Outline			Summary and Conclusion
	00	00	0000
		000	

Universal Sound Attenuation in Amorphous Solids at Low-Temperatures

Dervis C. Vural Anthony J. Leggett

Physics Department, University of Illinois at Urbana Champaign

May 17, 2011

Outline			Summary and Conclusion
	00	00	0000
		000	

Outline

Introduction

Review of the Tunneling Two-Level Model (TTLS) Problems of the Tunneling Two-Level Model (TTLS) Universalities

A More Generic Model

Formulation of the Problem Solution to the Two Block Problem Solution to the N-Block Problem

Summary and Conclusion Inputs and Outputs of the Theory

The Tunneling Two-Level Model (TTLS)

• Objects with two metastable configurations $H = \begin{pmatrix} \epsilon & -\Delta_0 \\ -\Delta_0 & -\epsilon \end{pmatrix} + e \begin{pmatrix} \gamma & 0 \\ 0 & -\gamma \end{pmatrix}$ E(x)

8

d

The Tunneling Two-Level Model (TTLS)

 Objects with two metastable configurations $H = \begin{pmatrix} \epsilon & -\Delta_0 \\ -\Delta_0 & -\epsilon \end{pmatrix} + e \begin{pmatrix} \gamma & 0 \\ 0 & -\gamma \end{pmatrix}$ E (x) 8 d

•
$$\Delta_0 \sim \Omega e^{-\xi}, \ \xi = d\sqrt{2M_0V}$$

The Tunneling Two-Level Model (TTLS)

 Objects with two metastable configurations $H = \begin{pmatrix} \epsilon & -\Delta_0 \\ -\Delta_0 & -\epsilon \end{pmatrix} + e \begin{pmatrix} \gamma & 0 \\ 0 & -\gamma \end{pmatrix}$ E (x) 8 d

•
$$\Delta_0 \sim \Omega e^{-\xi}, \ \xi = d\sqrt{2M_0V}$$

• Distribution of TTLS parameters: $P(E, \Delta_0) = \frac{P}{\Delta_0}$

Outline	Introduction	Summary and Conclusion
	00	
B 1 611 T		

Review of the Tunneling Two-Level Model (TTLS)

Predictions of the TTLS theory

► Can explain below 1K:

Outline	Introduction		Summary and Conclusion
	0.	00	0000
Review of the Tu	nneling Two-Level Model (TTLS)		

Predictions of the TTLS theory

- ► Can explain below 1K:
- ► $c_v \sim T$, $K \sim T^2$

Outline	Introduction		Summary and Conclusion
	00	00	0000
		000	
Review of the Tu	aneling Two-Level Model (TTLS)		

Predictions of the TTLS theory

- ► Can explain below 1K:
- $c_v \sim T$, $K \sim T^2$
- \blacktriangleright T and ω dependence of sound attenuation and dispersion

Outline	Introduction	Summary and Conclusion
	00	
Review of the Tu	nneling Two-Level Model (TTLS)	

Predictions of the TTLS theory

- ► Can explain below 1K:
- $c_v \sim T$, $K \sim T^2$
- \blacktriangleright T and ω dependence of sound attenuation and dispersion
- ▶ Non-linear acoustic properties (saturation, echoes, ...)

Problems of the Tunneling Two-Level Model (TTLS)

• Cannot explain behavior T > 1 K.

- Cannot explain behavior T > 1 K.
- What is tunneling? Why 2-states? Why the same $P(E, \Delta_0)$?

- Cannot explain behavior T > 1 K.
- What is tunneling? Why 2-states? Why the same $P(E, \Delta_0)$?
- Interactions only added "when necessary". Do they preserve the TTLS structure?

- Cannot explain behavior T > 1 K.
- What is tunneling? Why 2-states? Why the same $P(E, \Delta_0)$?
- Interactions only added "when necessary". Do they preserve the TTLS structure?
- Cannot explain universality

Outline	Introduction		Summary and Conclusion
		00000	
Universalities			
onversances			

Universalities

► c_v, K, Echoes, hole burning, saturation...

Universalities

- ► c_v, K, Echoes, hole burning, saturation...
- Scaled thermal conductivity

Universalities

- ► c_v, K, Echoes, hole burning, saturation...
- Scaled thermal conductivity

Universal Sound Attenuation in Amorphous Solids at Low-Temperatures

Outline		A More Generic Model	Summary and Conclusion
	00	•O	0000
		000	

Phonons and Non-phonon "Stuff"

• $\hat{H} = \hat{H}_{phonons} + \hat{H}_{stuff}$

Outline		A More Generic Model	Summary and Conclusion
	00	•O	0000
		000	

Phonons and Non-phonon "Stuff"

$$\bullet \ \hat{H} = \hat{H}_{phonons} + \hat{H}_{stuff}$$

 The "stuff" couples linearly to strain e_{ij} (=thermal phonons or experimenter's probe)

$$\hat{H}_{stuff} = \hat{H}_0 + e_{ij}\hat{T}_{ij}.$$

Outline		A More Generic Model	Summary and Conclusion
	00	•O	0000
		000	

Phonons and Non-phonon "Stuff"

$$\bullet \ \hat{H} = \hat{H}_{phonons} + \hat{H}_{stuff}$$

 The "stuff" couples linearly to strain e_{ij} (=thermal phonons or experimenter's probe)

$$\hat{H}_{stuff} = \hat{H}_0 + e_{ij}\hat{T}_{ij}.$$

• "Stuff" exchanges virtual phonons $\rightarrow \hat{V} = \Lambda_{ijkl} \hat{T}_1^{ij} \hat{T}_2^{kl}$.

Outline		A More Generic Model	Summary and Conclusion
	00	•O	0000
		000	

Phonons and Non-phonon "Stuff"

$$\bullet \ \hat{H} = \hat{H}_{phonons} + \hat{H}_{stuff}$$

 The "stuff" couples linearly to strain e_{ij} (=thermal phonons or experimenter's probe)

$$\hat{H}_{stuff} = \hat{H}_0 + e_{ij}\hat{T}_{ij}.$$

- "Stuff" exchanges virtual phonons $\rightarrow \hat{V} = \Lambda_{ijkl} \hat{T}_1^{ij} \hat{T}_2^{kl}$.
- Full Non-phonon Hamiltonian:

$$\hat{H}_{many \ stuff} = \sum_{s}^{N} \hat{H}_{0}^{(s)} + \sum_{s < s'}^{N} \sum_{ijkl}^{3} \Lambda_{ijkl} \hat{T}_{ij}^{(s)} \hat{T}_{ij}^{(s')}$$

Outline		A More Generic Model	Summary and Conclusion
		00	
		000	
Formulation of th	e Problem		

Objective:

• Phonons go infinitely far in a crystal \implies Contribution to Q^{-1} comes from "stuff".

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
Formulation of the	e Problem		

Objective:

- Phonons go infinitely far in a crystal \implies Contribution to Q^{-1} comes from "stuff".
- ▶ For *N* coupled blocks, solve the ultrasonic absorption

$$Q_{ijkl}^{-1}(\omega) \sim \sum_{n} \hat{T}_{0n}^{ij} \hat{T}_{n0}^{kl} \delta(E_n - E_0 - \omega)$$

 $T_{mn}^{ij} \equiv \langle n | T^{ij} | m \rangle, \ \hat{T} \equiv \hat{T}_1 + \hat{T}_2 + \hat{T}_3 \dots$ Many-body non-phonon stress. $E_n \equiv E_{n_1} + E_{n_2} + E_{n_3} \dots$ Many-body levels.

Outline		A More Generic Model	Summary and Conclusion
		000	
	0	00000	
Solution to the T	wo Block Problem		

• Consider the average $\bar{Q}^{-1} \equiv \frac{1}{UN} \sum_m \int_0^U d\omega Q_m^{-1}(\omega - E_m)$

- Consider the average $\bar{Q}^{-1} \equiv \frac{1}{UN} \sum_m \int_0^U d\omega Q_m^{-1}(\omega E_m)$
- ► Consider TrV²: Basis Invariant

- Consider the average $\bar{Q}^{-1} \equiv \frac{1}{UN} \sum_m \int_0^U d\omega Q_m^{-1}(\omega E_m)$
- Consider TrV²: Basis Invariant
- Evaluate it in the uninteracting eigenbasis

$$\sum_{\substack{ijkl\\j'j'k'l'}} \Lambda_{ijkl} \Lambda_{i'j'k'l'} \sum_{\substack{m_1n_1\\m_2n_2}} T^{ij}_{m_1n_1} T^{kl}_{m_1n_1} T^{i'j'}_{m_2n_2} T^{k'l'}_{m_2n_2} = \mathbf{K} \bar{Q}_0^{-2} U_0^2 N_s^2$$

- Consider the average $\bar{Q}^{-1} \equiv \frac{1}{UN} \sum_m \int_0^U d\omega Q_m^{-1}(\omega E_m)$
- Consider TrV²: Basis Invariant
- Evaluate it in the uninteracting eigenbasis

$$\sum_{\substack{ijkl\\i'j'k'l'}} \Lambda_{ijkl} \Lambda_{i'j'k'l'} \sum_{\substack{m_1n_1\\m_2n_2}} T_{m_1n_1}^{ij} T_{m_1n_1}^{kl} T_{m_2n_2}^{i'j'} T_{m_2n_2}^{k'l'} = \mathbf{K} \bar{Q}_0^{-2} U_0^2 N_s^2$$

and in the interacting eigenbasis

$$K\bar{Q}^{-2}U^2N_s^2$$

- Consider the average $\bar{Q}^{-1} \equiv \frac{1}{UN} \sum_m \int_0^U d\omega Q_m^{-1}(\omega E_m)$
- Consider TrV²: Basis Invariant
- Evaluate it in the uninteracting eigenbasis

$$\sum_{\substack{ijkl\\ i'j'k'l'}} \Lambda_{ijkl} \Lambda_{i'j'k'l'} \sum_{\substack{m_1n_1\\m_2n_2}} T^{ij}_{m_1n_1} T^{kl}_{m_1n_1} T^{i'j'}_{m_2n_2} T^{k'l'}_{m_2n_2} = \mathbf{K} \bar{Q}_0^{-2} U_0^2 N_s^2$$

and in the interacting eigenbasis

$$K\bar{Q}^{-2}U^2N_s^2$$

•
$$\bar{Q}^{-1}/\bar{Q}_0^{-1} = U_0/U.$$

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
Solution to the T	wo Block Problem		

►
$$\hat{H} = \hat{H}_0 + \hat{V}$$
. No correlations between \hat{T} 's
 $\operatorname{Tr}\hat{H}^2 - \operatorname{Tr}\hat{H}_0^2 = \operatorname{Tr}\hat{V}^2$
LHS: $\int_0^U \omega^2 g(\omega) d\omega - \int_0^{U_0} \omega^2 g_0(\omega) d\omega$

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
Solution to the T	wo Block Problem		

•
$$\hat{H} = \hat{H}_0 + \hat{V}$$
. No correlations between \hat{T} 's

$$\mathrm{Tr}\hat{H}^2 - \mathrm{Tr}\hat{H}_0^2 = \mathrm{Tr}\hat{V}^2$$

LHS:
$$\int_0^U \omega^2 g(\omega) d\omega - \int_0^{U_0} \omega^2 g_0(\omega) d\omega$$

 ► Expand {g(ω), g₀(ω)} = {∑_k c_kω^k, ∑_k c_{0k}ω^k}: Quantum Many-Body System ⇒ Dominating Powers are Large.

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
Solution to the T	wo Block Problem		

•
$$\hat{H} = \hat{H}_0 + \hat{V}$$
. No correlations between \hat{T} 's

$$\mathrm{Tr}\hat{H}^2 - \mathrm{Tr}\hat{H}_0^2 = \mathrm{Tr}\hat{V}^2$$

LHS:
$$\int_0^U \omega^2 g(\omega) d\omega - \int_0^{U_0} \omega^2 g_0(\omega) d\omega$$

- Expand {g(ω), g₀(ω)} = {∑_k c_kω^k, ∑_k c_{0k}ω^k}: Quantum Many-Body System ⇒ Dominating Powers are Large.
- ► $N_s^2(U^2 U_0^2) = \frac{K\bar{Q}^{-2}U^2N_s^2}{N_s}$, regardless of c_k , c_{0k} . Now we know U/U_0 .

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	

Combine Argument-1 and Argument-2

•
$$\bar{Q}^{-1}$$
 can be related to \bar{Q}_0^{-1} :
 $\bar{Q}^{-1} = [\bar{Q}_0^2 + \mathbf{K}]^{-1/2}$

CK: Found from the tensor components in the coupling constant $\hat{V} = \Lambda_{ijkl} T_{ij} T_{kl}$.

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	

Combine Argument-1 and Argument-2

•
$$ar{Q}^{-1}$$
 can be related to $ar{Q}_0^{-1}$:
 $ar{Q}^{-1} = [ar{Q}_0^2 + oldsymbol{K}]^{-1/2}$

CK: Found from the tensor components in the coupling constant $\hat{V} = \Lambda_{ijkl} T_{ij} T_{kl}$.

▶ 2-Blocks complete. Do the same for 8 blocks.

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	

Combine Argument-1 and Argument-2

•
$$ar{Q}^{-1}$$
 can be related to $ar{Q}_0^{-1}$:
 $ar{Q}^{-1} = [ar{Q}_0^2 + m{\kappa}]^{-1/2}$

CK: Found from the tensor components in the coupling constant $\hat{V} = \Lambda_{ijkl} T_{ij} T_{kl}$.

► 2-Blocks complete. Do the same for 8 blocks.

▶ We know how to iterate blocks to superblocks: The rest is RG.

Combine two Argument-1 and Argument-2

• RG flow gives logarithmically vanishing \bar{Q}^{-1}

Combine two Argument-1 and Argument-2

• RG flow gives logarithmically vanishing \bar{Q}^{-1}

Microscopic \bar{Q}_0 dependence

Dependence on microscopic parameters:

Microscopic \bar{Q}_0 dependence

Dependence on microscopic parameters:

▶ We need Q^{-1} in the $\omega \sim$ MHz-GHz range. What is the ω dependence?

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
		00000	

Frequency Dependence of Attenuation

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
		00000	

Frequency Dependence of Attenuation

• $Q^{-1}(\omega) \sim \sum_n T_{n0}^2 \delta(E_n - E_0 - \omega)$. Assume that Q^{-1} changes mostly due to change in E_n .

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
		00000	

Frequency Dependence of Attenuation

- ► $Q^{-1}(\omega) \sim \sum_n T_{n0}^2 \delta(E_n E_0 \omega)$. Assume that Q^{-1} changes mostly due to change in E_n .
- Input Q₀(ω) ~ const. Second order perturbation theory output:

$$Q^{-1}(\omega) \sim rac{1}{A \ln U_0 / \omega}$$

Alarm: Interaction too strong!

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
		00000	

Frequency Dependence of Attenuation

- ► $Q^{-1}(\omega) \sim \sum_n T_{n0}^2 \delta(E_n E_0 \omega)$. Assume that Q^{-1} changes mostly due to change in E_n .
- Input Q₀(ω) ~ const. Second order perturbation theory output:

$$Q^{-1}(\omega) \sim rac{1}{A \ln U_0 / \omega}$$

Alarm: Interaction too strong!

• Heuristic arguments \rightarrow

$$Q^{-1}(\omega) = rac{1}{B + A \log U_0 / \omega}$$

 $B \ll A$

• Use the value of $\bar{Q}^{-1} = 0.015$ to find $A \sim 350$.

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
		00000	

Frequency Dependence of Attenuation

- ► $Q^{-1}(\omega) \sim \sum_n T_{n0}^2 \delta(E_n E_0 \omega)$. Assume that Q^{-1} changes mostly due to change in E_n .
- Input Q₀(ω) ~ const. Second order perturbation theory output:

$$Q^{-1}(\omega) \sim rac{1}{A \ln U_0 / \omega}$$

Alarm: Interaction too strong!

• Heuristic arguments \rightarrow

$$Q^{-1}(\omega) = rac{1}{B + A \log U_0 / \omega}$$

 $B \ll A$

- Use the value of $\bar{Q}^{-1} = 0.015$ to find $A \sim 350$.
- \blacktriangleright Then $Q^{-1}(\omega=1MHz)\sim 2 imes 10^{-4}$ 🗸

Outline		A More Generic Model	Summary and Conclusion
		00	
		00000	
Solution to the N-	Block Problem		

• \bar{Q}^{-1} depends sensitively on $K(c_l/c_t, \chi_l/\chi_t)$. c_l/c_t and χ_l/χ_t is measurable.

- ► \bar{Q}^{-1} depends sensitively on $K(c_l/c_t, \chi_l/\chi_t)$. c_l/c_t and χ_l/χ_t is measurable.
- ► Theoretical justification: Assume $u_x = e_{xx}r_x$, $u_x = e_{xy}r_y$. Assume central potential $\sum_{i < j} \phi(r_{ij})$.

►

- ► \bar{Q}^{-1} depends sensitively on $K(c_l/c_t, \chi_l/\chi_t)$. c_l/c_t and χ_l/χ_t is measurable.
- ► Theoretical justification: Assume $u_x = e_{xx}r_x$, $u_x = e_{xy}r_y$. Assume central potential $\sum_{i < j} \phi(r_{ij})$.

$$\chi_{0t,l} = \frac{\partial^2}{\partial e_{ij}^2} \sum_{a < b}^{N} \langle \phi(r_{ab}) \rangle \bigg|_{e_{ij}=0}$$
(1)
$$= \sum_{a < b}^{N} \left[\frac{\partial |r_{ab}|}{\partial e_{ij}^2} \frac{\partial \phi(r_{ab})}{\partial r_{ab}} + \frac{\partial^2 \phi(r_{ab})}{\partial r_{ab}^2} \left(\frac{\partial r_{ab}}{\partial e_{ij}} \right)^2 \right]_{e_{ij}=0}$$
(2)

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
		00000	
Solution to the N	-Block Problem		

•
$$\chi_{0t} = \frac{1}{L^3} \int \frac{\phi''(r)}{r^2} r^2 dr \int r_x^2 r_y^2 d\Omega$$

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
		00000	
Solution to the N	-Block Problem		

•
$$\chi_{0t} = \frac{1}{L^3} \int \frac{\phi''(r)}{r^2} r^2 dr \int r_x^2 r_y^2 d\Omega.$$

• $\chi_{0l} = \frac{1}{L^3} \int \frac{\phi''(r)}{r^2} r^2 dr \int r_x^4 d\Omega.$

Outline		A More Generic Model	Summary and Conclusion
	00	00	0000
		000	
		00000	
Solution to the N	-Block Problem		

•
$$\chi_{0t} = \frac{1}{L^3} \int \frac{\phi''(r)}{r^2} r^2 dr \int r_x^2 r_y^2 d\Omega.$$

• $\chi_{0l} = \frac{1}{L^3} \int \frac{\phi''(r)}{r^2} r^2 dr \int r_x^4 d\Omega.$
• $\frac{c_t}{c_l} = \sqrt{\frac{\chi_{0t}}{\chi_{0l}}} = \frac{1}{\sqrt{3}} \checkmark$

Outline			Summary and Conclusion
	00	00	0000
Inputs and Outpu	ts of the Theory		

 No free parameters. No assumptions on universal "something else".

Outline			Summary and Conclusion
	00	00	0000
		000	
Inputs and Outpu	ts of the Theory		

- No free parameters. No assumptions on universal "something else".
- Experimentally measured c_l/c_t and χ_l/χ_t to find *K*.

Outline			Summary and Conclusion
	00	00	0000
		000	
Inputs and Outpu	ts of the Theory		

- No free parameters. No assumptions on universal "something else".
- Experimentally measured c_l/c_t and χ_l/χ_t to find *K*.
- ► The microscopic upper cut-off energy U₀ ~ 10K (for which V becomes oscillatory). Q(ω) depends on U₀ only logarithmically.

Outline			Summary and Conclusion
	00	00	0000
		000	
Inputs and Outpu	ts of the Theory		

- No free parameters. No assumptions on universal "something else".
- Experimentally measured c_l/c_t and χ_l/χ_t to find *K*.
- ► The microscopic upper cut-off energy U₀ ~ 10K (for which V becomes oscillatory). Q(ω) depends on U₀ only logarithmically.
- No assumptions regarding microscopic nature: Arbitrary "stuff" with arbitrary number of levels.

Outline			Summary and Conclusion
	00	00	0000
		000	
Inputs and Outpu	ts of the Theory		

Predictions

• Universality of Q^{-1}

Predictions

- Universality of Q⁻¹
- ► T-dependence of Q⁻¹(ω, T), K(T), and Δc(T)/c fit better than TTLS.

Figure: $Q \text{ vs } \beta = 1/T$ (left) and $\Delta c/c \text{ vs } T$ (right). Dashed line: TLS (without ad-hoc fit functions). Solid line: Present Theory. Dots: Golding&Graebner (1976)

Outline			Summary and Conclusion
	00	00	0000
		000	
Inputs and Outpu	ts of the Theory		

Predictions

Figure: K(T) vs T. Dashed line: TTLS prediction. Solid line: Present Theory. Dots: Zeller and Pohl (1972)

Outline			Summary and Conclusion
			0000
		000	
Inputs and Output	ts of the Theory		

Acknowledgements

- ► Thanks NSF-DMR-03-50842 and NSF-DMR09-06921.
- Thanks to Doug Osheroff, Pragya Shukla, Karin Dahmen, Alexander Burin, Zvi Ovadyahu and Philip Stamp for helpful discussions over the years.
- Thanks to University of British Columbia, University of Waterloo, and Harvard University for generously providing accommodation during long visits.