Basins of attraction of mechanically stable packings on the density landscape

S. S. Ashwin¹, Corey S. O'Hern^{1,2}, and Mark Shattuck³ ¹Department of Mechanical Engineering & Materials Science, Yale University ²Department of Physics, Yale University ³Benjamin Levich Institute and Physics Department, CCNY

NSF CBET-0967262

The O'Hern group: (back row from left to right) Carl Schreck, Thibault Bertrand, Robert Hoy, and Mark Shattuck; (front row from left to right) Tianqi Shen, Alice Zhou, Corey O'Hern, Sarah Penrose, Amy Werner-Allen, S. S. Ashwin, and Guo-Jie Gao.

Glass Formation

Athermal
Driven
Dissipative
Finite system size

What is probability with which granular packings occur?Edwards' hypothesis

Protocol Dependence of Granular Packings

Mechanically Stable Frictionless Packings

•Distinct MS packings distinguished by particle positions $\{\vec{r}_i\}$ •# of constraints \geq # of degrees of freedom

Sorted Probabilities

•7 (4) orders of magnitude variation in probabilities in simulations (experiments)

Rate dependence and basin volume

fast rate; $\phi_f = 0.622$

slow rate; $\phi_f = 0.730$

fast rate; different IC; $\phi_f=0.730$

N*	N _s
4	4
6	46
8	500
10	3983
12	16935

What determines MS packing probabilities: Density landscape for hard spheres

N. Xu, D. Frenkel, and A. J. Liu, xxx.lanl.gov/cond-mat1101.5879

Method 1 (small l): Probability to return to a given MS packing

Method 2 (large 1): Random initial conditions

Basin Volumes

$$P_{i} = \frac{V_{i}}{L^{dN}} \qquad \qquad V_{i} = \int_{0}^{\sqrt{dN}} S_{i}(l) dl$$

$$S_i(l) = A_{dN} f_i(l) l^{dN-1} \mathbf{P}_i N_s ! N_l !$$

polarizations and permutations

Weighted/Unweighted basin profile functions

Probability of MS packing determined by large l, not core region l_c
Large probability near peak in MS packing separation distribution

Collapse for $l > l^*$

•Complete enumeration not necessary to determine P_i

Floaters

Particles with fewer than 3 contacts

Conclusions and Future Directions

Probability for MS packings determined by large l, not nearby regions of configuration space
Study φ_i and quench rate dependence of probabilities

