

Thermal and quantum fluctuations and the disruption of orbital/magnetic order in KCuF₃

S. L. Cooper U. of Illinois Dept. of Physics and Materials Research Lab

Support:

Dept. of Energy, Division of Materials Sciences, Grant DEFG02-07ER46453

Collaborators:

Growth, characterization, and Raman studies of KCuF₃

Shi Yuan (UIUC)

James Lee (UIUC)

Peter Abbamonte (UIUC)

(UIUC)

Siddhartha Lal

Standard View: KCuF₃ is a relatively simple 'model' spin-1/2 orbital-ordering material

Orbital order in KCuF₃: Kugel-Khomskii (KK) orbital order*

*Kugel, Khomskii, Sov. Phys. Usp. 25 (1982)

Binggeli, PRB, 70, 085117 (2004)

Problems with the standard view of KCuF₃: Suppressed magnetic ordering temperature

A-type antiferromagnetic order

 $T_N = 40 \text{ K} \sim (1/20) T_{oo}$

⇒ Suppressed antiferromagnetic ordering temperature suggests magnetic frustration

Problems with the standard view of KCuF₃: Unexplained superexchange anisotropy

• large superexchange anisotropy, $|J_c|/J_a \sim 100$

 \Rightarrow 1D antiferromagnetic chains

J_c ~ 100 J_{ab} ! (Satija et al. PRB (1980))

Neutron scattering: spin fluctuations in KCuF₃ exhibit 1D quantum critical scaling down to T_N !

Quantum criticality and universal scaling of a quantum antiferromagnet

BELLA LAKE1,2*+, D. ALAN TENNANT2,3+, CHRIS D. FROST3 AND STEPHEN E. NAGLER1

¹Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8393, USA ²Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK ³ISIS Facility, Rutheritord Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 00X, UK ⁴Present address: Department of Physics & Astronomy, Ames Laboratory, 10WA State University, Ames, Iowa 50011, USA ⁴Present address: Department of Magnetism (SF2), Hahn-Melther Institute Berlin, Glienicker Str. 100, D-14109 Berlin, Germany ⁴-mail: Lake@ameslab.gov

Nature Materials (2005)

Problems with the standard view of KCuF₃: Unexplained structural anomalies

Suggests dynamical fluctuations of orthorhombic domains, but nature of fluctuations is unknown!

• Crystallography indicates KCuF₃ has a tetragonal structure

 ⇒ But, other measurements (e.g., anomalous electron spin resonance (ESR) linewidth) indicate a static
Dzyaloshinsky-Moriya (DM) vector
consistent with orthorhombic symmetry

To explore these puzzles, we grew $KCuF_3$ single crystals for Raman and X-ray studies

Shi Yuan (UIUC)

- aqueous solution precipitation method
- large $(4 \times 4 \times 4 \text{ mm}^3)$ single crystals

x-ray diffraction measurements:

• The value of in-plane lattice parameter, a=b=8.25Å, is consistent with reference value

Inelastic light (Raman) scattering phonon spectrum of KCuF₃

• Raman spectrum of phonons similar to that observed at low temperatures in previous studies

The 370 cm⁻¹ A_{1g} phonon in KCuF₃ exhibits a conventional temperature dependence

The 72 cm⁻¹ B_{1g} phonon in KCuF₃ exhibits 'mode softening' with decreasing temperature

Two-step stabilization of orbital order in $KCuF_3$: Fluctuational regime halted by structural transition just above T_N

• KCuF₃ is characterized by structural (and spin) fluctuations down to a tetragonal-to-orthorhombic structural transition at 50 K, which appears to help stabilize orbital/magnetic order

What's responsible for structural fluctuations in $KCuF_3$? \Rightarrow X-ray evidence for rotations of CuF_6 octahedra

• (105) Bragg reflections not allowed by Kugel-Khomskii orbital ordering, but ARE consistent with GdFeO₃-type rotations of CuF_6 octahedra

James Lee (Abbamonte group, UIUC)

Peter Abbamonte (UIUC)

Raman and x-ray results suggest these $GdFeO_3$ fluctuations persist down to 50 K, then "lock-in" just prior to the Neel transition into a "glassy" configuration

Phonon softening via "molecular fluctuations": Critical dynamics of pseudospin-phonon coupling*

Phonon Response Function:
$$\phi_{QQ} = \frac{2\gamma k_B T \left\{ \frac{g(\kappa)}{\gamma J'} \right\}}{\left[\omega^2 - \overline{\omega}_0^2 \right]^2 + \omega^2 \Gamma_1^2}$$

Critical dynamics of pseudospin-phonon coupling: **Fast relaxation** of pseudospins (CuF₆ configurations)

Critical dynamics of pseudospin-phonon coupling: **Slow relaxation** of pseudospins (CuF₆ configurations)

Pressure-tuned "quantum" (T \sim 0) octahedral fluctuations in KCuF₃

gasket

Reversing the low temperature structural phase transition with pressure in KCuF₃

 \Rightarrow Pressure-tuned orthorhombic-totetragonal structural transition in KCuF₃ at T = 3 K

Pressure-induced central peak in $KCuF_3$: Slow quantum fluctuations of CuF_6 octahedra

Critical dynamics of pseudospin-phonon coupling: **Slow relaxation** of pseudospins (CuF₆ configurations)

Pressure-tuned central peak development in KCuF₃: Slow quantum fluctuations of CuF₆ octahedra

Central peak results from slow fluctuations (Γ ~10 meV = 40k_BT) of CuF₆ octahedra \Rightarrow characteristic fluctuation rate >> k_BT, suggesting zero-point fluctuations

Pressure-tuned central peak development in KCuF₃: Slow quantum fluctuations of CuF₆ octahedra

Similarity to quantum spin fluctuations observed in various magnetic materials using neutron scattering

Helton et al., Phys. Rev. Lett. (2010)

Summary of fluctuational behavior observed in KCuF₃

How do octahedral fluctuations frustrate magnetic/orbital order in KCuF₃?

Model by Lal and Goldbart supplements the KK model with a direct, orbital exchange term.*

Adding this term creates a near degeneracy of orbital/spin states that dynamically frustrates the spin subsystem

Siddhartha Lal

Paul Goldbart

 $\Delta \sim 3 \text{ K} \ll k_{\text{B}}T$

 \Rightarrow thermal/quantum fluctuations disrupt in-plane magnetic order

*J.C.T. Lee, S. Lal, S. Yuan, et al., submitted to Nature Physics (2011)

Summary: Thermal and quantum fluctuations of CuF_6 octahedra in $KCuF_3$

- KCuF₃ exhibits phonon mode softening due to thermal fluctuations of the CuF₆ octahedra down to a structural transition near 50 K, just above T_N
 - Pressure-dependent measurements show evidence for a pressure-tuned quantum phase transition to a regime characterized by quantum fluctuations of CuF₆ octahedra

 A model of pseudospin-phonon coupling in both fast and slow octahedral fluctuation regimes explains both the temperature- and pressure-dependent spectra

 Adding a direct orbital exchange term to the KK model generates nearly degenerate orbital/spin states that should be susceptible to thermal fluctuations, frustrating magnetic/orbital order down to low temperatures