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Different	
  types	
  of	
  gapless	
  phases	


•  IR	
  free	
  theory	
  :	
  gauge	
  theory	
  in	
  D>4	
  
•  Weakly	
  interac-ng	
  theory	
  :	
  3D	
  O(N)	
  model	
  in	
  the	
  
large	
  N	
  limit	
  

•  Theory	
  that	
  has	
  no	
  weak	
  coupling	
  descrip-on	
  :	
  4D	
  
gauge	
  theory	
  at	
  an	
  intermediate	
  coupling	
  

•  Strongly	
  coupled	
  in	
  original	
  variables	
  but	
  weakly	
  
coupled	
  in	
  dual	
  variables	
  :	
  strongly	
  coupled	
  4D	
  
gauge	
  theory	
  (electro-­‐magne-c	
  duality)	
  
•  Frac-onaliza-on	
  in	
  large	
  N	
  limit	
  :	
  new	
  quantum	
  number	
  
•  Holography	
  :	
  new	
  dimension	
  



Holography	
  :	
  AdS/CFT	
  correspondence	
  

•  D-­‐dim	
  QFT	
  is	
  dual	
  to	
  (D+1)-­‐dim	
  gravita-onal	
  theory	
  
– N=4	
  SU(N)	
  gauge	
  theory	
  in	
  4D	
  =	
  IIB	
  superstring	
  theory	
  in	
  
AdS5xS5	
  	
  

– Weak	
  coupling	
  descrip-on	
  for	
  strongly	
  coupled	
  QFT	
  for	
  a	
  
large	
  N	
  

•  The	
  correspondence	
  has	
  been	
  used	
  to	
  reproduce	
  
many	
  phenomena	
  in	
  condensed	
  ma]er	
  systems	
  :	
  
hydrodynamics,	
  superconduc-vity,	
  non-­‐Fermi	
  liquid	
  
(	
  mostly	
  phenomenological	
  with	
  a	
  few	
  excep-ons	
  )	
  

[Maldacena]	
  



Dic-onary	
  in	
  the	
  duality	
  
[Gubser,	
  Klebanov,	
  Polyakov;	
  Wi]en]	
  

High	
  energy	
  

(D+1)-­‐dim	
  space	
  

D	
  –dim	
  flat	
  space	
  

Low	
  energy	
  

x	
  

z	
  

�
Dφ(x)eiSD[φ(x)]+i

�
Jn(x)On =

�
Dj(x, z)eiSD+1[j(x,z)]

����
jn(x,z=0)=Jn(x)

→ eiSD+1[j̄(x,z)]
���
j̄n(x,z=0)=Jn(x)

On(x) ↔ jn(x, z)

Tµν(x) ↔ gµν(x, z)



The	
  bulk	
  theory	
  includes	
  gravity	
  

High	
  energy	
  

(D+1)-­‐dim	
  space	
  

D	
  –dim	
  flat	
  space	
  

Low	
  energy	
  

x	
  

z	
  On(x) ↔ jn(x, z)

Tµν(x) ↔ gµν(x, z)

SD+1 =

�
dD+1x

√
G[C0 +RD+1 + ...]

=

�
dz

�
dDx

�
πµν∂zg

µν +
√
g(C0 +RD +

g−1

2
πµνπµν + ...)

�



•  Holography	
  is	
  believed	
  to	
  be	
  a	
  general	
  framework	
  
for	
  a	
  large	
  class	
  of	
  QFT’s	
  

•  No	
  first-­‐principle	
  deriva-on	
  for	
  the	
  conjecture	
  :	
  
no	
  systema-c	
  way	
  to	
  derive	
  the	
  dual	
  theory	
  for	
  a	
  
given	
  QFT	
  /	
  quantum	
  many-­‐body	
  system	
  

•  This	
  talk	
  :	
  An	
  explicit	
  construc-on	
  of	
  the	
  
gravita-onal	
  dual	
  from	
  QFT/quantum	
  many-­‐body	
  
system	
  

[Das,	
  Jevicki;	
  Gopakumar;	
  Heemskerk,	
  Penedones,	
  Polchinski;	
  	
  
	
  	
  Lee;	
  Faulkner,	
  Liu,	
  Rangamani;	
  Douglas,	
  Mazzucato,	
  Razamat,…]	
  	




Step	
  0	
  :	
  Par--on	
  func-on	
  is	
  func-onal	
  
of	
  space-me	
  dependent	
  sources	


•  On	
  :	
  set	
  of	
  `fundamental’	
  operators	
  	
  
•  Any	
  local	
  operator	
  allowed	
  by	
  symmetry	
  can	
  be	
  wri]en	
  as	
  	
  
	
  	
  	
  	
  	
  a	
  polynomial	
  of	
  fundamental	
  operators	
  and	
  their	
  deriva-ves	


Z[J(x)] =

�
Dφ ei

�
dxL

L = −Jn(x)On + Jmn(x)OmOn + ...

e.g.	
  	


(φ∂µ1∂µ2 ...∂µiφ) for Ising field,
�

a

(φa∂µ1∂µ2 ...∂µiφa) for vector field

tr(φ∂µ1∂µ2 ...∂µiφ∂ν1∂ν2 ...∂νjφ...) for matrix field

Tµν ∼ tr(φ∂µ∂νφ)



Step	
  1	
  :	
  remove	
  non-­‐fundamental	
  
operators	
  by	
  introducing	
  auxiliary	
  fields	


Z[J(x)] =

�
Dj(1)n Dp(1)n Dφ ei

�
dxL�

L�
= j

(1)
n (p(1)n −On)− Jnp

(1)
n + Jnmp

(1)
n p

(1)
m + ...

•  Jn(1)	
  :	
  Lagrangian	
  mul-plier	
  that	
  plays	
  the	
  role	
  of	
  dynamical	
  
source	
  that	
  enforces	
  the	
  constraint	
  pn(1)	
  =	
  On	
  

•  Pn(1)	
  :	
  dynamical	
  operator	
  	


g(1)µνtr(φ∂µ∂νφ) Jµνλσπ(1)
µν π

(1)
λσ



Step	
  2	
  :	
  Integrate	
  out	
  high	
  energy	
  mode	


•  Casimir	
  energy	
  
•  Quantum	
  correc-on	
  for	
  fundamental	
  operators	
  
•  Quadra-c	
  term	
  of	
  fundamental	
  operators	


φ< : |k| < Λe−dz, φ> : Λe−dz < |k| < Λ

Z[J(x)] =

�
Dj(1)n Dp(1)n Dφ< ei

�
dxL��

L��
= Jnmp

(1)
n p

(1)
m + p

(1)
n (j(1)n − Jn) + dzLc[j

(1)]

−(j(1)n + dzAn[j
(1)])On + dzBnm[j

(1)]OnOm

Lc[j
(1)] ∼ C0 +RD[g(1)µν ] + ...



Step	
  3	
  :	
  remove	
  non-­‐fundamental	
  
operators	
  by	
  introducing	
  a	
  second	
  set	
  of	
  

auxiliary	
  fields	


•  Low	
  energy	
  fields	
  has	
  only	
  fundamental	
  
operators	
  

•  Quadra-c	
  term	
  in	
  pn	
  

Z[J(x)] =

�
Dj(1)n Dp(1)n Dj(2)n Dp(2)n Dφ< ei

�
dxL���

L���
= Jnmp

(1)
n p

(1)
m + p

(1)
n (j(1)n − Jn) + dzLc[j

(1)
n ]

+j
(2)
n (p(2)n −On)− (j(1)n + dzAn[j

(1)])p(2)n + dzBnm[j
(1)]p(2)n p

(2)
m

Bµνλσπ(2)
µν π

(2)
λσ



Step	
  4	
  :	
  repeat	
  2-­‐3	
  again	
  and	
  again	


•  A	
  set	
  of	
  dynamical	
  sources	
  and	
  dynamical	
  operators	
  are	
  
introduced	
  at	
  each	
  step	
  of	
  RG	
  at	
  the	
  expense	
  of	
  decima-ng	
  
high	
  energy	
  mode	
  bit	
  by	
  bit	
  	
  

Z[J(x)] =

� ∞�

l=1

Dj(l)n (x)Dp(l)n (x) ei
�
dDxL

j(0)n (x) = Jn(x)

L = Jnmp
(1)
n p(1)m +

∞�

i=1

�
p(i)n (j(i)n − j(i−1)

n ) + dzLc[j
(i)
n ]

−dzAn[j
(i)]p(i+1)

n + dzBnm[j
(i)]p(i+1)

n p(i+1)
m

�



Extra	
  dimension	
  as	
  a	
  length	
  scale	
  

0	
  UV	
  

IR	
  

dz	
  

j(l)n , p(l)n

j(0)n (x) = Jn(x)Boundary	
  condi-on	




Con-nuous	
  extra	
  dimension	

j(l)n (x) → jn(x, z)

z = ldz
p(l)n (x) → pn(x, z)

Z[J(x)] =

�
Djn(x, z)Dpn(x, z) e

iSD+1

����
j(x,0)=Jn(x)

SD+1 =

�
dxJnmpn(x, 0)pm(x, 0) +

� ∞

0

dz

�
dDx

�
pn(x, z)∂zjn(x, z)

+Lc[jn(x, z)]− An[j(x, z)]pn(x, z) + Bnm[j(x, z)]pn(x, z)pm(x, z)
�

•  The	
  length	
  scale	
  becomes	
  an	
  extra	
  coordinate	
  [Verlinde]	




Key	
  features	

•  An	
  exact	
  change	
  of	
  variables	
  
•  D-­‐dimensional	
  par--on	
  func-on	
  can	
  be	
  	
  wri]en	
  as	
  (D
+1)-­‐dimensional	
  func-onal	
  integra-on	
  for	
  dynamical	
  
sources	
  and	
  operator	
  fields	
  

•  General	
  scheme	
  :	
  can	
  be	
  applied	
  to	
  any	
  QFT	
  
–  For	
  general	
  theory,	
  the	
  holographic	
  descrip-on	
  is	
  not	
  
useful	
  

–  In	
  the	
  large	
  N	
  limit,	
  the	
  holographic	
  theory	
  become	
  
classical	
  

– New	
  types	
  of	
  quantum	
  order	
  associated	
  with	
  suppression	
  
of	
  topological	
  defects	
  in	
  the	
  bulk	
  [SL	
  (2011)]	
  

•  Holographic	
  theory	
  always	
  includes	
  gravity	
  
–  Energy	
  momentum	
  tensor	
  èspin-­‐2	
  sources	
  



Conven-onal	
  RG	


•  Even	
  though	
  one	
  starts	
  
with	
  the	
  fundamental	
  
operators	
  at	
  a	
  given	
  
scale,	
  non-­‐fundamental	
  
operators	
  are	
  generated	
  

•  For	
  a	
  given	
  ini-al	
  
condi-on,	
  there	
  is	
  a	
  
unique	
  trajectory	
  =	
  RG	
  
trajectory	
  is	
  classical	
  (no	
  
fluctua-ons)	
dJnm...

d lnΛ
= β(Jn, Jnm, ...)

single trace operators
subspace of

multi trace
operators

single trace operators
subspace of

multi trace
operators

(b)(a)



Holography	

•  Only	
  fundamental	
  
operators	
  appear	
  

•  The	
  sources	
  for	
  
fundamental	
  operators	
  
become	
  dynamical	
  

•  Quantum	
  fluctua-ons	
  in	
  the	
  
RG	
  trajectory	
  :	
  sources	
  
become	
  operators!	
  

•  RG	
  flow	
  is	
  governed	
  by	
  a	
  
quantum	
  `Hamiltonian’	
  

•  In	
  large	
  N	
  limit,	
  saddle	
  point	
  
path	
  dominates	
  :	
  classical	
  
gravity	


single trace operators
subspace of

multi trace
operators

single trace operators
subspace of

multi trace
operators

(b)(a)



Quantum	
  beta	
  func-on	


–  It	
  is	
  useful	
  to	
  view	
  the	
  scale	
  parameter	
  z	
  as	
  `-me’	
  
– Dynamical	
  sources	
  and	
  dynamical	
  operators	
  are	
  
conjugate	
  to	
  each	
  other	
  

–  Par--on	
  func-on	
  is	
  wri]en	
  as	
  a	
  transi-on	
  amplitude	
  of	
  
D-­‐dimensional	
  quantum	
  wavefunc-on	
  of	
  coupling	
  
constants	
  	
  

–  The	
  Hamiltonian	
  generates	
  scale	
  transforma-on	
  for	
  
dynamical	
  couplings	
  

–  The	
  Heisenberg	
  equa-on	
  :	
  quantum	
  beta	
  func-on	
  

Wavefunc-on	
  for	
  D	
  -­‐
dimensional	
  space-me	
  
dependent	
  sources	


Z = lim
T→∞

< Ψf |e−iT Ĥ |Ψi >

[ĵl(x), p̂m(x
�
)] = δl,mδ(x− x

�
)

dĵn

d z
= [Ĥ, ĵn]



Local	
  RG	
  prescrip-on	


•  Space-me	
  dependent	
  coarse	
  graining	


−φ

�
∇2 +

∇4

Λ2
+ ...

�
φ → −φ

�
∇2 +

∇4

Λ(x)�2
+ ...

�
φ

Speed	
  of	
  coarse	
  graining	


Λ(x)
�
= Λe−α(x)dz

•  By	
  construc-on,	
  Z	
  is	
  independent	
  of	
  α(x,z)	
  	
  
•  Choosing	
  different	
  RG	
  scheme	
  α(x,z)	
  :	
  choosing	
  different	
  
gauge	




Shir	

•  One	
  does	
  not	
  have	
  to	
  choose	
  the	
  coordinate	
  of	
  the	
  low	
  
energy	
  field	
  as	
  the	
  coordinate	
  of	
  the	
  high	
  energy	
  mode	
  

N dzµ

scale
length

high energy

low energy

Shir	
  of	
  the	
  coordinate	
  of	
  the	
  low	
  
energy	
  field	
  rela-ve	
  to	
  the	
  
coordinate	
  of	
  the	
  high	
  energy	
  field	




Diffeomorphism	
  =	
  Freedom	
  to	
  choose	
  
different	
  local	
  RG	
  schemes	


dz

proper
length

z

x

Ndz

x(a) (b)

Length	
  
scale	
 D-­‐dim	
  manifold	
  

with	
  same	
  z	


•  (D+1)-­‐constraints	
  are	
  first-­‐class	




D-­‐dimensional	
  matrix	
  field	
  theory	


global O(N) symmetry under which the matrix field transforms as an adjoint field. The ‘partition

function’ is

Z[J ] =

∫
DΦ exp

[
iN2

∫
dDx

(
−JmOm + V [Om;J {mi},{νij}]

)]
. (1)

Here Om’s denote single-trace operators constructed from Φ and its derivatives. In general, one

can take {Om} to be a complete set of primary single-trace operators. Here we use the basis where

Om takes the form of

O[q+1;{µi
j}] =

1

N
tr
[
Φ
(
∂µ1

1
∂µ1

2
..∂µ1

p1
Φ
)(

∂µ2
1
∂µ2

2
..∂µ2

p2
Φ
)
...
(
∂µq

1
∂µq

2
..∂µq

pq
Φ
)]

, (2)

where q + 1 is the order in the matrix field, and {µi
j} specifies the spacetime indices. General

single-trace operators can be written as linear combinations of these operators and their derivatives.

For simplicity, we assume that there is no boundary in spacetime. Any operator that has overall

derivatives is removed by integration by part in Eq. (1). Throughout the paper, we will use the

compressed label, say m to denote the full indices, [q, {µi
j}] of a single-trace operator. Explicit

indices will be used only when it is needed. Jm(x) is the spacetime dependent sources for the

corresponding operator Om. The information on the signature of the background metric is solely

encoded in the sources. We assume that the spacetime has the Minkowskian metric with the

signature (−1, 1, 1, .., 1) for xµ with µ = 0, 1, .., (D− 1). V represents a multi-trace deformation,

V [Om;J {mi},{νij}] =
∞∑

q=1

J {mi},{νij}Om1

(
∂ν11 ..∂ν1p1Om2

)(
∂ν21 ..∂ν2p2Om3

)
...
(
∂νq1 ..∂ν

q
pq
Omq+1

)
,

(3)

where J {mi},{νij}(x)’s are sources for multi-trace operators. All repeated indices are summed over.

To make sense of the partition function, the theory should be regularized. Here we use the

Pauli-Villar regularization. Namely, the sources for high derivative terms are turned on in the

quadratic action for the matrix field to suppress UV divergence in loop integrals. For example,

one can use a regularized kinetic term, −tr[Φ!e−
!

M2Φ], where ! = ∂µ∂µ. The mass scale M

in the higher derivative terms plays the role of a UV cut-off. It is noted that the divergence in

the determinant of the quadratic action is not regularized by the higher derivative terms. In this

sense, the partition function itself is not well defined. What is well defined is the ratio between two

partition functions with two different sets of sources where the divergences from the determinants

cancel. For example, the divergence in the determinant is canceled in correlation functions of local

operators.
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4

single-­‐trace	
  operators	


Space-me	
  dependent	
  
sources	


mul--­‐trace	
  deforma-on	


global O(N) symmetry under which the matrix field transforms as an adjoint field. The ‘partition

function’ is

Z[J ] =

∫
DΦ exp
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iN2
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dDx

(
−JmOm + V [Om;J {mi},{νij}]
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. (1)
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For simplicity, we assume that there is no boundary in spacetime. Any operator that has overall

derivatives is removed by integration by part in Eq. (1). Throughout the paper, we will use the

compressed label, say m to denote the full indices, [q, {µi
j}] of a single-trace operator. Explicit
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where J {mi},{νij}(x)’s are sources for multi-trace operators. All repeated indices are summed over.

To make sense of the partition function, the theory should be regularized. Here we use the

Pauli-Villar regularization. Namely, the sources for high derivative terms are turned on in the

quadratic action for the matrix field to suppress UV divergence in loop integrals. For example,

one can use a regularized kinetic term, −tr[Φ!e−
!

M2Φ], where ! = ∂µ∂µ. The mass scale M

in the higher derivative terms plays the role of a UV cut-off. It is noted that the divergence in

the determinant of the quadratic action is not regularized by the higher derivative terms. In this

sense, the partition function itself is not well defined. What is well defined is the ratio between two

partition functions with two different sets of sources where the divergences from the determinants

cancel. For example, the divergence in the determinant is canceled in correlation functions of local

operators.

4

ϕ	
  :	
  N	
  x	
  N	
  tracelss	
  symmetric	
  	
  
	
  	
  	
  	
  	
  	
  	
  real	
  matrix	
  field	




(D+1)-­‐dimensional	
  gravity	


from the usual Hamiltonian system is that the ‘covariant’ derivative Dz is used in the action. The

non-trivial connection originates from the fact the fields Jn(x, z), Pn(x, z) defined at different

length scales in general have different metric. Because the definition of the covariant operators

and their sources is tied with the metric, a change in metric effectively induces changes in all

sources. Physically, the momentum canonically conjugate to the metric is the energy-momentum

tensor given by π[2,µν] =
1
N2

δS
δGµν . There are many other contributions to the energy momentum

tensor besides P[2,µν] =
√

|G|
N tr[Φ∇µ∇νΦ] because metric enters not only in

√
|G|
N tr[Φ∇µ∇νΦ] but

also in the definition of all other covariant operators. This suggests that P[2,µν] is not the canonical

momentum of the metric, which is also reflected in the non-trivial measure ∆(J) in the functional

integration, and the unconventional form of the shift for the metric in Eq. (65). In order to go

to the canonical basis, we define a new momentum for the metric and keep the same conjugate

momenta for all other variables,

π[2,µν](x) = P[2,µν](x) +

∫
dy Jn(y)

δf m
n (y)

δGµν(x)
Pm(y), (67)

πm = Pm, for m #= [2, µν]. (68)

The last term in Eq. (67) takes into account the metric dependence in general operators. The

Jacobian from the change of variable,
∣∣∣∣
δP[2,µν](y)

δπ[2,αβ](x)

∣∣∣∣ = det

[
δ(µν)(αβ)δ(x− y) + Jn(y)

δf [2,µν]
n (y)

δGαβ(x)

]−1

= ∆(J)−1 (69)

exactly cancels ∆(J) in the measure. The partition function and the action takes the canonical

form[23] in the new variables,

Z[J ] =

∫
DJ(x, z)Dπ(x, z) e

i

(
SUV [π(x,0)]+S[J(x,z),π(x,z)]+SIR[J(x,∞)]

)∣∣∣∣∣
J(x,0)=J (x)

, (70)

where

S = N2

∫
dDxdz

[
(∂zJ

n)πn − α(x, z)H−Nµ(x, z)Hµ

]
. (71)

Note that Dz is replaced by the usual derivative in the canonical variables. Moreover, the ‘mo-

mentum constraint’ Hµ that generates the D-dimensional shift takes the standard form,

Hµ = −2∇νπ[2,µν] −
∑

[q,{µi
j}]#=[2,µν]

[∑

a,b

∇ν

(
J [q,{µ1

1µ
1
2...µ

a
b−1νµ

a
b+1...}]π[q,{µ1

1µ
1
2...µ

a
b−1µµ

a
b+1...}]

)

+ (∇µJ
[q,{µi

j}])π[q,{µi
j}]

]
. (72)
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It is noted that Jm’s and πm’s are D-dimensional contra-variant tensors with weight zero and

covariant tensor density with weight one, respectively. To obtain the ‘Hamiltonian constraint’ H,

one has to convert Eq. (67) to express P[2,µν] as a linear combination of πm’s and plug in the

expression to Eq. (64). Since the full expression is complicated, we focus on the metric and its

conjugate momentum. Among many other terms, H includes the linear and quadratic terms for

the conjugate momentum, the cosmological constant and the D-dimensional curvature,

H = Ãµν [J(x)]π[2,µν] −
B̃µνλσ[J(x)]√

|G|
π[2,µν]π[2,λσ]

−
√

|G|
{
C0[J(x)] + C1[J(x)]R

}
+ ..., (73)

where ... represents the higher dimensional terms that involve covariant derivatives of π and the

curvature. Cubic or higher order terms in π[2,µν] are not allowed because at most double-trace

operators are generated out of single-trace operators at each step of RG. The linear term in the

conjugate momentum arises because the operators that are quartic in Φ, such as 1
N tr[Φ3∇µ∇νΦ],

renormalizes the metric through the quantum correction in Eq. (41). It is interesting to note that

the kinetic term for the conjugate momentum originates from the beta function under the RG,

while the potential term for the metric originates from the Casimir energy. Besides the dynamical

gravitational mode, the theory also includes other degrees of freedom, including the higher spin

fields for 1
N tr[Φ∇µ1∇µ2 ...∇µnΦ] and the fields associated with the single-trace operators that are

cubic or higher order in Φ . As was noted in Sec. IV, the latter fields do not have the bare ‘potential

energy’ because the Casimir energy is independent of those fields. However, they do have the

quadratic kinetic term in general because double-trace terms are generated for those operators

under the the RG. Although the bare action for those higher order sources are ultra-local along the

D-dimensional space, potential terms that involve derivatives along the D-dimensional space will

be generated dynamically, as other heavier fields are integrated out in the bulk[16].

In the large N limit, the bulk fields become classical. In particular, non-perturbative fluctuations

of the bulk fields are dynamically suppressed[16]. The on-shell action in the bulk computes the

partition function of the original matrix field theory in the large N limit. The classical equation of

motion is given by

∂zJ
n = {Jn,H}, ∂zπn = {πn,H}, (74)

where the Poisson bracket is defined by

{A,B} =

∫
dDx

[
δA

δJn

δB

δπn
− δA

δπn

δB

δJn

]
. (75)
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Summary	
  	


•  D-­‐dimensional	
  QFT	
  can	
  be	
  explicitly	
  mapped	
  
into	
  a	
  (D+1)-­‐dimensional	
  quantum	
  theory	
  of	
  
gravity	
  based	
  on	
  a	
  local	
  RG	
  

•  Quantum	
  beta	
  func-on	
  
•  Example	
  of	
  emergent	
  gravity	
  
•  Prove	
  the	
  Maldacena’s	
  conjecture	
  ?	
  
•  Applica-ons	
  to	
  concrete	
  condensed	
  ma]er	
  
systems	
  ?	
  


