of Freezing

H. Tran, NEB, in preparation



Bond Fluctuations: Signature of Freezing

Exact result
(Jacobsen & Saleur, PRL ’08)
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Exact result
(Jacobsen & Saleur, PRL ’08)

Bond Fluctuations: Signature of Freezing

H. Tran, NEB, in preparation



Valence-Bond Entanglement: Random Case

H. Tran, NEB, in preparation
∞→k case first studied

by Alet et al. PRL ‘07



Valence-Bond Entanglement: Random Case
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Conclusions
There is a close analogy between the properties of SU(2)k non-Abelian
quasiparticles and ordinary spin-1/2 particles.

Chains of interacting non-Abelian particles can enter “random singlet 
phases,” analogous to those arising in random spin-1/2 chains.

Universal entanglement scaling.
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