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What patterns and functions can arbortron base units understand?
How do the design parameters influence performance?
Are there overarching principles?
How is the performance affected by thermal noise?
Arbortron = self-assembling branched wire network

, Networks with non-identical base 3D arbortrons can process Thresholds enable arbortrons
~units process input faster and more reliable. complicated functions. to learn nonlinear Boolean
' A=ImA, B=Im4
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Introduction
A three-electrode system is a simple perceptron:

° Fixed number of accessible particles => competition for particles
Therefore, more usage => larger conductance (neural plasticity, Hebb)
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Hypothesis: Self-assembling nano-particle networks can process information like biological
neural networks and have several advantages:

- Nano-particle wires are a factor 1000 thinner, therefore 1000x1000x1000=1billion nano
particle wires fit in the volume occupied by one biological neuron (human: 100billion neurons,

- Pulses on nano-particle wires move with the speed of light (3x108m/s), whereas biological
conduction velocities 1m/s — 100m/s

- Networks of super conducting nano-particle wires have a very low power consumption, because
the resistance of conducting particles is small in comparison to biological tissue

Problem: How does such a thermodynamic nano particle system learn, become intelligent?



Experiment: Arbortrons

PhysicalIntelligence Figure on the left: Consecutive snapshots of the
sample illustrating the formation of carbon nanotube
chains under the influence of the electric field
without electro-convection. The wires grow
continuously until they connect. Then they gradually
become thicker. The distance between electrodes is
1cm, applied voltage is V,=400 V, and the series
resistor is R,=100 MOhm. The top photograph
demonstrates the fluid with nanotubes before the
voltage is applied. The following photographs show
the process of pattern formation and they are taken
after the voltage is applied at t=45s, t=90 s and
t=1800s.




sesegcs. EXperiment
o4 Dé?. Growth of Carbon Nano Tube (CNT) Synapses

Physicalntelligence Voltage V= 10V - 500 V = const.
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Two regimes of self-assembly:

- Convection regime ( 0s < time < 900s ): Creation of chains and their annihilation due to electro
convection.

- Stable regime (time > 900s) : The maximum possible dissipated power is reached (maximum
for the fluid with nano particles only). Slow formation of additional chains stabilizes the system.

In the stable regime the resistance of the electo-rheological fluid is of the same order of
magnitude as the resistance of the series resistor R, i.e. R=R. .

If the temperature is kept constant, the limiting state has maximum entropy production
In the oIl/CNT system.




Experimental Results: CNT Synapses

Preliminary results:

- Electro convection destroys 9
CNT Synapses.

- The limiting wire resistance R is
equal to the series resistance Rg

- Ohmic heating in the wires is
maximized.

- Maximum power wires have the
largest tensile strength.
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Figures: Limiting resistance and limiting power versus series resistance



Arbortrons: Grounded graphite nano particles — Self-
- assembling micro wires at lOV In a SOpm gap
© with R,=20MOhm ™
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Self-assembling wires persist for hours and days and can be created with small voltages.



Experiment
Competing Carbon Nano Tube (CNT) Synapses

Setup consists of 3 stainless-steel cylindrical electrodes, 0.7 mm in diameter, separated
by 5 mm and immersed over 15 mm into an electro-rheological fluid. The fluid consists
of a dielectric solvent (toluene) with ultrasonically dispersed conducting multiwall carbon
nano tubes. Central electrode is grounded and the positive voltage is applied to the side
electrodes.

= Self-assembling wires between the electrodes: higher voltage = more wires

- What is the growth dynamics?
- How many wires grow as a function of the applied voltage, history,...?



The chains formed between 50V-
electrodes become destroyed when 200V
are applied to other pair of electrodes.
This suggests that the systems may go
beyond Hebb’s learning rule (unused
connections are destroyed —
morphology change).



Experiment:

Physicallntelligence

FIG. 3. The general method of connection is demonstrated in the pictures labeled af sbove: a) stems are formed around
the first two electrodes b) stems elongate and finally form a wire when electric current is passed through c) wire bends and
branches to sccommodate the electric field formed with the new ground d) a second connection is made ) particles associate
to the previous connection and repains the broken wire f) wire is resssembled.
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FIG. 4. These trials were done at 25 kV and show the number of particles at the grounding and the positive electrode at the

time of connection. The blue represents particles from the grounding electrode while the red represents the particles from the
positive electrode.



Experiment: Switching Times Shorten

- Stainless steel particles (diameter 1mm) in a 1mm layer of Castor oil

- 87 particles are set up in a 9 by 10 square grid, particle spacing 0.5 cm
- Grid area: -2cm < x < 2cm, 0 <y < 4cm, Stationary electrode (Ocm,
Ocm), Electrode 1 (2cm, 4cm), Electrode 2 (-2cm, 4cm)

Time vs Voltage with 100 Particles
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Experiment: Learning the X — pattern with two
Identical base units and two different base units
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Result: If the base units are different, the learning
success is larger, and the learning is faster






Experiment: 3D Arbortrons connection time
-Suspended conducting PVC particles,

-Electrodes vertically separated by 3cm-4cm

- 200 ml Castor oil in a glass beaker

PhysicalIntelligence - 200 particles, diameter 4mm

- Voltage 16kV — 25 kV
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Fig. 1 Connect time versus voltage [kV],
140 mL Castor oil, 100 particles in
a glass beaker




Experiment: The impact of thermal noise.

The impact of thermal noise on the time until the particle gets

stuck. This experiment shows that thermal noise can support the “
formation of wires 6mm glass beads,
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Experiment: Arbortrons learn to recognize sound
and learn to differentiate between different

frequencies (Pask’s ear)
-2 vibrated grounded electrodes of different length
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Fig.3 The onset of arcing versus the driving

frequency after a training period. Within the red
region there is arcing between the long vibrated
wire and the particles. The blue region indicates

Fig. 2 11kV perimeter electrode & arcing between the short wire and the particles.

steel balls in castor oil



Experiment: Thresholds and
short term memory of branches connected
to an elevated electrode

Preliminary Results:

- In systems with elevated electrodes there is a threshold
voltage for forming wires which depends on the elevation
height

-Wires disconnect at a lower voltage

- Wires do not disconnect instanth
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connect (blue) and the minimum

voltage to stay connected (red) Fig 2 Decay time versus voltage






Experiment:
Arbortrons can learn the “and” rule, the “or” rule,
and the “Xor” rule

“and” rule (nonlinear)
2 non-elevated no input
input electrodes:
A, B

1 elevated output
electrode:

Aand B

1 common ground no output current no output current large output current

Learning “and”: Formation of a y-shaped wire with threshold t, where ImA <t <2mA

“or” rule (linear)
2 non-elevated input electrodes (A,B), 1 non-elevated output electrode (A or B)
Learning “or”’: Formation of a y-shaped wire




Simulation: Arbortron controlled Tetris

A simple form of Tetris controlled by a numerical
simulation of a linear self-assembling wire network
(single layer perceptrons)

Physicallnteﬂigence )
Tetris rules and pay-off:
e . High-Voltage
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Simulation results: 10 01 yes 0 10
- Linear self-assembling wire network learns to control the game.
- The dynamics can be split in three phases: play, learn, harvest. 10 10 no 0 10
- The heating of the oil (entropy production) often reaches a peak
during learning phases. 10 10 yes 1 00

- There is no play phase without (thermal) noise. Without the play
phase the learning phase can not reach a high success rate.

- Noise limits the power that can be harvested. Location of incoming particle is random.



Experiment: Arbortron controlled Tetris

-Six cells that are all inter connected in a way that the positive electrodes
are connected to each other.

. - The cells are numbered from the top left and counted across from in
PhysicalIntelligence three rows.

Description:
(1) Make sure that all of the ball bearings are mixed in a way that they are concentrated at the
middle of the cell (this makes the connection processes quicker). Start Tetris.

(2) Connect to instructed electrode.

Output 1A Output 1B

(3) Check which output electrode arcs and
carry out the control.

(4) If there is extra energy correct then leave the
\oltage on for approximately 5 seconds.

(5)If there is no extra energy then turn off voltage. '. '_.‘
(6) Disturb the connection (add noise).

(7) Goto (2) .
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Physicallntelligence

wess.  EXperiment: Arbortron controlled Tetris

Arbortron input: connect electrodes
Arbortron output: electrode 1 (MOVE) electrode 2 (DO NOT MOVE)

Create new particle

Supply Energy to the Arbortron!

Experimental data:
Electrode 4 —connection 1->move (to left side)

Electrode2 —conection1->move (to right side) (good move)
Electrode4-connectionl->move (to left side)
Electrode2-connection1->move (to right side) (good move)
Electrodel-connection2->do not move (left side)
Electrode5-connectionl->move (to left side) (BAD move)
Electrode6-connectionl->move (to left side) (BAD move)
Electrode4-connection1->move (to right side) (good move)
Electrode6-connection1->move(to left side) (BAD move)
Electrode2-connectionl->move(to right side)(good move)
Electrodel-connection2->do not move(right side) (good move)
Electrode4-connection2->do not move(right side)
Electrode6-connectionl->move (to left side) (good move)
Electrodel-connectionl->move(to right side)
Electrode6-connection1l->move(to left side) (good move)
Electrode4-connection2->do not move (right side)
Electrode3-connection2->do not move (left side) (good move)
Electrodel-connection1->move(to right side)
Electrode6-connectionl->move (to left side) (good move)
Electrode 4-connection2->do not move (right side)




Variation provided by

- thermodynamic fluctuations

- initial state
- input /output signals

Self-assembling wires
via entropy production

Selection minimizes
electrical resistance

Control incorrect/neural/correct

Experiment: Arbortron controlled Tetris

A simple form of Tetris controlled by a network of six base
units with arbortrons. The arbortrons receive an energy
reward for “correct” controls.

I

Basic unit:
High-Voltage
Basic Unit DA Converter Virtual Environment Output 1A Output 1B
Pattern

Configuration

I}
A

. { | .
. ( & Energy /& Flow Rate
Pattern
+ S

™\, Controls
& Energy

High-Voltage Video game, such as Tetris,
Entropy Harvested ADA Converter with scalable complexity and
Production  geroy, selectable stationary, adaptive Experimental results for a system
£ and stochastic features . . .
with 6 basic units:

Conclusion: The arbortron network
spontaneously improves its ability to extract
energy / minimizes entropy production /
minimizes resistance.

If the pay-off is energy & the pay-off is not too
much delayed & noise is sufficiently large

=> Aborton networks learn to play Tetris.
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Summary: Self-assembling Wire Networks-
Based Physical Intelligence
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- Individual arbortrons maximize tensile strength and power consumption.
- Competing wires show neural plasticity.

Problem: How does such a thermodynamic nano particle system learn, become intelligent?
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Based Physical Intelligence
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- Individual arbortrons maximize tensile strength and power consumption.
- Competing wires show neural plasticity.

Problem: How does such a thermodynamic nano particle system learn, become intelligent?

The wire network forms a structure which maximizes its access to energy.
Therefore, the network has to be trained like a pet — with rewards in terms of extra energy.

Thank You.
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