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ApproachApproach

Develop analogy between statistical p gy
mechanics of directed polymers in two 
dimensions and quantum one-dimensional q
systems (cf. de Gennes 1968)
Apply modern quantum techniques to pp y q q
elucidate behavior of directed polymer 
systemsy



MissionMission

Characterize density fluctuations, y
thermodynamics, and effect of geometry 
and topology in directed polymer systemp gy p y y



OutlineOutline

Part I: Polymer system and mappingy y pp g
Part II: Interactions and density structure 
and correlationsa  co e at o s
Part III: Geometrically and topologically 
constrained systemsconstrained systems



Part I: SystemPart I: System

Clean system of ideal polymersy p y
2-dimensional: a substrate or a thin sheet
Directed via tension or directional Directed via tension or directional 
potential

x

τ



Collective excitations in low 
dimensions

Interacting particles in 1D, or lines in 2D, g p
yield only collective excitations
Single-polymer dynamics suppressedS g e po y e  y a cs supp esse
Emergent polymer fluid has new 
propertiesproperties



Quantum particles to classical linesQuantum particles to classical lines

x

τ



From thermal lines to quantum 
particles

Partition function for N linelike objects with 
some interaction
Imaginary-time matrix element of quantum 
particles
Generic quantum system taken to be bosonic: 
noncrossing polymers are fermionic
P h l  l  f  ( )Path integral over polymer conformations xi(τ)



Parameter relationshipsParameter relationships

Quantum System Polymer System

Mass Tension (units of temperature)

Position Lateral direction

Time Longitudinal directionTime Longitudinal direction

Inverse temperature System length

System size System width

xx

τ



P  II  I  d D  Part II: Interactions and Density 
Structure and CorrelationsStructure and Correlations



de Gennes (1968): 
noncrossing polymers

Noncrossing paths = hardcore bosonsg p
In ID, hardcore bosons = free fermions
Path integrals for free fermionsPath integrals for free fermions

ME Fisher (1984)



de Gennes (1968): 

Ground state dominance far from system 
noncrossing polymers

y
boundaries
Sum over single-particle excitationsSu  ove  s g e pa t c e e c tat o s
X-ray form factor displays logarithmic 
divergence corresponding to Kohn divergence corresponding to Kohn 
anomaly of Fermi gas X-ray form 

factor
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k

KF-KF

q/2KF



Behavior of noncrossing polymersBehavior of noncrossing polymers

Friedel oscillations ρ(x)

near edges
Density-density e s ty e s ty 
correlations
Interpolymer width Width Distribution

x KF

Interpolymer width 
distribution
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Lieb-Liniger (1963) modelLieb Liniger (1963) model

   h d  b /c = ∞ case: hardcore bosons/
free fermions/noncrossing
polymerspolymers
Bethe Ansatz solution: 

Single-particle excitations 
h dextinguished



Results via Lieb-LinigerResults via Lieb Liniger
System free energy x

Lateral correlations 
found from 

τ

Lieb-Liniger ground 
state
F d l ll

e 
En

er
gy

Friedel oscillations
More general 

l i  i
Strength of Interaction
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e

correlations require
Lieb-Liniger excitation 
spectrumspectrum

Lateral Distance



Alternative technique: bosonizationAlternative technique: bosonization

Universal field theory for 1D systems
Characterized by two T-L parameters u, KCharacterized by two T L parameters u, K
Conjugate fields represent density, phase 
fluctuationsfluctuations



Correlation results via bosonizationCorrelation results via bosonization

x

τ

K=∞ K>1 K=1 K<1

Free bosons Contact 
bosons

Hardcore 
bosons

Long-range
bosons

Attractive 
fermions

Free fermions Repulsive 
fermions



Part II: Geometrical and Part II: Geometrical and 
Topological Restrictions



Topological impuritiesTopological impurities

Weak external potential V(x,τ) can be p ( )
handled perturbatively
Strong potential can restrict number of St o g pote t a  ca  est ct u be  o  
polymers NL passing to left, right
Potential can pull polymers to one sidePotential can pull polymers to one side

NL

NRNR



Characterizing the restricted 
system

Calculate partition function of system p y
with topological restriction
Determine polymer density response to ete e po y e  e s ty espo se to 
constriction
Connect thermal polymer system to Connect thermal polymer system to 
nonequilibrium quantum system



Entropic forceEntropic force

Ground state of Fermi system: y

Polymers experience “level repulsion”
I  h d i  li i  O(N2) In thermodynamic limit, O(N2) 
contribution to free energy is the 

i b bili  fi i  ( )maximum-probability configuration ρ(x)



Free energy minimizationFree energy minimization

τ

x



Polymer density: gaps and 
singularities

Polymer 
density

τ

x

a g
Lateral 
position



Polymer density: gaps and 
singularities

Polymer 
density

a g
Lateral 
position



Why a gap?Why a gap?

Emergent long-range forceg g g
Contact between two regions of 
polymers at later “time”po y e s at ate  t e

p 
si

ze
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ap

τ

Pin position
x



Force law for topological pinForce law for topological pin

Force on pin ~ N2 T/Lp
For NL = 0, 
Small displacement: Hooke’s lawSmall displacement: Hooke s law
Tight constriction: logarithmic divergence



ConclusionsConclusions
Interactions strongly modify 2D polymer 
behavior
Topological constraints can generate long-
range effects in polymer system and 
connect to nonequilibrium quantum 

tsystems
Polymer distributions and correlations 
can be described using quantum manycan be described using quantum many-
body techniques
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