Plastic deformation and crackling noise:

Analytics: Braden Brinkman, Yehuda Ben-Zion, Jonathan Uhl

Simulation: Georgios Tsekenis, Thomas Fehm, Patrick Chan, Jonathan Dantzig, Nigel Goldenfeld

<u>Experiment and Analysis</u>: Nir Friedman, <u>Andrew Jennings</u>, <u>Georgios Tsekenis</u>, <u>Ju-Yung Kim</u>, <u>Julia Greer</u>, <u>Tyler Earnest</u>, <u>Bob Behringer</u>, <u>Bob Hartley</u>, <u>Karen Daniels</u>.

1. Motivation: Slowly sheared metals show discrete jumps !

2. THEORY (PRL 2009, 2010)

F

Simple Analytical MODEL, 1 tuning parameter (weakening ε)

EXACT RESULTS for 2 different boundary conditions:

<u>Main Results</u>:

For slowly increasing stress boundary condition:
 brittle (ε>0), ductile (ε=0), & hardening materials (ε<0),
 Avalanche size- and duration-distributions, power spectra, ... vt

For slow tangential velocity boundary condition:
Models earthquake fault zones & fixed strainrate experiments

Agrees with experiments and with simulations at zero Temperature and at finite Temperature. Dynamic equation for slip evolution in heterogeneous medium:

Related models: Chen, Bak, Obukhov (PRA 1991), Zaiser, Adv. of Phys, 55, 185-245 (2006).

4

<u>Threshold pinning (f_R[u, r, history,ε])</u>

weakening (ɛ>0)

hardening (ε<0)

 $\varepsilon = (\tau_s - \tau_d) / \tau_s$ = dynamic weakening

during failure avalanche: failed regions get weakened by O(ε) reheal to old strength after avalanche

each failure event raises failure threshold
everywhere by ~lε/Nl.
used to model aftershocks
(Mehta, KD, Ben-Zion, PRE 2006) 5

<u>Without weakening ("ductile"):</u> (ε=0):

continuous depinning transition and distributed slip

With weakening ("brittle"): ($\epsilon > 0$):

<u>Stress Strain Curve in the presence of hardening ("ductile"):</u> $(\varepsilon < 0)$

Simple Analytic Model for deformation under shear:

stress F

Main Results:

For slowly increasing stress boundary condition:

Avalanche-size distributions (power laws with stress dependent cutoff)

Power spectra, Scaling Functions !! Scaling behavior agrees with experiments!

For slow tangential velocity boundary condition:

same scaling behavior and phase diagram as Ben-Zion and Rice single earthquake fault zone model

For slowly moving boundary cond.: Same phase diagram and scaling as Ben-Zion and Rice <u>single</u> fault zone eq. model:

Ben-Zion and Rice, 1993, 1995; Ben-Zion, 1996; Fisher et al., 1997; KD, Ertas, Ben-Zion, 1998; Mehta et al., 06; Zöller et al., 05, 07; KD and Ben-Zion, 08; Bailey and Ben-Zion, 08)

vt

weakening ($\epsilon > 0$):"Stick slip" + mode switching $\epsilon=0$:Power law ("Gutenberg Richter")hardening ($\epsilon < 0$):Power law (with Aftershocks)

There are more predictions for universal exponents, scaling functions, etc...

Simulations of slip avalanches in sheared crystals:

<u>Dislocation Dynamics</u>: Miguel et al Nature 410 (667-671) 2001, Csikor et al. Science (2007) Georgios Tsekenis 2011;

Phase Field Crystal Models: Pak Yuen Chan, Georgios Tsekenis, J. Dantzig, KD, N. Goldenfeld (PRL 2010); Phase Field Models: M. Koslowski (2006)...

Crystal with many edge dislocations under shear (Miguel et al. Nature 2001)

3. Comparison with simulations

There are more predictions for exponents, scaling functions, etc...

Mean Field Theory

for $\epsilon=0$

Simulations: raw data

Collapse

Georgios Tsekenis: Collapse V(t) ~ T^{1-1/ovz} f(t/T) Discrete Dislocation Dynamics (DDD) Simulations

quantity	exponent	our simulations	MFT	simulations	experiments
$D_S(S, \tau)$	κ	~ 1.5	$\frac{3}{2}$	1.4[1, 2]	1.5[3]
$D(V_{\max})$	_	-	-	-	2.0 ± 0.1 [4],1.5-2[5],1.2-2.2[6]
$D_S(S,\tau)$	$\frac{1}{\sigma}$	2	2	2[1, 2]	2[1]
$D_T(T, \tau)$	$1 + \frac{\kappa - 1}{\sigma \nu z}$	2.0	2		
$D_T(T, \tau)$	νz	1	1		
$D_E(E,\tau)$	$1 + \frac{\kappa - 1}{2 - \sigma \nu z}$	1.3	$\frac{4}{3}$		
$D(V_{\rm max}^2)$	_	-	-	$1.8 \pm 0.2[7]$	$1.6[7], 1.5 \pm 0.1[4]$
$D_E(E,\tau)$	$\frac{2-\sigma\nu z}{\sigma}$	3	3		
$\langle S \rangle \sim T^{1/\sigma\nu z}$	$1/\sigma\nu z$	~ 2.0	2		
$\langle T \rangle \sim S^{\sigma\nu z}$	$\sigma \nu z$	~ 0.5	$\frac{1}{2}$		
$\langle E \rangle \sim S^{2-\sigma\nu z}$	$2 - \sigma \nu z$	~ 1.5	$\frac{3}{2}$		
$V(t)_{\rm shapes} \sim T^{rac{1}{\sigma \nu z} - 1}$	$\frac{1}{\sigma \nu z}$	~ 2	2		
$PS_{\mathrm{int}}(\omega)$	$\frac{1}{\sigma \nu z}$	~ 2	2		
$\langle v angle \sim (1 - rac{ au}{ au_c})^eta$	β	~ 1.1	1	1.8[8]	

Georgios Tsekenis: Simulations, Mean Field Theory, Experiments

4. <u>Agrees with Experiments on µm-size and nano-crystal</u> (Nir Friedman, Jennings, Tsekenis, Kim, Tao, Uhl, Greer, KD, submitted 2011)

Summary on damage/dislocation model:

stress

E c simple mean field theory exact only 1 tuning parameter ε:

0<3	0=3	0>3
brittle	ductile	hardening

Agrees with:

Discrete Dislocation Simulations (T=0)
 Phase Field Crystal Simulations (T>0)
 Experiments on µm and nm samples
 Granular materials (Nature Physics 2011)
 Earthquake statistics (Brinkman et al.)

Universal Predictions for exponents, scaling functions: experiments ??

15

Similar SIMPLE model for avalanches in sheared granular materials:

Matches Behringer and Hartley's experiments (Tyler Earnest):

Matches Karen Daniels' and Kate Foco's experiments (in progress) :

Data from Susan Bilek, see

Earthquakes: Universal Scaling Functions:

Mehta, KD, Ben-Zion, 2005

(tidal triggering of earthquakes: Braden Brinkman) Zion, 2005

SUMMARY

- HUGE depinning universality class:
- Simple mean field theory gives exact & same scaling results for:
 - ✓ magnetic domain wall motion
 - ✓ plasticity
 - ✓ granular materials
 - ✓ Earthquakes
 - Different universality class for systems with many interacting interfaces:

hard magnets equilibrium and nonequilibrium plastic charge density wave depinning high Tc superconductors(?)...**ERICA CARLSON**

Many more predictions to be tested! Experimental tests ?! Got DATA ?

Earthquakes: Universal Scaling Functions:

Data from Susan Bilek, see

Mehta, KD, Ben-Zion, 2005

<u>Stress Strain Curve in the presence of hardening ("ductile"):</u> $(\varepsilon < 0)$

Similar model for sheared granular materials tuning volume fraction:

Exponent or other universal quantity	Mean Field Theory	granular experiment [6,8-10,20-21]	granular simulations [2-4]
к (size distribution)	1.5	1.5	?
1/ρυz (power spectrum)	2 if v ≈ 1; 0 if v <<1	1.8-2.5, 2	2 in solid regime 0 in fluid regime
α (duration distribution) (^)	2	2 or exponential ?	?
Source time function averaged over all avalanches of same duration T.	Symmetric (parabola)	?	Symmetric: fit by sine function (?)
Quasiperiodic event statistics	Yes, if $\varepsilon > 0$ and $v > v^*$	some- times	during mode switching
Mode switching (between powerlaw and quasiperiodic)	Yes, if $\varepsilon > 0$ and $v > v^*$?	Yes, in solid regime

