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Introduction

• Non-Abelian anyons are believed to exist in certain 
gapped two dimensional systems:

- Fractional Quantum Hall Effect (n=5/2, 12/5, …?)

- ruthenates, topological insulators, rapidly rotating bose 
condensates, quantum loop gases/string nets?

• If they exist, they could have application in quantum 
computation, providing naturally (“topologically 
protected”) fault-tolerant hardware.

• Assuming we have them at our disposal, what 
operations are necessary to implement topological 
quantum computation?
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Non-local collective topological charge:
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Hilbert space construct from state vectors associated with 

fusion/splitting channels of anyons.

Expressed diagrammatically:

Inner product:
'cc=



Associativity of fusing/splitting more 

than two anyons is specified by the 

unitary F-moves:



=
c

ab

cR

Braiding
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Can be non-Abelian if there are multiple fusion channels  c



Physical Anyons: Fractional Quantum Hall

• 2DEG

• large B field (~ 10T)

• low temp (< 1K)

• gapped (incompressible)

• quantized filling fractions
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• fractionally charged 

quasiparticles

• Abelian anyons at most 

filling fractions

• non-Abelian anyons in 

2nd Landau level,         

e.g. n= 5/2, 12/5, …
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Xia, et al
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0 1
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Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)
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Topological Protection!
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0 1



(Bonesteel, et. al.)

Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)

  time

Ising: not quite 
(must be supplemented)

Fib: yes!

Is braiding computationally universal?
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(Bonesteel, et. al.)

Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)

 Topological Charge Measurement

  time
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Topological Charge Measurement

(measures anyonic state)
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Topological Charge Measurement

e.g. FQH double point contact interferometer



FQH interferometer

Willett, et. al.
for n=5/2

(also progress by: Marcus, Eisenstein, 

Kang, Heiblum, Goldman, etc.)



Anyonic State Teleportation

Entanglement Resource: maximally entangled anyon pair
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Anyonic State Teleportation
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Forced 
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(projective)



a a a

(  :12

I


1e

2f

( 12

1e


( 23

2f


( 12

I



a a

1e

a a a

2f

a a

I



a

a



Anyonic State Teleportation

Forced 

Measurement
(projective)
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Anyonic State Teleportation

Forced 

Measurement
(projective)
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“Success” occurs with probability            for each repeat try.2
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What good is this if we want to 

braid computational anyons?
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Measurement Simulated Braiding!
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in FQH, for example



in FQH, for example
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0 1



 Topological Charge Measurement

measurement simulated braiding

Topological Charge Measurement

Measurement-Only Topological 

Quantum Computation
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Measurement Generated Braiding!

Using Interferometric Measurements is similar but 

more complicated, requiring the density matrix 

description.

The resulting “forced measurement” procedure must 

include an additional measurement (of 8 or fewer 

anyons, i.e. still bounded size) in each teleportation 

attempt to ensure the overall charge of the topological 

qubits being acted upon remains trivial.

Note: For the Ising model TQC qubits, 

interferometric measurements are projective.



Ising         vs         Fibonacci
(in FQH)

• Braiding not universal 
(needs one gate supplement)

• Almost certainly in FQH

• Dn=5/2 ~ 600 mK

• Braids  =  Natural gates          
(braiding = Clifford group)

• No leakage from braiding 
(from any gates)

• Projective MOTQC         
(2 anyon measurements)

• Measurement difficulty 

distinguishing   I  and  
(precise phase calibration)

• Braiding is universal    
(needs one gate supplement)

• Maybe not in FQH

• Dn=12/5 ~ 70 mK

• Braids  =  Unnatural gates             
(see Bonesteel, et. al.)

• Inherent leakage errors
(from entangling gates)

• Interferometrical MOTQC         
(2,4,8 anyon measurements)

• Robust measurement 

distinguishing   I  and  
(amplitude of interference)



Conclusion

• Anyons could provide a quantum computer.

• Teleportation has anyonic counterpart.

• Bounded, adaptive, non-demolitional 

measurements can generate the braiding 

transformations used in TQC.

• Stationary anyons hopefully makes life easier 

for experimental realization.

• FQH interferometer technology is rapidly 

progressing.


