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Stick-slip dynamics
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Heslot, Baumberger, Caroli et al 1994; Nasuno, Kudrolli, Gollub et al 1998
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 Stick: slowly evolving state between events
 Slip: block moves then halts during events
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Stick-slip motion in geological faults

1906 San Francisco earthquake

exhumed Punchbowl Fault
Chester & Chester (1998)

gouge

what is the origin of 
different spatiotemporal 

patterns of failure?
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Granular-on-granular shear

(top view)

imposed
fault
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      “Stick”      vs.            “Slip”

 stress builds up
 slip/failure doesn't occur

 particle strength
 interparticle friction
 geometrical barriers   

to rearrangement

 stress released
 particles rearrange/break
 energy dissipated through 

friction, sound
 dissipation eventually 

arrests process
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Granular friction

Physics Today cover (1996)

angle of repose
 

 = tan 

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Friction without Friction

Lespiat, Cohen-Addad, and Höhler. PRL (2011)

frictionless angle of repose

* = 4.6o
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Granular-on-granular shear

F(t) x(t)

position
sensor

force sensor

dilation or constant V

 ~104 photoelastic particles fill shearing region
 imposed fault at boundary between front/back halves
 front half driven at constant velocity (spring-coupled)

 vary packing density: 0.80 < φ < 0.84 (loose to dense packed)
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Photoelastic Force Measurements

right circular
polarizer

left circular
polarizer

birefringent
disk

light
source

digital
camera
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Force chains under shear

 force chains oppose shear
 ~ exponential force distribution
 longer length scale from force chains

constant velocity

plate
boundary
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Force chains propagate disturbances

Owens & Daniels, EPL (in press)
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Stick-slip events

Fo
rce

Position

 measure position x(t) and pulling force F(t) during deformation
 events: rupture full fault   bulk slip + force drop→
 use Wiener deconvolution to filter noise                   

Papanikolaou et al. Nature Physics, 2011
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Local failures, global effect
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Spatial characterization

β = fraction of
participating 

particles

Image-differencing

Track particles
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15Daniels & Hayman J. Geophys. Research (2008)
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Particle & force chain dynamics

boundary failure
 little particle rearrangement or force force chain failure

local failure
 patches of particle rearrangement and force chain failure
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Periodic vs. aperiodic events

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)
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Periodicity and packing fraction

fraction of 
events

which are 
periodic

random loose packing
no mechanically stable 

random states with φ < φRLP

(Onoda & Liniger, 1990)

random close packing
can't have φ > φRCP 

without crystallization
(Bernal, 1960)

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)
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What is the effect of 
changing ? 

What are the origins 
of mode-switching?
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φ−dependent rheology

 close-packed aggregates (high φ) stiffen more quickly than 
loose-packed (low φ)

 stiffness K = dF/dX increases with φ

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)
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Quasi-periodic vs. aperiodic events

fraction of particles participating
in rearrangements

local failure: β > 0

boundary failure: β  ~ 0

QP

AP

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)
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Periodicity and packing fraction

random loose packing random close packing

why does system exhibit fewer local failures as φ  → φRCP?

fraction of 
events

which are 
periodic

(boundary 
failure)
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φ and localized failure

 failures involving force chain buckling & local 
rearrangements become more likely as φ 
decreases towards random-loose-packing

 accessibility of local rearrangement modes  ↔
higher variance in P(φ)
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P(φ) narrows as φ increases

Puckett, Lechenault & Daniels, PRE (2011)
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Ensembles of valid packings

high φ

zero variance

one valid
configuration

low φ

more variance

many valid
configurations
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Crackling noise

 arises in a disordered 
system with many degrees 
of freedom subjected to 
slow forcing

 system produces discrete 
failure events with a wide 
variety of sizes

 events have scaling shapes 
and exponents predicted 
by renormalization group

Sethna, Myers, Dahmen (2001)
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Mean field theory of slip 'avalanches'

 slowly sheared material; well-separated avalanches
 key parameters:

 volume fraction (φ, written as ν above)

 weakening (ε)
 random thresholds for slipping

Dahmen, Ertas, Ben-Zion. PRE (1998)

Dahmen, Ben-Zion, Uhl. PRL (2009)  & 
Nature Physics 2011
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Mode-switching

φRLP

φRCP 

Dahmen, Ertas, Ben-Zion. PRE (1998)

Dahmen, Ben-Zion, Uhl. PRL (2009) & 
Nature Physics 2011

ap
er

io
di

c

qu
as

i-
pe

ri
od

ic



29

29

Comparison to MFT

 all spectra have exponent -2, consistent with MFT
 … but event durations T have a characteristic timescale 

(high φ has longer T  less dissipation)→

φ
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Event shapes

 Event shapes are universal, symmetric … 

and perhaps parabolic (MFT prediction)



31

31

Event size scaling

 observe size scaling exponent consistent with MFT 
prediction:

1
 z

−1=2−1=1

1
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What sets the size distribution?

(remember: we detect only 
events that rupture the full fault)
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Size distribution: size dependence

Hayman, Ducloue, Foco, Daniels. Pure and Applied Geophysics (2011)
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Boundary conditions matter

constant volume
⇓

power law distribution

permit dilation
⇓

exponential distribution

Daniels & Hayman J. Geophys. Research (2008)
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Large events see the boundary

Small F

Large F

Daniels & Hayman J. Geophys. Research (2008)
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Conclusions

  ← granular stick-slip failure can be quite 
heterogeneous

 observe changes in periodicity and size 
distributions as a function of the granular packing 
density and boundary condition

 observe Earth-like mode-switching between 
periodic and aperiodic stick-slip events

 scaling of events has a number of features in 
common with MFT

http://nile.physics.ncsu.edu


