Basins of attraction of mechanically stable packings on the density landscape

S. S. Ashwin ${ }^{1}$, Corey S. O’Hern ${ }^{1,2}$, and Mark Shattuck ${ }^{3}$
${ }^{1}$ Department of Mechanical Engineering \& Materials Science, Yale University
${ }^{2}$ Department of Physics, Yale University
${ }^{3}$ Benjamin Levich Institute and Physics Department, CCNY

NSF CBET-0967262

The O'Hern group: (back row from left to right) Carl Schreck, Thibault Bertrand, Robert Hoy, and Mark Shattuck; (front row from left to right) Tianqi Shen, Alice Zhou, Corey O'Hern, Sarah Penrose, Amy Werner-Allen, S. S. Ashwin, and Guo-Jie Gao.

Stress Fluctuations

Glass Formation

- Athermal
-Driven
-Dissipative
-Finite system size
-What is probability with which granular packings occur?
-Edwards' hypothesis

Protocol Dependence of Granular Packings

Mechanically Stable Frictionless Packings

2

3
-Distinct MS packings distinguished by particle positions $\left\{\vec{r}_{i}\right\}$ \bullet \# of constraints \geq \# of degrees of freedom

Sorted Probabilities

-7 (4) orders of magnitude variation in probabilities in simulations (experiments)

Rate dependence and basin volume

fast rate; $\phi_{\mathrm{f}}=0.622$
slow rate $; \phi_{\mathrm{f}}=0.730$
fast rate; different IC; $\phi_{\mathrm{f}}=0.730$

N^{*}	$\mathrm{~N}_{\mathrm{s}}$
4	4
6	46
8	500
10	3983
12	16935

What determines MS packing probabilities: Density landscape for hard spheres

N. Xu, D. Frenkel, and A. J. Liu, xxx.lanl.gov/cond-mat1101.5879

Method 1 (small 1): Probability to return to a given MS packing

$$
l=\sqrt{\left(x_{1 f}-x_{10}\right)^{2}+\left(x_{2 f}-x_{20}\right)^{2}+\cdots+\left(x_{N f}-x_{N 0}\right)^{2}+\left(y_{1 f}-y_{10}\right)^{2}+\left(y_{2 f}-y_{20}\right)^{2}+\cdots+\left(y_{N V}-y_{N 0}\right)^{2}}
$$

Method 2 (large l): Random initial conditions

$\phi_{1},\{\vec{r}\}_{1}$

$\phi_{2},\{\vec{r}\}_{2}$

$\phi_{3},\{\vec{r}\}_{3}$
$\phi^{-1} f_{\mathrm{d}}(l)=\frac{M_{i}}{M} \xrightarrow[3^{\prime}]{\{\vec{r}\}}$

Basin Volumes

$$
\begin{gathered}
P_{i}=\frac{V_{i}}{L^{i N}} \quad V_{i}=\int_{0}^{\sqrt{a N}} S_{i}(l) d l \\
S_{i}(l)=A_{d N} f_{i}(l) l^{d N-1} \mathrm{P}_{i} N_{s}!N_{l}!
\end{gathered}
$$

polarizations and permutations

Weighted/Unweighted basin profile functions

-Probability of MS packing determined by large 1 , not core region l_{c} ${ }^{-}$Large probability near peak in MS packing separation distribution

Collapse for $1>l^{*}$

-Complete enumeration not necessary to determine P_{i}

Floaters

Particles with fewer than 3 contacts

Conclusions and Future Directions

-Probability for MS packings determined by large 1 , not nearby regions of configuration space

- Study ϕ_{i} and quench rate dependence of probabilities

