Stick-slip failure in sheared granular materials

Karen E. Daniels – Physics, NC State

Nick Hayman – Texas Kate Foco – NC State Lucie Ducloué – ENS Paris

Karin Dahmen – UIUC Stefanos Papanikolau – Cornell Yehuda Ben-Zion – USC

Stick-slip dynamics

<u>Stick</u>: slowly evolving state between events
<u>Slip</u>: block moves then halts during events

Heslot, Baumberger, Caroli et al 1994; Nasuno, Kudrolli, Gollub et al 1998

Stick-slip motion in geological faults

1906 San Francisco earthquake

exhumed Punchbowl Fault Chester & Chester (1998)

what is the origin of different spatiotemporal patterns of failure?

Granular-on-granular shear

(top view)

VS.

- stress builds up
- slip/failure doesn't occur

'Stick"

- particle strength
- interparticle friction
- geometrical barriers to rearrangement

- stress released
- particles rearrange/break
- energy dissipated through friction, sound
- dissipation eventually arrests process

angle of repose $\mu = \tan \theta$

Physics Today cover (1996)

Friction without Friction

frictionless angle of repose

NC STATE UNIVERSITY

Lespiat, Cohen-Addad, and Höhler. PRL (2011)

Granular-on-granular shear

- ~10⁴ photoelastic particles fill shearing region
- imposed fault at boundary between front/back halves
- front half driven at constant velocity (spring-coupled)
- vary packing density: 0.80 < ϕ < 0.84 (loose to dense packed)

Photoelastic Force Measurements

Force chains under shear

- force chains oppose shear
- ~ exponential force distribution
- Ionger length scale from force chains

Force chains propagate disturbances

Owens & Daniels, EPL (in press)

• measure position x(t) and pulling force F(t) during deformation

- events: rupture full fault \rightarrow bulk slip + force drop
- use Wiener deconvolution to filter noise Papanikolaou et al. *Nature Physics*, 2011

$$\tilde{X}(\omega) = \frac{\tilde{x}(\omega)}{h(\omega)} \frac{|\tilde{x}(\omega)|^2}{|\tilde{x}(\omega)|^2 + |\tilde{n}(\omega)|^2}$$

Local failures, global effect

Spatial characterization

Track particles

Image-differencing

 β = fraction of participating particles

Daniels & Hayman J. Geophys. Research (2008)

Particle & force chain dynamics

• patches of particle rearrangement and force chain failure

Periodic vs. aperiodic events

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)

Periodicity and packing fraction

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)

What is the effect of changing \$\$\overline{P}\$?

What are the origins of mode-switching?

 close-packed aggregates (high \u00f6) stiffen more quickly than loose-packed (low \u00f6)

• stiffness K = dF/dX increases with ϕ

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)

Quasi-periodic vs. aperiodic events

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)

Periodicity and packing fraction

why does system exhibit fewer local failures as $\phi \rightarrow \phi_{RCP}$?

- failures involving force chain buckling & local rearrangements become more likely as decreases towards random-loose-packing
- accessibility of local rearrangement modes ↔
 higher variance in P(\$)

$\mathcal{P}(\phi)$ narrows as ϕ increases

Puckett, Lechenault & Daniels, PRE (2011)

Ensembles of valid packings

zero variance

one valid configuration

more variance

many valid configurations

Crackling noise

- arises in a disordered system with many degrees of freedom subjected to slow forcing
- system produces discrete failure events with a wide variety of sizes
- events have scaling shapes and exponents predicted by renormalization group

Sethna, Myers, Dahmen (2001)

Mean field theory of slip 'avalanches'

INC STA

- slowly sheared material; well-separated avalanches
- key parameters:
 - volume fraction (ϕ , written as v above)
 - weakening (E)
 - random thresholds for slipping

Comparison to MFT

- all spectra have exponent -2, consistent with MFT
- ... but event durations ΔT have a characteristic timescale (high ϕ has longer $\Delta T \rightarrow$ less dissipation)

 Event shapes are universal, symmetric ... and perhaps parabolic (MFT prediction)

NC STAT

Е

VERSI

 observe size scaling exponent consistent with MFT prediction:

$$\frac{1}{\rho \, v \, z} - 1 = 2 - 1 = 1$$

What sets the size distribution?

(remember: we detect only events that rupture the full fault)

Size distribution: size dependence

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)

Boundary conditions matter

Daniels & Hayman J. Geophys. Research (2008)

Large events see the boundary

Daniels & Hayman J. Geophys. Research (2008)

- observe changes in periodicity and size distributions as a function of the granular packing density and boundary condition
- observe Earth-like mode-switching between periodic and aperiodic stick-slip events
- scaling of events has a number of features in common with MFT

http://nile.physics.ncsu.edu

