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Different	  types	  of	  gapless	  phases	

•  IR	  free	  theory	  :	  gauge	  theory	  in	  D>4	  
•  Weakly	  interac-ng	  theory	  :	  3D	  O(N)	  model	  in	  the	  
large	  N	  limit	  

•  Theory	  that	  has	  no	  weak	  coupling	  descrip-on	  :	  4D	  
gauge	  theory	  at	  an	  intermediate	  coupling	  

•  Strongly	  coupled	  in	  original	  variables	  but	  weakly	  
coupled	  in	  dual	  variables	  :	  strongly	  coupled	  4D	  
gauge	  theory	  (electro-‐magne-c	  duality)	  
•  Frac-onaliza-on	  in	  large	  N	  limit	  :	  new	  quantum	  number	  
•  Holography	  :	  new	  dimension	  



Holography	  :	  AdS/CFT	  correspondence	  

•  D-‐dim	  QFT	  is	  dual	  to	  (D+1)-‐dim	  gravita-onal	  theory	  
– N=4	  SU(N)	  gauge	  theory	  in	  4D	  =	  IIB	  superstring	  theory	  in	  
AdS5xS5	  	  

– Weak	  coupling	  descrip-on	  for	  strongly	  coupled	  QFT	  for	  a	  
large	  N	  

•  The	  correspondence	  has	  been	  used	  to	  reproduce	  
many	  phenomena	  in	  condensed	  ma]er	  systems	  :	  
hydrodynamics,	  superconduc-vity,	  non-‐Fermi	  liquid	  
(	  mostly	  phenomenological	  with	  a	  few	  excep-ons	  )	  

[Maldacena]	  



Dic-onary	  in	  the	  duality	  
[Gubser,	  Klebanov,	  Polyakov;	  Wi]en]	  

High	  energy	  

(D+1)-‐dim	  space	  

D	  –dim	  flat	  space	  

Low	  energy	  

x	  

z	  

�
Dφ(x)eiSD[φ(x)]+i

�
Jn(x)On =

�
Dj(x, z)eiSD+1[j(x,z)]

����
jn(x,z=0)=Jn(x)

→ eiSD+1[j̄(x,z)]
���
j̄n(x,z=0)=Jn(x)

On(x) ↔ jn(x, z)

Tµν(x) ↔ gµν(x, z)



The	  bulk	  theory	  includes	  gravity	  

High	  energy	  

(D+1)-‐dim	  space	  

D	  –dim	  flat	  space	  

Low	  energy	  

x	  

z	  On(x) ↔ jn(x, z)

Tµν(x) ↔ gµν(x, z)

SD+1 =

�
dD+1x

√
G[C0 +RD+1 + ...]

=

�
dz

�
dDx

�
πµν∂zg

µν +
√
g(C0 +RD +

g−1

2
πµνπµν + ...)

�



•  Holography	  is	  believed	  to	  be	  a	  general	  framework	  
for	  a	  large	  class	  of	  QFT’s	  

•  No	  first-‐principle	  deriva-on	  for	  the	  conjecture	  :	  
no	  systema-c	  way	  to	  derive	  the	  dual	  theory	  for	  a	  
given	  QFT	  /	  quantum	  many-‐body	  system	  

•  This	  talk	  :	  An	  explicit	  construc-on	  of	  the	  
gravita-onal	  dual	  from	  QFT/quantum	  many-‐body	  
system	  

[Das,	  Jevicki;	  Gopakumar;	  Heemskerk,	  Penedones,	  Polchinski;	  	  
	  	  Lee;	  Faulkner,	  Liu,	  Rangamani;	  Douglas,	  Mazzucato,	  Razamat,…]	  	



Step	  0	  :	  Par--on	  func-on	  is	  func-onal	  
of	  space-me	  dependent	  sources	

•  On	  :	  set	  of	  `fundamental’	  operators	  	  
•  Any	  local	  operator	  allowed	  by	  symmetry	  can	  be	  wri]en	  as	  	  
	  	  	  	  	  a	  polynomial	  of	  fundamental	  operators	  and	  their	  deriva-ves	

Z[J(x)] =

�
Dφ ei

�
dxL

L = −Jn(x)On + Jmn(x)OmOn + ...

e.g.	  	

(φ∂µ1∂µ2 ...∂µiφ) for Ising field,
�

a

(φa∂µ1∂µ2 ...∂µiφa) for vector field

tr(φ∂µ1∂µ2 ...∂µiφ∂ν1∂ν2 ...∂νjφ...) for matrix field

Tµν ∼ tr(φ∂µ∂νφ)



Step	  1	  :	  remove	  non-‐fundamental	  
operators	  by	  introducing	  auxiliary	  fields	

Z[J(x)] =

�
Dj(1)n Dp(1)n Dφ ei

�
dxL�

L�
= j

(1)
n (p(1)n −On)− Jnp

(1)
n + Jnmp

(1)
n p

(1)
m + ...

•  Jn(1)	  :	  Lagrangian	  mul-plier	  that	  plays	  the	  role	  of	  dynamical	  
source	  that	  enforces	  the	  constraint	  pn(1)	  =	  On	  

•  Pn(1)	  :	  dynamical	  operator	  	

g(1)µνtr(φ∂µ∂νφ) Jµνλσπ(1)
µν π

(1)
λσ



Step	  2	  :	  Integrate	  out	  high	  energy	  mode	

•  Casimir	  energy	  
•  Quantum	  correc-on	  for	  fundamental	  operators	  
•  Quadra-c	  term	  of	  fundamental	  operators	

φ< : |k| < Λe−dz, φ> : Λe−dz < |k| < Λ

Z[J(x)] =

�
Dj(1)n Dp(1)n Dφ< ei

�
dxL��

L��
= Jnmp

(1)
n p

(1)
m + p

(1)
n (j(1)n − Jn) + dzLc[j

(1)]

−(j(1)n + dzAn[j
(1)])On + dzBnm[j

(1)]OnOm

Lc[j
(1)] ∼ C0 +RD[g(1)µν ] + ...



Step	  3	  :	  remove	  non-‐fundamental	  
operators	  by	  introducing	  a	  second	  set	  of	  

auxiliary	  fields	

•  Low	  energy	  fields	  has	  only	  fundamental	  
operators	  

•  Quadra-c	  term	  in	  pn	  

Z[J(x)] =

�
Dj(1)n Dp(1)n Dj(2)n Dp(2)n Dφ< ei

�
dxL���

L���
= Jnmp

(1)
n p

(1)
m + p

(1)
n (j(1)n − Jn) + dzLc[j

(1)
n ]

+j
(2)
n (p(2)n −On)− (j(1)n + dzAn[j

(1)])p(2)n + dzBnm[j
(1)]p(2)n p

(2)
m

Bµνλσπ(2)
µν π

(2)
λσ



Step	  4	  :	  repeat	  2-‐3	  again	  and	  again	

•  A	  set	  of	  dynamical	  sources	  and	  dynamical	  operators	  are	  
introduced	  at	  each	  step	  of	  RG	  at	  the	  expense	  of	  decima-ng	  
high	  energy	  mode	  bit	  by	  bit	  	  

Z[J(x)] =

� ∞�

l=1

Dj(l)n (x)Dp(l)n (x) ei
�
dDxL

j(0)n (x) = Jn(x)

L = Jnmp
(1)
n p(1)m +

∞�

i=1

�
p(i)n (j(i)n − j(i−1)

n ) + dzLc[j
(i)
n ]

−dzAn[j
(i)]p(i+1)

n + dzBnm[j
(i)]p(i+1)

n p(i+1)
m

�



Extra	  dimension	  as	  a	  length	  scale	  

0	  UV	  

IR	  

dz	  

j(l)n , p(l)n

j(0)n (x) = Jn(x)Boundary	  condi-on	



Con-nuous	  extra	  dimension	
j(l)n (x) → jn(x, z)

z = ldz
p(l)n (x) → pn(x, z)

Z[J(x)] =

�
Djn(x, z)Dpn(x, z) e

iSD+1

����
j(x,0)=Jn(x)

SD+1 =

�
dxJnmpn(x, 0)pm(x, 0) +

� ∞

0

dz

�
dDx

�
pn(x, z)∂zjn(x, z)

+Lc[jn(x, z)]− An[j(x, z)]pn(x, z) + Bnm[j(x, z)]pn(x, z)pm(x, z)
�

•  The	  length	  scale	  becomes	  an	  extra	  coordinate	  [Verlinde]	



Key	  features	
•  An	  exact	  change	  of	  variables	  
•  D-‐dimensional	  par--on	  func-on	  can	  be	  	  wri]en	  as	  (D
+1)-‐dimensional	  func-onal	  integra-on	  for	  dynamical	  
sources	  and	  operator	  fields	  

•  General	  scheme	  :	  can	  be	  applied	  to	  any	  QFT	  
–  For	  general	  theory,	  the	  holographic	  descrip-on	  is	  not	  
useful	  

–  In	  the	  large	  N	  limit,	  the	  holographic	  theory	  become	  
classical	  

– New	  types	  of	  quantum	  order	  associated	  with	  suppression	  
of	  topological	  defects	  in	  the	  bulk	  [SL	  (2011)]	  

•  Holographic	  theory	  always	  includes	  gravity	  
–  Energy	  momentum	  tensor	  èspin-‐2	  sources	  



Conven-onal	  RG	

•  Even	  though	  one	  starts	  
with	  the	  fundamental	  
operators	  at	  a	  given	  
scale,	  non-‐fundamental	  
operators	  are	  generated	  

•  For	  a	  given	  ini-al	  
condi-on,	  there	  is	  a	  
unique	  trajectory	  =	  RG	  
trajectory	  is	  classical	  (no	  
fluctua-ons)	dJnm...

d lnΛ
= β(Jn, Jnm, ...)

single trace operators
subspace of

multi trace
operators

single trace operators
subspace of

multi trace
operators

(b)(a)



Holography	
•  Only	  fundamental	  
operators	  appear	  

•  The	  sources	  for	  
fundamental	  operators	  
become	  dynamical	  

•  Quantum	  fluctua-ons	  in	  the	  
RG	  trajectory	  :	  sources	  
become	  operators!	  

•  RG	  flow	  is	  governed	  by	  a	  
quantum	  `Hamiltonian’	  

•  In	  large	  N	  limit,	  saddle	  point	  
path	  dominates	  :	  classical	  
gravity	

single trace operators
subspace of

multi trace
operators

single trace operators
subspace of

multi trace
operators

(b)(a)



Quantum	  beta	  func-on	

–  It	  is	  useful	  to	  view	  the	  scale	  parameter	  z	  as	  `-me’	  
– Dynamical	  sources	  and	  dynamical	  operators	  are	  
conjugate	  to	  each	  other	  

–  Par--on	  func-on	  is	  wri]en	  as	  a	  transi-on	  amplitude	  of	  
D-‐dimensional	  quantum	  wavefunc-on	  of	  coupling	  
constants	  	  

–  The	  Hamiltonian	  generates	  scale	  transforma-on	  for	  
dynamical	  couplings	  

–  The	  Heisenberg	  equa-on	  :	  quantum	  beta	  func-on	  

Wavefunc-on	  for	  D	  -‐
dimensional	  space-me	  
dependent	  sources	

Z = lim
T→∞

< Ψf |e−iT Ĥ |Ψi >

[ĵl(x), p̂m(x
�
)] = δl,mδ(x− x

�
)

dĵn

d z
= [Ĥ, ĵn]



Local	  RG	  prescrip-on	

•  Space-me	  dependent	  coarse	  graining	

−φ

�
∇2 +

∇4

Λ2
+ ...

�
φ → −φ

�
∇2 +

∇4

Λ(x)�2
+ ...

�
φ

Speed	  of	  coarse	  graining	

Λ(x)
�
= Λe−α(x)dz

•  By	  construc-on,	  Z	  is	  independent	  of	  α(x,z)	  	  
•  Choosing	  different	  RG	  scheme	  α(x,z)	  :	  choosing	  different	  
gauge	



Shir	
•  One	  does	  not	  have	  to	  choose	  the	  coordinate	  of	  the	  low	  
energy	  field	  as	  the	  coordinate	  of	  the	  high	  energy	  mode	  

N dzµ

scale
length

high energy

low energy

Shir	  of	  the	  coordinate	  of	  the	  low	  
energy	  field	  rela-ve	  to	  the	  
coordinate	  of	  the	  high	  energy	  field	



Diffeomorphism	  =	  Freedom	  to	  choose	  
different	  local	  RG	  schemes	

dz

proper
length

z

x

Ndz

x(a) (b)

Length	  
scale	 D-‐dim	  manifold	  

with	  same	  z	

•  (D+1)-‐constraints	  are	  first-‐class	



D-‐dimensional	  matrix	  field	  theory	

global O(N) symmetry under which the matrix field transforms as an adjoint field. The ‘partition

function’ is

Z[J ] =

∫
DΦ exp

[
iN2

∫
dDx

(
−JmOm + V [Om;J {mi},{νij}]

)]
. (1)

Here Om’s denote single-trace operators constructed from Φ and its derivatives. In general, one

can take {Om} to be a complete set of primary single-trace operators. Here we use the basis where

Om takes the form of

O[q+1;{µi
j}] =

1

N
tr
[
Φ
(
∂µ1

1
∂µ1

2
..∂µ1

p1
Φ
)(

∂µ2
1
∂µ2

2
..∂µ2

p2
Φ
)
...
(
∂µq

1
∂µq

2
..∂µq

pq
Φ
)]

, (2)

where q + 1 is the order in the matrix field, and {µi
j} specifies the spacetime indices. General

single-trace operators can be written as linear combinations of these operators and their derivatives.

For simplicity, we assume that there is no boundary in spacetime. Any operator that has overall

derivatives is removed by integration by part in Eq. (1). Throughout the paper, we will use the

compressed label, say m to denote the full indices, [q, {µi
j}] of a single-trace operator. Explicit

indices will be used only when it is needed. Jm(x) is the spacetime dependent sources for the

corresponding operator Om. The information on the signature of the background metric is solely

encoded in the sources. We assume that the spacetime has the Minkowskian metric with the

signature (−1, 1, 1, .., 1) for xµ with µ = 0, 1, .., (D− 1). V represents a multi-trace deformation,

V [Om;J {mi},{νij}] =
∞∑

q=1

J {mi},{νij}Om1

(
∂ν11 ..∂ν1p1Om2

)(
∂ν21 ..∂ν2p2Om3

)
...
(
∂νq1 ..∂ν

q
pq
Omq+1

)
,

(3)

where J {mi},{νij}(x)’s are sources for multi-trace operators. All repeated indices are summed over.

To make sense of the partition function, the theory should be regularized. Here we use the

Pauli-Villar regularization. Namely, the sources for high derivative terms are turned on in the

quadratic action for the matrix field to suppress UV divergence in loop integrals. For example,

one can use a regularized kinetic term, −tr[Φ!e−
!

M2Φ], where ! = ∂µ∂µ. The mass scale M

in the higher derivative terms plays the role of a UV cut-off. It is noted that the divergence in

the determinant of the quadratic action is not regularized by the higher derivative terms. In this

sense, the partition function itself is not well defined. What is well defined is the ratio between two

partition functions with two different sets of sources where the divergences from the determinants

cancel. For example, the divergence in the determinant is canceled in correlation functions of local

operators.
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one can use a regularized kinetic term, −tr[Φ!e−
!
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cancel. For example, the divergence in the determinant is canceled in correlation functions of local
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4

single-‐trace	  operators	

Space-me	  dependent	  
sources	

mul--‐trace	  deforma-on	

global O(N) symmetry under which the matrix field transforms as an adjoint field. The ‘partition

function’ is

Z[J ] =

∫
DΦ exp

[
iN2

∫
dDx

(
−JmOm + V [Om;J {mi},{νij}]

)]
. (1)

Here Om’s denote single-trace operators constructed from Φ and its derivatives. In general, one

can take {Om} to be a complete set of primary single-trace operators. Here we use the basis where

Om takes the form of

O[q+1;{µi
j}] =

1

N
tr
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Φ
(
∂µ1

1
∂µ1

2
..∂µ1

p1
Φ
)(
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1
∂µ2

2
..∂µ2

p2
Φ
)
...
(
∂µq

1
∂µq

2
..∂µq

pq
Φ
)]

, (2)

where q + 1 is the order in the matrix field, and {µi
j} specifies the spacetime indices. General

single-trace operators can be written as linear combinations of these operators and their derivatives.

For simplicity, we assume that there is no boundary in spacetime. Any operator that has overall

derivatives is removed by integration by part in Eq. (1). Throughout the paper, we will use the

compressed label, say m to denote the full indices, [q, {µi
j}] of a single-trace operator. Explicit

indices will be used only when it is needed. Jm(x) is the spacetime dependent sources for the

corresponding operator Om. The information on the signature of the background metric is solely

encoded in the sources. We assume that the spacetime has the Minkowskian metric with the

signature (−1, 1, 1, .., 1) for xµ with µ = 0, 1, .., (D− 1). V represents a multi-trace deformation,

V [Om;J {mi},{νij}] =
∞∑

q=1

J {mi},{νij}Om1

(
∂ν11 ..∂ν1p1Om2

)(
∂ν21 ..∂ν2p2Om3

)
...
(
∂νq1 ..∂ν

q
pq
Omq+1

)
,

(3)

where J {mi},{νij}(x)’s are sources for multi-trace operators. All repeated indices are summed over.

To make sense of the partition function, the theory should be regularized. Here we use the

Pauli-Villar regularization. Namely, the sources for high derivative terms are turned on in the

quadratic action for the matrix field to suppress UV divergence in loop integrals. For example,

one can use a regularized kinetic term, −tr[Φ!e−
!

M2Φ], where ! = ∂µ∂µ. The mass scale M

in the higher derivative terms plays the role of a UV cut-off. It is noted that the divergence in

the determinant of the quadratic action is not regularized by the higher derivative terms. In this

sense, the partition function itself is not well defined. What is well defined is the ratio between two

partition functions with two different sets of sources where the divergences from the determinants

cancel. For example, the divergence in the determinant is canceled in correlation functions of local

operators.

4

ϕ	  :	  N	  x	  N	  tracelss	  symmetric	  	  
	  	  	  	  	  	  	  real	  matrix	  field	



(D+1)-‐dimensional	  gravity	

from the usual Hamiltonian system is that the ‘covariant’ derivative Dz is used in the action. The

non-trivial connection originates from the fact the fields Jn(x, z), Pn(x, z) defined at different

length scales in general have different metric. Because the definition of the covariant operators

and their sources is tied with the metric, a change in metric effectively induces changes in all

sources. Physically, the momentum canonically conjugate to the metric is the energy-momentum

tensor given by π[2,µν] =
1
N2

δS
δGµν . There are many other contributions to the energy momentum

tensor besides P[2,µν] =
√

|G|
N tr[Φ∇µ∇νΦ] because metric enters not only in

√
|G|
N tr[Φ∇µ∇νΦ] but

also in the definition of all other covariant operators. This suggests that P[2,µν] is not the canonical

momentum of the metric, which is also reflected in the non-trivial measure ∆(J) in the functional

integration, and the unconventional form of the shift for the metric in Eq. (65). In order to go

to the canonical basis, we define a new momentum for the metric and keep the same conjugate

momenta for all other variables,

π[2,µν](x) = P[2,µν](x) +

∫
dy Jn(y)

δf m
n (y)

δGµν(x)
Pm(y), (67)

πm = Pm, for m #= [2, µν]. (68)

The last term in Eq. (67) takes into account the metric dependence in general operators. The

Jacobian from the change of variable,
∣∣∣∣
δP[2,µν](y)

δπ[2,αβ](x)

∣∣∣∣ = det

[
δ(µν)(αβ)δ(x− y) + Jn(y)

δf [2,µν]
n (y)

δGαβ(x)

]−1

= ∆(J)−1 (69)

exactly cancels ∆(J) in the measure. The partition function and the action takes the canonical

form[23] in the new variables,

Z[J ] =

∫
DJ(x, z)Dπ(x, z) e

i

(
SUV [π(x,0)]+S[J(x,z),π(x,z)]+SIR[J(x,∞)]

)∣∣∣∣∣
J(x,0)=J (x)

, (70)

where

S = N2

∫
dDxdz

[
(∂zJ

n)πn − α(x, z)H−Nµ(x, z)Hµ

]
. (71)

Note that Dz is replaced by the usual derivative in the canonical variables. Moreover, the ‘mo-

mentum constraint’ Hµ that generates the D-dimensional shift takes the standard form,

Hµ = −2∇νπ[2,µν] −
∑

[q,{µi
j}]#=[2,µν]

[∑

a,b

∇ν

(
J [q,{µ1

1µ
1
2...µ

a
b−1νµ

a
b+1...}]π[q,{µ1

1µ
1
2...µ

a
b−1µµ

a
b+1...}]

)

+ (∇µJ
[q,{µi

j}])π[q,{µi
j}]

]
. (72)
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It is noted that Jm’s and πm’s are D-dimensional contra-variant tensors with weight zero and

covariant tensor density with weight one, respectively. To obtain the ‘Hamiltonian constraint’ H,

one has to convert Eq. (67) to express P[2,µν] as a linear combination of πm’s and plug in the

expression to Eq. (64). Since the full expression is complicated, we focus on the metric and its

conjugate momentum. Among many other terms, H includes the linear and quadratic terms for

the conjugate momentum, the cosmological constant and the D-dimensional curvature,

H = Ãµν [J(x)]π[2,µν] −
B̃µνλσ[J(x)]√

|G|
π[2,µν]π[2,λσ]

−
√

|G|
{
C0[J(x)] + C1[J(x)]R

}
+ ..., (73)

where ... represents the higher dimensional terms that involve covariant derivatives of π and the

curvature. Cubic or higher order terms in π[2,µν] are not allowed because at most double-trace

operators are generated out of single-trace operators at each step of RG. The linear term in the

conjugate momentum arises because the operators that are quartic in Φ, such as 1
N tr[Φ3∇µ∇νΦ],

renormalizes the metric through the quantum correction in Eq. (41). It is interesting to note that

the kinetic term for the conjugate momentum originates from the beta function under the RG,

while the potential term for the metric originates from the Casimir energy. Besides the dynamical

gravitational mode, the theory also includes other degrees of freedom, including the higher spin

fields for 1
N tr[Φ∇µ1∇µ2 ...∇µnΦ] and the fields associated with the single-trace operators that are

cubic or higher order in Φ . As was noted in Sec. IV, the latter fields do not have the bare ‘potential

energy’ because the Casimir energy is independent of those fields. However, they do have the

quadratic kinetic term in general because double-trace terms are generated for those operators

under the the RG. Although the bare action for those higher order sources are ultra-local along the

D-dimensional space, potential terms that involve derivatives along the D-dimensional space will

be generated dynamically, as other heavier fields are integrated out in the bulk[16].

In the large N limit, the bulk fields become classical. In particular, non-perturbative fluctuations

of the bulk fields are dynamically suppressed[16]. The on-shell action in the bulk computes the

partition function of the original matrix field theory in the large N limit. The classical equation of

motion is given by

∂zJ
n = {Jn,H}, ∂zπn = {πn,H}, (74)

where the Poisson bracket is defined by

{A,B} =

∫
dDx

[
δA

δJn

δB

δπn
− δA

δπn

δB

δJn

]
. (75)
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Bulk	  ac-on	  :	  	

Hamiltonian	  	  
constraint	  :	  	

Momentum	  constraint	  :	  	

[	  SL	  (2012)	  ]	



Summary	  	

•  D-‐dimensional	  QFT	  can	  be	  explicitly	  mapped	  
into	  a	  (D+1)-‐dimensional	  quantum	  theory	  of	  
gravity	  based	  on	  a	  local	  RG	  

•  Quantum	  beta	  func-on	  
•  Example	  of	  emergent	  gravity	  
•  Prove	  the	  Maldacena’s	  conjecture	  ?	  
•  Applica-ons	  to	  concrete	  condensed	  ma]er	  
systems	  ?	  


