

Large fluctuations during the Boiling Crisis

Eduard Vives (1), Francesc Salvat-Pujol (2), Pol Lloveras (1,3), & Lev Truskinovsky (3)

- 1 Dept. Estructura i Constituents de la Matèria Facultat de Física, Universitat de Barcelona Barcelona, Catalonia
- 2 Institut für Angewandte Physik Technische Universität Wien Wien Austria
- 3 LMS, CNRS–UMR 7649, École Polytechnique, Palaiseau, France

Outline:

1-Introduction

Thermodynamics: pool boiling Classical dimensional analysis Recent advances

2-AE experiments

Experimental Setup

Avalanche counting

Avalanche energy distributions

<u>3-Modelling</u>

4-Conclusions

Introductory references the to boiling crisis problem

-J.H.Lienhard "Snares of pool boiling research" (1995). -V.K.Dhir "Boiling Heat Transfer", Annu. Rev. Fluid Mech. 365-401 (1998). -V.K.Dhir, H.S.Abarajith & G.R.Warrier "From Nano to micro to macro scales in boiling", Microscale Heat transfer 197-216 (2005). -V.K.Dhir "Mechanistic prediction achievable or a hopeless task?" Journal of heat Transfer 128, 1 (2006).

1-Introduction

Thermodynamics of boiling:

Boiling is a first-order phase transition with a scalar OP: molar volume v

Equilibrium phase diagram:

Phases with different v coexist exactly at T_{eq}

But: as many first-order phase transitions it hardly occurs in equilibrium,

It requires the creation of interfaces bubble growth fluid motion

Pool boiling

There are many ways of boiling a liquid. The simplest case is pool boiling (kitchen), in which convection is natural (no imposed flow) And gravity is vertical, pointing down

Other mechanism: external flow boiling internal flow boiling immersion

. . .

Nukiyama curve

S. Nukiyama J. Soc. Mech. Eng. Jpn 37, 53 & 367 (1934)

Boiling regimes

10

Driving parameter

Urbana Champaign, May 2011

Control variable: heat flux

Hysteresis Enormous increase of T when crisis is reached BOILING CRISIS

 $Log \Phi$

Driving parameter

Control variable: temperature (difficult to perform)

Hysteresis ? Claims that no hysteresis in well wetted conditions

Complexity of the problem

V.K.Dhir, Journal of heat transfer **128**, 1 (2006)

 $\Phi = \Phi_{\textit{conduction}} + \Phi_{\textit{convection}} + \Phi_{\textit{radiation}} + \Phi_{\textit{transition}}$

Dimensional analysis (1)

When approaching the crisis from low T, the main contribution to Φ : $\Phi = x \rho_{c} L V$

Length & time scales in the problem? three energetic contributions:

-Excess energy for creating a bubble:

-Potential energy (buoyancy force):

-Kinetic energy: $\frac{1}{2}\frac{4}{3}\pi R^3 \rho_G V^2$

One can construct two equalities from these 3 terms and determine:

$$R = \sqrt{\frac{\sigma}{(\rho_L - \rho_G)g}} \quad V = \frac{1}{\sqrt{\rho_G}} \sqrt{\sigma g(\rho_L - \rho_G)}$$

 $4\pi\sigma R^2$

 $\frac{4}{3}\pi R^3 (\rho_L - \rho_G) gR$

$$V = R/\Delta t$$

R

Dimensional analysis (2)

The heat flux is then given by

$$\Phi = xL\sqrt{\rho_G}\sqrt[4]{\sigma g(\rho_L - \rho_G)}$$

Scales:

P=1.01105 Pa	N ₂	H ₂ O
Boiling T _{eq} (K)	77.35	373.13
ρ LIQUID (Kg/m³)	806.08	958
ρ VAPOUR (Kg/m ³)	4.6	0.59
σ (N/m)	0.0089	0.0072
L (kJ/Kg)	198.38	2270
R (mm)	0.6	0.5
V (m/s)	1	2.8
Φ/X (W/cm ²)	93	380
Φ _{max} (X=0.16)	15	60

Kutetaladze 1948

Far-field models

Almost identical formulas can be obtained from the study of far-field models (hydrodynamics, instability of a vapor jet, etc..) Zuber 1959

The parameter X contains, besides the fraction of surface covered by vapour, all the other adimensional dependences, geometrical factors and other "correction" coefficients (wettability, aging of the heater surface, etc...)

Experimentally, critical heat flux Φ_{max} in flat surfaces, corresponds to X = 0.01 - 0.16

Recent advances: near surface models

Recoil force mechanism

Nikolayev et al. PRL **97**, 184503 (2006)

Recoil force increases with the evaporation rate and is opposed to bubble detaching. When this force "wins", the gas film spreads and produces the crisis

Dependence of Φ_{\max} when approaching the critical point

$$\begin{split} \Phi_{\max}^{\quad \ \ K-Z} \propto \mathcal{L} \big[\sigma \big(\rho_L - \rho_G \big) \big]^{1/4} \alpha \big(\mathcal{T}_{eq} - \mathcal{T} \big)^{\sigma} \\ \Phi_{\max}^{\quad \ \ Nikolayev} \alpha \big(\mathcal{T}_{eq} - \mathcal{T} \big)^{\sigma'} \end{split}$$

Very important for space-crafts Some results do not agree with the $\Phi_{\max} \propto \sqrt[4]{g}$ dependence -Relative fluctuations $\Delta \Phi_{\max} / \Phi_{\max} \propto \frac{1}{4} (\Delta g/g)$

But measurements at low g (large fluctuations) are rather stable

-Spatially resolved heat flux, shows that in the boiling regions the flux is independent of gravity

The effect of gravity is on the dry surface x(g)

Kim & Benton Int. J. Heat Fluid Flow 23, 497 (2002)

Burnout experiments (1)

Theofanous et al. Experimental Thermal and Fluid Science 26, 775 & 793 (2002)

Powerful imaging techniques (Optical microscopy, thermography, and X-rays) with spatial and temporal resolution

- Cold, Hot & Dry spots

Water 122 W/cm²

19

-Strong temperature fluctuations: (larger than 10%)

Burnout experiments (2)

Theofanous, Tu, Dinh & Dinh Experimental Thermal and Fluid Science **26**, 775 & 793 (2002)

Experiments

Acoustic Emission

Urbana Champaign, May 2011 Scruby J.Phys.E: Sci Instr. **20** (1987)

Intermittent bursts

Sources of AE (detected on the metal):

- Liquid flow

Continuous signals

Nucleation of a bubbles (creation of interfaces)
 Acceleration of liquid-gas interface

<u>Standard analysis:</u> AE is used for monitoring industrial processes. Most studies focus on spectral analysis.

Avalanche analysis -separate the continuous noise -identify pulses
statistical analysis

Boiling by immersion

Urbana Champaign, May 2011

Immersing a hot metal into a liquid is an easy way to access the boiling $\Phi(\Delta T)$ curve T.W.Listerman et al. AJP 54, 554 (1986)

Optical images ($\Delta t=1s$)

Experimental Nukiyama curve

$1 dQ mC_{n} T dT$

 $\Phi = \frac{1}{S} \frac{dQ}{dt} = \frac{mC_{\rho} (T) dT}{S dt}$

The experiment is not designed for a pool-boiling Nukiyama curve

-<u>Dynamic experiment</u>: Delay with respect to the stationary curve

-<u>Cylindrical geometry</u>: Different regimes simultaneously for vertical and horizontal faces

-<u>Heat transfer through the neck</u>: Pure natural convection regime and early stages of nucleate boiling regime are never reached

AE raw signal: typical result

Energy distributions P(E)

Simulations

Lattice model (Lx=50)x(Ly=50)x(Lz=20)

<u>Heater</u>

Quenched Gaussian distribution of T around $T_M \pm \sigma$ with $T_M > T_{eq}$

Simulation steps

Initial condition: all sites liquid at T_t

- 1 Thermal equilibration:
- A-Heat transfer (Fourier equation)
- B-Decision on transition/overcooling/overheating
- C-Phase transition + new T

<u>2 Mechanical equilibration:</u> Drift + filling the voids

Model parameters: N₂ at atmospheric pressure

	N ₂
Boiling T _{eq} (K)	77.35
ρ LIQUID (Kg/m ³)	806.08
ρ VAPOUR (Kg/m ³)	4.6
τ (N/m)	0.0089
K LIQUID (J/mKs)	0.139
K VAPOUR (J/mKs)	0.026
C LIQUID (J/Kg K)	2042
C VAPOUR (J/Kg K)	741.5
L (kJ/Kg)	198.38

Free:

$$T_M$$

 $\sigma = 0.1$
 $a = 1mm$
 $\Delta t = 1ms$

Simulation results

Critical distribution of bubble sizes at the crisis

Conclusions

Conclusions

• Experimental analysis of acoustic emission activity during the boiling crisis as an avalanche process

• Energy distribution of acoustic signals has no characteristic scale, approximating well to a power-law behavior with exponent

$$p \not\in \infty E^{-\tau}$$
 $\tau \approx 2.05 \pm 0.1$

• This is indicative of the existence of critical phenomena associated with the boiling crisis

• Simple "near hot surface" model describes well the lack of characteristic scale in the bubble size when approaching the crisis.

• It supports the origin of the boiling crisis to lie just close to the hot surface (percolation of bubbles)

• The agreement with experimental exponent suggests that energy of acoustic signals only depends on the contact area between bubble and hot surface 55