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There are new phases beyond symmetry-breaking

Ey = RH jx , RH = p
q

h
e2

• 2D electron gas in
magnetic field has many
quantum Hall (QH)
states that all have the
same symmetry.
• Different QH states can-

not be described by sym-
metry breaking theory.
• We call the new order

topological order Wen 89
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What is topological order?

To define a physical concept, such as symmetry-breaking order or
topological order, is to design a probe to measure it

For example,
• crystal order is defined/probed by X-ray diffraction:
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Symmetry-breaking orders through experiments

Order Experiment

Crystal order X-ray diffraction

Ferromagnetic order Magnetization

Anti-ferromagnetic order Neutron scattering

Superconducting order Zero-resistance & Meissner effect

Topological order ???

• All the above probes are linear responses. But topological order
cannot be probed/defined through linear responses.
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Topological orders through experiments (1990)

Topological order can be defined “experimentally” through two
unusual topological probes (at least in 2D)

(1) Topology-dependent ground state degeneracy Dg Wen 89

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

(2) Non-Abelian geometric’s phases of the degenerate ground
state from deforming the torus: Wen 90

- Shear deformation T : |Ψα〉 → |Ψ′α〉 = Tαβ|Ψβ〉

- 90◦ rotation S : |Ψα〉 → |Ψ′′α〉 = Sαβ|Ψβ〉

• T ,S , define topological order “experimentally”.

• T ,S is a universal probe for any 2D topological orders, just like
X-ray is a universal probe for any crystal orders.
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Symmetry-breaking/topological orders through experiments

Order Experiment

Crystal order X-ray diffraction

Ferromagnetic order Magnetization

Anti-ferromagnetic order Neutron scattering

Superconducting order Zero-resistance & Meissner effect

Topological order Topological degeneracy,
(Global dancing pattern) non-Abelian geometric phase

• The linear-response probe Zero-resistance and Meissner effect
define superconducting order. Treating the EM fields as non-dynamical fields

• The topological probe Topological degeneracy and non-Abelian
geometric phases T ,S define a completely new class of order –
topologically order.

• T ,S determines the quasiparticle statistics. Keski-Vakkuri & Wen 93;

Zhang-Grover-Turner-Oshikawa-Vishwanath 12; Cincio-Vidal 12
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What is the microscopic picture of topological order?

Deg.=D Deg.=D1 2Deg.=1

g=0

g=1

g=2

represent an experimental definition of topological order.

• But what is the microscopic understanding of topological order?

• Zero-resistance and Meissner effect → experimental definition of
superconducting order.

• It took 40 years to gain a microscopic
picture of superconducting order:
electron-pair condensation
Bardeen-Cooper-Schrieffer 57

• It took 20 years to gain a microscopic
understanding of topological order:
long-range entanglements Chen-Gu-Wen 10

(defined by local unitary trans. and
motivated by topological entanglement
entropy). Kitaev-Preskill 06,Levin-Wen 06
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Pattern of long-range entanglements = topological order

For gapped systems with no symmetry:
• According to Landau theory, no symmetry to break
→ all systems belong to one trivial phase

• Thinking about entanglement: Chen-Gu-Wen 2010

- There are long range entangled (LRE) states

→ many phases

- There are short range entangled (SRE) states

→ one phase

|LRE〉 6= |product state〉 = |SRE〉

local unitary
transformation

LRE
product

SRE
state

state

local unitary
transformation

LRE 1 LRE 2

local unitary
transformation

product
state

product
state

SRE SRE

g
1

2
g

SRE

LRE 1 LRE 2

phase

transition

topological order

• All SRE states belong to the same trivial phase

• LRE states can belong to many different phases
= different patterns of long-range entanglements defined by the LU trans.

= different topological orders
→ A classification by tensor category theory Levin-Wen 05, Chen-Gu-Wen 2010
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Topological orders through pictures

FQH state String liquid (spin liquid)

• Global dance:
All spins/particles dance following a local dancing “rules”

→ The spins/particles dance collectively
→ a global dancing pattern
→ an entangled ground state wave function.
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Local dancing rule → global dancing pattern

• Local dancing rules of a string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= Φstr

( )
→ Global dancing pattern Φstr

( )
= 1

• Local dancing rules of another string liquid:
(1) Dance while holding hands (no open ends)

(2) Φstr

( )
= Φstr

( )
, Φstr

( )
= −Φstr

( )
→ Global dancing pattern Φstr

( )
= (−)# of loops

• Two string-net condensations → two topological orders Levin-Wen 05
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Emergence of fractional spin/statistics
(from the local dancing rules)

• Ends of string are topological defects in string liquids. They can
carry fractional spins and fractional statistics
Levin-Wen 05;Fidkowski-Freedman-Nayak-Walker-Wang 06

• Φstr

( )
= 1 string liquid Φstr

( )
= Φstr

( )
360◦ rotation: → and = →

+ has a spin 0 mod 1. − has a spin 1/2 mod 1.

• Φstr

( )
= (−)# of loops string liquid Φstr

( )
= −Φstr

( )
360◦ rotation: → and = − → −

+ i has a spin −1/4 mod 1. − i has a spin 1/4 mod 1.
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Gapped phases w/ symmetry → SET and SPT phases

• there are LRE symmetric states → Symm. Enriched Topo. phases
- 100s symm. spin liquid through the PSG of topo. excit. Wen 02

- 8 trans. symm. enriched Z2 topo. order in 2D, 256 in 3D Kou-Wen 09

- 1000, 000s symm. Z2 spin liquid through [H2(SG ,Z2)]2× Hermele 12

- Classify SET phases through H3[SG × GG ,U(1)] Ran 12

• there are SRE symmetric states →

one phase

many different phases

We may call them symmetry protected trivial (SPT) phase

or symmetry protected topological (SPT) phase

1
g

2
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

SB−SRE 2

SY−SRE 2

g
1

LRE 2LRE 1

SRE
SPT phases

symmetry breaking

(group theory)

topological orders

( ??? )

( ??? )

topological order
topological order

symmetry
preserve

no symmetry

phase

transition

SPT 1 SPT 2

- Haldane phase of 1D spin-1 chain w/ SO(3) symm. Haldane 83

- 1 topo. ins. w/ U(1)× T symm. in 2D, Kane-Mele 05; Bernevig-Zhang 06

15 in 3D Moore-Balents 07; Fu-Kane-Mele 07
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Free fermion SPT phases: A K-theory

Kitaev 08

Schnyder-Ryu-Furusaki-Ludwig 08

• How to include strong interactions → Mission impossible?
• SPT phases are ‘trivial’ (short-range entangled) → Mission possible
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Group theory classifies 230 crystal orders.
What classifies SPT orders?

• Symmetry protected topological (SPT) phases are gapped
quantum phases with certain symmetry, which can be smoothly
connected to the same trivial phase if we remove the symmetry.

SPT1 SPT2 SPT3

Product state

with a symmetry G

break the symmetry

• A classification of (all?) SPT phase: Chen-Gu-Liu-Wen 11

For a system in d spatial dimension with an on-site symmetry G ,
its SPT phases that do not break the symmetry G are classified by
the elements in Hd+1[G ,UT (1)] – the d + 1 cohomology class of
the symmetry group G with G -module UT (1) as coefficient.

• Characteristic properties of the SPT phases: Chen-Gu-Liu-Wen 11

A SPT phase characterized by a non-trivial element in
Hd+1[G ,UT (1)] has gapless/degenerate boundary states if the
symmetry is not broken on the boundary.
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What is d-cohomology class Hd [G ,UT (1)] of a group G

• Hd [G ,UT (1)] is set: Hd [G ,UT (1)] = {a, b, c , ...}

• The set Hd [G ,UT (1)] form an Abelian group (with an addition
operation): a“ + ”b = c , a, b, c ∈ Hd [G ,UT (1)]
- Stacking a-SPT state and b-SPT state give us a c-SPT state.

a−SPT

b−SPT
c−SPT

• The group Hd [G ,UT (1)] contain an identity element 0 under the
addition operation: 0“ + ”a = a, 0, a ∈ Hd [G ,UT (1)]
- 0 → trivial SPT state
- a 6= 0 → non-trivial SPT states
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Interacting bosonic SPT phase: A group-cohomolgy theory
Chen-Liu-Wen 11, Chen-Gu-Liu-Wen 11

For any symmetry group G
and in any dimensions d

Two key observations:
• Short-range-entangled states

have a simple canonical form:
A rep.

A rep.

Not
a rep.

after we treat each block as an effective site.

- Each effective site has several independent degrees of freedoms
entangled with its neighbors.

- The combined degrees of freedoms on a site form a rep. of G

• Each degree of freedoms on the effective site may not form a
representation of G , but the whole state is still inv. under G
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Non-trivial short-range entangled states w/ symmetry

• Haldane phase w/ SO(3) symm.: spin-1/2 is not a rep. of SO(3)

+
spin−1

spin−1/2 spin−1/2

spin−1/2 x spin−1/2spin−0

one siteone site one site

• 2D SPT phase w/ Z2 symm.:
Chen-Liu-Wen 2011

CZ 12
1 2

34

One

Site

(spin−1/2)
4

a b

cd

e

f

gh

i

j

k l

- Physical states on each site:
(spin- 1

2 )4 = |α〉 ⊗ |β〉 ⊗ |γ〉 ⊗ |λ〉
- The ground state wave function:
|ΨCZX 〉 = ⊗all squares(| ↑↑↑↑〉+ | ↓↓↓↓〉)

- The on-site Z2 symmetry: (acting on each site |α〉 ⊗ |β〉 ⊗ |γ〉 ⊗ |λ〉):
UCZX = UCZUX , UX = X1X2X3X4, UCZ = CZ12CZ23CZ34CZ41

CZ : | ↑↑〉 → | ↑↑〉, | ↑↓〉 → | ↑↓〉, | ↓↑〉 → | ↓↑〉, | ↓↓〉 → −| ↓↓〉

- Z2 symm. Hamiltonian H =
∑

�Hp, Hp = −XabcdPef PghPijPkl ,
Xabcd = | ↑↑↑↑〉〈↓↓↓↓ |+ | ↓↓↓↓〉〈↑↑↑↑ |, P = | ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |.
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Edge excitations for the 2D Z2 SPT state

• Bulk Hamiltonian H =
∑

�Hp, Hp = −XabcdPef PghPij ,Pkl ,
Xabcd = | ↑↑↑↑〉〈↓↓↓↓ |+ | ↓↓↓↓〉〈↑↑↑↑ |, P = | ↑↑〉〈↑↑ |+ | ↓↓〉〈↓↓ |.

• Edge excitations: gapless or break the Z2

symmetry, robust against any perturba-
tions that do not break the Z2 symmetry.

• Edge effective spin |↑̃〉 and |↓̃〉.
• Edge effective Z2 symmetry : exp

(∑
i

1
4 (Z̃i Z̃i+1 − 1)

)∏
i X̃i

which cannot be written as UZ2 =
∏

i Oi , such as UZ2 =
∏

X̃i .
Not an on-site symmetry!

• Edge effective Hamiltonian (c = 1 gapless if the Z2 is not broken)
Hedge = −J

∑
Z̃i Z̃i+1 + Bx

∑
[X̃i + Z̃i−1X̃i Z̃i+1]

+By

∑
[Ỹi − Z̃i−1Ỹi Z̃i+1]
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SPT states for any symmetry in any dimensions

• Generic SPT state: (| ↑↑↑↑〉+ | ↓↓↓↓〉 →
∑

g∈G |gggg〉)
|SPT state〉 = ⊗all squares

∑
g∈G
|gggg〉

CZ 12
1 2

34

One

Site

(spin−1/2)
4

a b

cd

e

f

gh

i

j

k l

• Generic twisted symmetry transformations

|g1, g2, g3, g4〉 → η(g1, g2, g3, g4)|gg1, gg2, gg3, gg4〉

where the twisting phase factor η(g1, g2, g3, g4) correspond to
cocycles in Hd+1[G ,UT (1)].
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Bosonic SPT phases in any dim. and for any symmetry
Symmetry G d = 0 d = 1 d = 2 d = 3

U(1) o ZT
2 (top. ins.) Z Z2 (0) Z2 (Z2) Z2

2 (Z2)
U(1) o ZT

2 × trans Z Z× Z2 Z× Z3
2 Z× Z8

2

U(1)× ZT
2 (spin sys.) 0 Z2

2 0 Z3
2

U(1)× ZT
2 × trans 0 Z2

2 Z4
2 Z9

2

ZT
2 (top. SC) 0 Z2 (Z) 0 (0) Z2 (0)
ZT

2 × trans 0 Z2 Z2
2 Z4

2

U(1) Z 0 Z 0
U(1)× trans Z Z Z2 Z4

Zn Zn 0 Zn 0
Zn × trans Zn Zn Z2

n Z4
n

D2h = Z2 × Z2 × ZT
2 Z2

2 Z4
2 Z6

2 Z9
2

SO(3) 0 Z2 Z 0
SO(3)× ZT

2 0 Z2
2 Z2 Z3

2

Table of Hd+1[G ,UT (1)]
“ZT

2 ”: time reversal,
“trans”: translation,
others: on-site symm.
0 → only trivial phase.
(Z2)→ free fermion result

2
g

1
g

2
g

SY−SRE 1

SB−SRE 1

SB−LRE 2

SY−LRE 2

SB−LRE 1

SY−LRE 1

g
1

SRE

SB−SRE 2

SY−SRE 2

symmetry breaking

(group theory)

SPT phases

(tensor category

(group cohomology

  theory)

LRE 1 LRE 2

SET orders

  w/ symmetry)
intrinsic topo. order

topological  order
(tensor category)
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Highly entangled quantum matter:
A new chapter of condensed matter physics

Haldane

Phase

Topological

Insulator

Liquid

Crystal

FQH

State

Short−Range Entangled

Symm. Breaking

Gauge theory

Fermi statistics Boundary excitations

Liquid

Spin Crystal

Magnet

InsulatorShape
Information storage

Boundary excitations

Gapless Goldstone mode

With symmetry

Long−Rang Entangled

= Topological order

Tensor category

cohomology
Group

Anti−localization

Group Theory

theory

theory

Quantum States of Matter (gapped)

Fractional statistics

Real super−

conductor

Fractional spin   Topo. degeneracy

• Group theory → Symmetry breaking order →
shape, superfluid, phonon, magnets, magnon, liquid crystals, ... ...
• Tensor category theory → Topological order →

FQH effect, anyons, fermions, fractional charge/spin, spin liquid,
photon, perfect conducting edges, ... ...
• Group cohomology theory → SPT order →

symmetry protected boundary excitations, ... ...
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