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Bottom Line 
•  Previous numerical and experimental results 

have shown that leakage of Bose Einstein 
Condensates from extended Optical Lattices can 
be controlled and manipulated by Intrinsic 
Localized Modes formed in (one of) the wells of 
the Optical Lattice. 

•  We show that a heuristic (and analytic)  
understanding of these results on extended 
lattices follows from studying the Peierls-Nabarro 
energy landscape of a three-well Optical Lattice 
(nonlinear trimer).  



Outline 
•  “Bose-Einstein Condensates” (BECs) 

–  Concept and Images 
–  Gross-Pitaevskii Equation (GPE)—solitons in 1D? 

•  BECs in “Optical Lattices”  (OLs) 
–  Concept and images 
–  Discrete Nonlinear Schrödinger Equation (DNLSE)  

•  Interlude on “Intrinsic Localized Modes” = (ILMs) 
•  Excitations of BECs in OLs and their interactions  

–  Previous results on transfer (“leakage”) of BECs from OLs  
•  A Heuristic Understanding of ILM Interactions  

–  The Nonlinear Trimer as a Model System 
–  The Peierls-Nabarro Barrier and Energy Landscape 

•  Results for Extended Systems 
•  Summary and Conclusions 
•  Reference: Physical Review A 82 053604 (2010) 



What is a BEC ? 
•  Bose-Einstein (BE) statistics describe indistinguishable quantum 

particles, differ from classical (Boltzmann) statistics and are 
known to apply to integer spin quantum particles (phonons, 
atoms, molecules), which are now called “bosons.”. 

•  Most striking difference in BE statistics is that any number of 
bosons can occupy a given quantum state (no “exclusion”) 

•  In 1925 Einstein showed that this implies that at very low 
temperatures bosons “condense” into the lowest quantum state, 
creating a quantum system with (potentially) a macroscopic 
number of particles—a Bose-Einstein condensate (BEC).   

•  In 1995, group of Carl Wieman and Eric Cornell at JILA observed 
BEC in ultracold gas of Rb87 atoms; a few months later, group of 
Wolfgang Ketterle observed a much larger number of atoms in a 
BEC in Na23. The three shared the 2001 Nobel Prize in Physics 
for their discoveries. 



First Image of a BEC 

 
      False color images of the velocity distribution of a cloud of Rb87 

atoms near TC = 170 nk. a) above transition; b) emerging 
condensate; c) well-developed condensate of roughly 2000 atoms, 
described by a macroscopic quantum wave function, Φ 

       E. Cornell and C. Wieman Science 269, 198-201 (1995)  

 



Modeling BECs 
   BEC is described by a quantum wavefunction Φ(x,t). In the 

context of cold atomic vapors trapped in an external potential 
(typically combined magnetic confinement and optical potential)  

     Φ(x,t) obeys the semi-classical “Gross-Pitaevskii” equation (GPE) 
 

•  Nonlinear dynamicists recognize this immediately as a 
variant of the Nonlinear Schrödinger equation, here in 3D 
and with an external potential—more on this later. 

•  The interaction term—g0—describes s-wave scattering of 
atoms  

•  In 1D case (realizable depending on external potential) we 
expect (continuum) solitons among excitations. 



BECs in an Optical Lattice 

Image from I. Bloch Nature 453 1016-1022 (2008)  

    Counter-propagating laser pulses creating standing 
wave that interacts with atoms, so that the BEC 
experiences a periodic potential of the form: 

    UL(x,y) is transverse confining potential, λ is the laser 
wavelength (typically 850 nm) and “z” is the direction of 
motion. 



Modeling BECs in Optical Lattices 

•  Quantum system in periodic potential—just as in solid state. Can 
describe in terms of (extended) Bloch wave functions or (localized) 
Wannier wave functions, centered on the wells of the potential (but 
allowing tunneling between the wells). 

•  Expanding the GPE in terms of Wannier functions leads to the 
Discrete Nonlinear Schrodinger Equation (DNLSE) for the wave 
function amplitudes. In normalization we shall later use 

•  Comes from Hamiltonian (λ=2U/J) 



Brief Interlude on “ILMs” 

•  Definition: an “intrinsic localized mode” (ILM)—is a 
spatially localized, time-periodic, stable (or at least very 
long-lived) excitation in a spatially extended, perfectly 
periodic, discrete system. Also known as a “discrete 
breather” (DB). 

•  Bottom Line: The mechanism that permits the 
existence of ILMs has been understood theoretically for 
nearly two decades. Only in last decade have they been 
observed in physical systems as distinct as charge-
transfer solids, Josephson junctions, photonic structures, 
micromechanical oscillator arrays, and BECs trapped in 
optical lattices. 



•   Spectrum of linear oscillations about minimum 
                                             is a band, bounded from  
above and below— upper cut-off from discreteness.   

Specific Example: Φ4 Equation 

Specific model for infinite chain of coupled oscillators 

•  “Quartic” double-well oscillator            at each site (n) of    
infinite “lattice”:minimum at   

•  Coupling ~  

Key point 



ILMs: Intuition and Theory 

     

•  For nonlinear oscillations about minimum in quartic potential, 
frequencies decrease with amplitude (like plane pendulum) so 
one can create a localized, nonlinear mode (ILM) with frequency 
ωb below linear spectrum. 

•  If Δx is large enough so that coupling ~ 1/(Δx)2 is small, the band 
of excitations ω2

q = 2 + (2/Δx)2 sin2(q/2) is very narrow, so that 
the second harmonic  of ωb can lie above the top of the band. 
Thus there can be not (linear) coupling of local mode (ILM) to 
extended states and the ILM is linearly stable. 

•  Key intuition on stability of ILMs: discreteness produces finite 
band structure for linear excitations and nonlinearity means that 
frequencies of ILMs can be tuned to lie outside of band (and 
multiples).  



Explicit Example of ILMs in Φ4 

Figure shows linear band (grayish 
yellow) with energy-momentum 
dispersion relation  

 

for       =10. The isolated localized 
mode frequencies,         , are 
shown for the types of ILMs shown 
in the top and bottom panels. Note 
that ILMs can occur both above 
and below the linear band—those 
above have an optical character 
(adjacent particles out of phase) , 
whereas those below have an 
acoustic character (adjacent 
particles in phase). There are many 
ILMs—only four are shown here.  

•  Both on-site and 
“between”-site ILMs 



Where do we stand? 

•  After interlude on ILMs, let’s recap what we 
know. 
– BECs in 1D OLs are described by the DNLSE 
 
 
– Based on discussion of ILMs, we expect them 

to occur—along with linear waves and possibly 
other excitations—in the BEC in OL. 

–  Is this expectation confirmed? If so, what are 
properties of BEC ILMs and other excitations? 

  



Excitations of BECs in OLs 

Fig. 2 from A. Trombettoni and A. Smerzi, PRL 86, 2353 (2001) : variational 
collective coordinate Ansatz: cos p related to momentum of variational solution 

     Notice that there exist many kinds of excitations, depending on 
parameters—eg, for cos p=-0.5, as Λ ~λN is increased, one sees linear 
excitations (ω~k2), then localized moving breathers that become solitons 
along a single line in the plane, then “self-trapped states” = ILMs. 

ILMs 



Excitations of BECs in OLs and their 
interactions 

Fig  2 from Ng et al., New J. Phys 11, 073045 (2009). 

 
     Results of Ng et al (Geisel group) 

confirm for extended systems (M ~ 300) 
that ILMs are not formed at small Λ 
(=λN/M) but are readily formed at large 
Λ. 

    Note that other excitations (linear waves 
and traveling breathers) are typically 
“trapped” between the ILMs, although 
sometimes they appear to pass through. 

     This is consistent with results in other 
ILM-bearing systems: at low incident 
energy of interaction, ILM reflects other 
excitation but at higher energy, at least 
some of amplitude can be transmitted: 
How can we understand this?  



Excitations of BECs in OLs and their 
interactions 

Fig  5 from Ng et al., New J. Phys 11, 073045 (2009). 

 

     An event in which a single ILM 
interacts with a number of moving 
excitations (right to left) and some 
amplitude is transmitted through the 
ILM to the edge of the lattice at N=0. 
Note that the ILM moves (a single site) 
in the direction of the incoming 
excitation. The arrival of the amplitude 
at n=1 leads to a leaking of the 
condensate and is called an 
“avalanche” by the authors. Scattering 
from ILMs controls the avalanches: 
How can we understand this ? 

NB: Low energy excitations reflect off ILM 



Summary of Transport through ILM 

•  Results of Ng et al. include 
–  Little transport through ILM at low energy, excitations 

reflected 
–  Clear threshold energy, Ethrs, for significant transport 

through ILM 
–  Above threshold, ILM moves one lattice site in direction 

of incoming excitation 
–  Transport and ILM motion linked to leakage avalanches 

of BEC from OL  

•  These results obtained by direct numerical simulation of 
DNLSE on extended lattices. In remainder of talk, we will 
give heuristic, mostly analytic explanation of the results.  



Heuristic Understanding of ILM Interactions 

•  ILMs are highly localized and are “self-trapped.” Their 
properties should follow from small systems. 

•  Smallest system that allows ILM plus perturbations and 
transport is trimer—already established as useful for 
studying ILMs. 

•  DNSLE for trimer (open BCs) becomes 



Analytic approach to DNLSE for Trimer  

Assuming leads to 

    Only one solution 
for small λ. 

    Three solutions for 
λ> ~5.04 

Ni = Ai
2 



ILM solutions and heuristic approach 
In limit of infinite λ, three types of (symmetrical) solutions are  
      1) “bright” ILM ,  
       2) “dark” ILM; and  
       3) phase-wise and anti-phase wise time-dependent moving        
            solutions 

    Focus on bright ILM solution, perturbed by “excitation” at site 1, 
study “dynamics” not only via direct integration of DNLSE 
(trivial) but also by energy considerations based on “Peierls-
Nabarro” barrier and PN energy landscape concepts. 



Recall “Peierls-Nabarro” Barrier 

    A priori, there is no reason that the energies associated with 
these two positions should be the same. Indeed, Peierls and 
Nabarro showed that in general they were not, and the “PN 
barrier” is Ec-Eb, where Ec is the energy of a ILM centered at a 
site and Eb is energy between two lattice sites. PN barrier may 
be viewed as minimum barrier to translating the “self-trapped” 
ILM by a single lattice period. 

    Consider a highly localized ILM. As we have seen, it can be 
centered at a site (a) or between sites (b).  

                 (a)                               (b) 



Peierls-Nabarro Energy Landscape 
    Definition of PN Energy Landscape: For given An , extremize 

the full Hamiltonian H wrt phase differences: the minimum is 
the lower part of PN landscape, maximum is the upper part. 

Images of PN Energy Landscapes (next slides) 



Peierls-Nabarro Energy Landscape 

   The lower “sheet” of the PN Energy Landscape for λ = 
3; there are three minima separated by saddle points. 



Peierls-Nabarro Energy Landscape 

   The phase space of the trimer is restricted by the PN “shell” 
which exists between the lower and upper sheets for PN 
Energy Landscape (figure for λ=3). 



Peierls-Nabarro Energy Landscape 

Saddle points Bright  ILM on site 2 

Contour plot of Hl
PN for λ=3 

Next 4 slides show dynamics after initial perturbation of form 

Bright ILM on site 1 



Dynamics on the PN Landscape 

    The exact motion (black lines) of the trimer DNLSE plotted on the 
contour plot of the PN energy landscape in the A1-A3 plane as a 
function of time for . Note that the total energy Et is below the 
threshold ~ height of saddle point so that the motion is confined to a 
“region” around the bright breather. The solution is plotted for 25 
units (see vertical dashed line). The right panel shows that the 
energy of the initial condition (Et=-1.32) is below Ethrs (-1.31).  



Dynamics on the PN Landscape 

    The exact motion (black lines) of the trimer DNLSE plotted on the 
contour plot of the PN energy landscape in the A1-A3 plane as a 
function of time for Et=Ethrs=-1.31; we see that the rim of the PN 
landscape clearly restricts the dynamics and governs the 
destabilization of the ILM. The size of right “lobe” gives the maximum 
of A3, the amplitude transferred to site 3.  



Dynamics on the PN Landscape 

    The exact motion (black lines) of the trimer DNLSE plotted on the 
contour plot of the PN energy landscape in the A1-A3 plane as a 
function of time for Et=-1.28. Note that the bottleneck at the rim 
widens and the amplitude transferred to site 3 is increased.   

 



Dynamics on the PN Landscape 

    The exact motion (black lines) of the trimer DNLSE plotted on the 
contour plot of the PN energy landscape in the A1-A3 plane as a 
function of time for Et=-1.04, well above Ethrs. The motion explores large 
parts of the phase space and visits all three sites. The red line indicates 
where the upper PN energy landscape limits the motion; note that it 
prohibits An values close to 1.   

 



Norm Transfer vs. Total Energy 
    Maximum value of the norm at 

site 3 after a collision of a ILM 
at site 2 with a lattice excitation 
“coming” from site 1 as a 
function of total energy on the 
trimer. For Et<Ethrs ~ -1.31 (for 
λ=3) the ILM is stable and 
almost no transfer occurs. For 
E>Ethrs, ILM is unstable, moves 
to site 1, and the transmitted 
amplitude rises sharply (and is 
independent of the phase 
difference).  

            Solid line=numerics. Dashed line = analytic result 
from PN energy landscape calculation. 

 



Results on Extended Optical Lattices  
   
     To test mechanism on extended lattices, we study the case N=101 with 

a ILM of the form studied in the nonlinear trimer located at the center of 
the lattice (N0 =51). In the next two slides, we show the results of 
increasing the total energy on the trimer. We find that in the extended 
system, the energy threshold for destabilization and consequent 
motion of the ILM is slightly higher than in the trimer—we attribute this 
to the existence of many other degrees of freedom in the extended 
system. However, at energies very close to the threshold predicted 
from the trimer (Ethrs), the destabilization and migration of the ILM do 
occur, confirming that the mechanism that we have described 
analytically in the trimer does capture the behavior of the extended 
system.  



Results at low energy 

N=101 lattice. a) unperturbed “trimer” ILM at site 51; b) Perturbation on site 50 is 
just above trimer threshold. Ethrs; the ILM on extended lattice remains (barely) 
stable and the energy is reflected off to left as a low amplitude, seemingly 
localized excitation. The right panels confirm that in neither case does the ILM 
move. 



Results at higher energy 

N=101 lattice. c) ILM migrates by one site towards the perturbation after t ~ 5 time 
steps; d) ILM migrates at t~ 2 time steps and a localized excitation (moving breather) 
moves off to right, indicating the passage of energy through the ILM. Note that panels 
on right confirm that ILM has moved.   



Results for Longer Times 

N=101 lattice. This shows results for longer time. Left panel shows reflection of moving 
breather off the open boundary and then second interaction with ILM leading to two 
site migration. Right panel shows periodic boundary conditions (so discrete 
pseudomomentum is conserved.) Note that in each case, ILM moves in direction of 
incoming wave, as predicted by PN analysis of trimer.  



Summary and Conclusions 

•  The threshold for collisions leading to “tunneling” of amplitude 
through ILM is sharp and is related to the loss of stability of 
the ILM. 

•  The loss of stability of the ILM is related to the PN barrier in 
which the ILM is self-trapped. 

•  When amplitude is transmitted, the ILM moves by one site in 
the direction of the incoming wave. 

•  The dynamics of the interactions of moving excitations with 
ILMs, including the size of the transmitted amplitude and the 
motion of the ILM, can be understood in terms of motion on 
the fixed energy contours of a PN Energy Landscape. 

•  The nonlinear trimer provides a quantitative fit to the results 
observed in extended systems and allows us to obtain an 
analytic expression for the transmitted amplitude.  
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            QUESTIONS ? 



Leakage via Avalanches 

Fig  4 from Ng et al., New J. Phys 11, 073045 (2009). 
 

    Extensive studies of OLs with 
differing numbers of wells 
(128<M<1024) and different 
values of Λ. The authors 
establish a scaling law 
showing that the avalanche 
size P(J)~J-1.86. Scattering from 
DBs controls the avalanches: 
How can we understand this?  
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Bottom Lines 

•  Previous numerical and experimental results have 
shown that leakage of BECs from extended OLs can 
be controlled and manipulated by (ILM)s (formed in 
(one or more of) the wells of the OL. 

•  Increased transmission through ILM (and consequent 
leakage) is consequence of destabilization (and 
subsequent motion) of ILM by incoming wave. 

•  We show that a heuristic (and analytic)  understanding 
of these results on extended lattices follows from 
studying the Peierls-Nabarro energy landscape of a 
three-well OL (nonlinear trimer). 



First Image of a BEC 

 
      False color images of the velocity distribution of a cloud of Rb87 

atoms near TC = 170 nk. a) above transition; b) emerging 
condensate; 3) well-developed condensate of roughly 2000 atoms, 
described by a macroscopic quantum wave function, Φ 

       E. Cornell and C. Wieman Science 269, 198-201 (1995)  

 



Modeling BEC 
•  BEC is described by a quantum wavefunction Φ(x,t). For cold 

atomic vapors trapped in an external potential (combined 
magnetic confinement and optical potential) Φ(x,t) obeys the 
semi-classical “Gross-Pitaevskii” equation (GPE) 

 

•  Nonlinear dynamicists recognize this immediately as a 
variant of the Nonlinear Schrödinger equation, here in 3D 
and with an external potential—more on this later. 

•  The interaction term—g0—describes s-wave scattering of 
atoms  

•  In 1D case (realizable depending on external potential) we 
expect (continuum) solitons among excitations. 



BECs in OLs 

•  Quantum system in periodic potential—just as in solid state. Can 
describe in terms of (extended) Bloch wave functions or (localized) 
Wannier wave functions, centered on the wells of the potential (but 
allowing tunneling between the wells. 

•  Expanding the GPE in terms of Wannier functions leads to the 
Discrete Nonlinear Schrodinger Equation (DNLSE) for the wave 
function amplitudes. In normalization we shall later use 

•  Comes from Hamiltonian (λ=2U/J) 



Excitations of BECs in OLs 

Fig. 2 from A. Trombettoni and A. Smerzi, PRL 86, 2353 (2001) 

     Notice that there exist many kinds of excitations, depending on 
parameters—eg, for cosp=-0.5, as Λ ~λN is increased, one sees linear 
excitations (ω~k2), then localized moving breathers that become solitons 
along a single line in the plane, then “self-trapped states” = ILMs. 

ILMs 



Intrinsic Localized Modes (ILM)s 
•  Definition: an “intrinsic localized mode”—is a spatially localized, 

time-periodic, stable (or at least very long-lived) excitation in a 
spatially extended, perfectly periodic, discrete, nonlinear system. 

•  Intuition: Discreteness and periodicity imply spectrum of linear 
oscillations lies in a band of finite width. Nonlinearity implies that the 
frequency of an oscillation varies with its amplitude (think of 
pendulum). For a sufficiently large local oscillation, frequency can 
move out of band and have no possibility of coupling to linear 
modes=> stable.  

•  Experiment: ILMs observed in many physical systems.  
•  Reference: David K. Campbell, Sergej Flach, and Yuri S. Kivshar, 

“Localizing Energy Through Nonlinearity and Discreteness,” pp. 
43-49, Physics Today (January 2004).  



Excitations of BECs in OLs and their 
interactions 

Fig  5 from Ng et al., New J. Phys 11, 073045 (2009). 

 

     An event in which a single ILM 
interacts with a number of moving 
excitations (right to left) and some 
amplitude is transmitted through the 
ILM to the edge of the lattice at N=0. 
Note that the ILM moves (a single site) 
in the direction of the incoming 
excitation. The arrival of the amplitude 
at n=1 leads to a leaking of the 
condensate and is called an 
“avalanche” by the authors. Scattering 
from ILMs controls the avalanches: 
How can we understand this ? 

NB: Low energy excitations reflect off ILM 



Summary of Transport through bright ILM 

•  Results of Ng et al. include 
–  Little transport through ILM at low energy, excitations 

reflected 
–  Clear threshold energy, Ethrs, for significant transport 

through ILM 
–  Above threshold, ILM moves one lattice site in direction 

of incoming excitation 
–  Transport and ILM motion linked to leakage avalanches 

of BEC from OL  

•  These results achieved by direct numerical simulation of 
DNLSE on extended lattices. In remainder of talk, we will 
give heuristic, mostly analytic explanation of the results.  



Heuristic Understanding of ILM Interactions 

•  ILMs are highly localized and are “self-trapped.” Their 
properties should follow from small systems. 

•  Smallest system that allows ILM plus perturbations and 
transport is trimer—already established as useful for 
studying ILMs. 

•  DNSLE for trimer (open BCs) becomes 



Analytic approach to DNLSE for Trimer  

Assuming leads to 

Three solutions 
for λ> ~5.04 

Ni = Ai
2 



ILM solutions and heuristic approach 
In limit of infinite λ, three types of (symmetrical) solutions are  
      1) “bright” ILM ,  
       2) “dark” ILM; and  
       3) phase-wise and anti-phase wise time-dependent moving        
            solutions 

    Focus on bright ILM solution, perturbed by “excitation” at site 1, 
study “dynamics” not directly via integration of DNLSE (trivial) 
but by energy considerations based on “Peierls-Nabarro” barrier 
and PN energy landscape concepts. 



Recall “Peierls-Nabarro” Barrier 

    A priori, there is no reason that the energies associated with 
these two positions should be the same. Indeed, Peierls and 
Nabarro showed that in general they were not, and the “PN 
barrier” is Ec-Eb, where Ec is the energy of a ILM centered at a 
site and Eb is energy between two lattice sites. PN barrier may 
be viewed as minimum barrier to translating the “self-trapped” 
ILM by a single lattice period. 

    Consider a highly localized ILM. As we have seen, it can be 
centered at a site (a) or between sites (b).  

                 (a)                               (b) 



Peierls-Nabarro Energy Landscape 
    Definition of PN Energy Landscape: For given An , extremize 

the full Hamiltonian H wrt phase differences: the minimum is 
the lower part of PN landscape, maximum is the upper part. 

Images of PN Energy Landscapes (next slides) 



Peierls-Nabarro Energy Landscape 

   The lower “sheet” of the PN Energy Landscape for λ = 
3; there are three minima separated by saddle points. 



Peierls-Nabarro Energy Landscape 

   The phase space of the trimer is restricted by the PN “shell” 
which exists between the lower and upper sheets for PN 
Energy Landscape (figure for λ=3). 



Peierls-Nabarro Energy Landscape 

Saddle points Bright  ILM 

Contour plot of Hl
PN for λ=3 

Study dynamics after initial perturbation of form 



Dynamics on the PN Landscape 

    The exact motion (black lines) of the trimer DNLSE plotted on 
the contour plot of the PN energy landscape in the A1-A3 
plane as a function of time for . Note that the total energy Et is 
below the threshold ~ height of saddle point so that the 
motion is confined to a “region” around the bright breather. 
The solution is plotted for 25 units (see vertical dashed line). 
The right panel shows that the energy of the initial condition 
(Et=-1.32) is below Ethrs (-1.31).  



Dynamics on the PN Landscape 

    The exact motion (black lines) of the trimer DNLSE plotted on 
the contour plot of the PN energy landscape in the A1-A3 plane 
as a function of time for Et=Ethrs=-1.31; we see that the rim of the 
PN landscape clearly restricts the dynamics and governs the 
destabilization of the ILM. The size of right “lobe” gives the 
maximum of A3, the amplitude transferred to site 3.  



Dynamics on the PN Landscape 

    The exact motion (black lines) of the trimer DNLSE plotted on 
the contour plot of the PN energy landscape in the A1-A3 plane 
as a function of time for Et=-1.28. Note that the bottleneck at 
the rim widens and the amplitude transferred to site 3 is 
increased.   

 



Dynamics on the PN Landscape 

    The exact motion (black lines) of the trimer DNLSE plotted on the 
contour plot of the PN energy landscape in the A1-A3 plane as a 
function of time for Et=-1.04, well above Ethrs. The motion 
explores large parts of the phase space and visits all three sites. 
The red line indicates where the upper PN energy landscape 
limits the motion; note that it prohibits An values close to 1.   

 



Norm Transfer vs. Total Energy 
    Maximum value of the norm at 

site 3 after a collision of a ILM 
at site 2 with a lattice excitation 
“coming” from site 1 as a 
function of total energy on the 
trimer. For Et<Ethrs ~ -1.31 (for 
λ=3) the ILM is stable and 
almost no transfer occurs. For 
E>Ethrs, ILM is unstable, moves 
to site 1, and the transmitted 
amplitude rises sharply (and is 
independent of the phase 
difference).  

            Solid line=numerics. Dashed line = analytic result 
from PN energy landscape calculation. 

 



Summary and Conclusions 

•  The threshold for collisions leading to “tunneling” of amplitude 
through ILM is sharp and is related to the loss of stability of 
the ILM. 

•  The loss of stability of the ILM is related to the PN barrier in 
which the ILM is self-trapped. 

•  When amplitude is transmitted, the ILM moves by one site in 
the direction of the incoming wave. 

•  The dynamics of the interactions of moving excitations with 
ILMs, including the size of the transmitted amplitude and the 
motion of the ILM, can be understood in terms of motion on 
the fixed energy contours of a PN Energy Landscape. 

•  The nonlinear trimer provides a quantitative fit to the results 
observed in extended systems and allows us to obtain an 
analytic expression for the transmitted amplitude.  
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            QUESTIONS ? 



BEC in an Optical Lattice 

Image from I. Bloch Nature 453 1016-1022 (2008)  

    Counter-propagating laser pulses creating standing 
wave that interacts with atoms, so that the BEC 
experiences a periodic potential of the form: 

    UL(x,y) is transverse confining potential, λ is the laser 
wavelength (typically 850 nm) and “z” is the direction of 
motion. 



BECs in Optical Lattices 

•  Quantum system in periodic potential—just as in solid state. Can 
describe in terms of (extended) Bloch wave functions or (localized) 
Wannier wave functions, centered on the wells of the potential (but 
allowing tunneling between the wells. 

•  Expanding the GPE in terms of Wannier functions leads to the 
Discrete Nonlinear Schrodinger Equation (DNLSE) for the wave 
function amplitudes. In normalization we shall later use 

•  Comes from Hamiltonian (λ=2U/J) 



Interlude on “Intrinsic Localized Modes”  

•  Definition: an “intrinsic localized mode”—is a spatially 
localized, time-periodic, stable (or at least very long-
lived) excitation in a spatially extended, perfectly 
periodic, discrete system. 

•  Bottom Line: The mechanism that permits the 
existence of ILMs has been understood theoretically for 
nearly two decades. Only in last decade have they been 
observed in physical systems as distinct as charge-
transfer solids, Josephson junctions, photonic structures, 
micromechanical oscillator arrays, and BECs trapped in 
optical lattices. 



Results on Extended Optical Lattices  
   
     To test mechanism on extended lattices, we study the case N=101 with 

a ILM of the form studied in the nonlinear trimer located at the center of 
the lattice (N0 =51). In the next two slides, we show the results of 
increasing the total energy on the trimer. We find that in the extended 
system, the energy threshold for destabilization and consequent 
motion of the ILM is slightly higher than in the trimer—we attribute this 
to the existence of many other degrees of freedom in the extended 
system. However, at energies very close to the threshold predicted 
from the trimer (Ethrs), the destabilization and migration of the ILM do 
occur, confirming that the mechanism that we have described 
analytically in the trimer does capture the behavior of the extended 
system.  



Results at low energy 

•  N=101 lattice. a) unperturbed “trimer” ILM at site 51; b) Perturbation 
on site 50 is just above trimer threshold. Ethrs; the ILM on extended 
lattice remains (barely) stable and the energy is reflected off to left as 
a low amplitude, seemingly localized excitation. The right panels 
confirm that in neither case does the ILM move. 



Results at higher energy 

•  N=101 lattice. c) ILM migrates by one site towards the perturbation after t ~ 
5 time steps; d) ILM migrates at t~ 2 time steps and a localized excitation 
(moving breather) moves off to right, indicating the passage of energy 
through the ILM. Note that panels on right confirm that ILM has moved.   



Results for Longer Times 

•  N=101 lattice. This shows results for longer time. Left panel shows 
reflection of moving breather off the open boundary and then second 
interaction with ILM leading to two site migration. Right panel shows 
periodic boundary conditions (so discrete pseudomomentum is conserved.) 
Note that in each case, ILM moves in direction of incoming wave, as 
predicted by PN analysis of trimer.  



Los Alamos—1983 



Intrinsic Localized Modes (ILM)s 
•  Definition: an “intrinsic localized mode”—is a spatially 

localized, time-periodic, stable (or at least very long-
lived) excitation in a spatially extended, perfectly 
periodic, discrete, nonlinear system. 

•  Intuition: Discreteness and periodicity imply spectrum 
of linear oscillations lies in a band of finite width. 
Nonlinearity implies that the frequency of an oscillation 
varies with its amplitude (think of pendulum). For a 
sufficiently large local oscillation, frequency can move 
out of band and have no possibility of coupling to linear 
modes=> stable.  

•  Experiment: ILMs observed in many physical systems.  



Another Image of BEC 

W. Ketterle, Nobel Lecture RMP 74 p 1140 (2002) 



ILMs: Intuition and Theory 

•  Consider diatomic molecule modeled as two 
coupled anharmonic oscillators: 
–  anharmonic = nonlinear => frequency depends on 

amplitude of motion, ω(A): familiar from plane 
pendulum, where frequency decreases with amplitude 

•  Consider limit of no coupling: 
–  Trivial to “localize” excitation on one of oscillators 

only; frequency of oscillation depends on amplitude ~ 
energy 



ILMs: Intuition and Theory 

•  Consider weak coupling:  
–  Imagine one oscillator highly excited, other weakly 

excited. Frequencies are very different. Suppose  
   ω (A1) / ω (A2) ≠ p/q—i.e., frequencies are 

incommensurate. Then there are no possible 
resonances between oscillators and energy transfer 
must be very difficult, if even possible. 

•  Can formalize this heuristic argument via KAM 
Theorem   



Experiments in Optical Waveguides 

A schematic view of an optical 
waveguide array created by 
patterning a layered semiconductor, 
showing the rough dimensions of 
the system. Note that the input laser 
beam can be focused on a single 
element of the array, corresponding 
to an initially spatially localized 
excitation, which then propagates 
toward the output facet at the back 
of the array. ( Eisenberg et al. Phys. Rev. 
Lett. 81, 3383-3386 (1998)).  



Experiments in Optical Waveguides 

Edge-on view of the output facet 
of the coupled optical waveguide 
array shown on previous slide.  
The input pulse is localized at the 
center of the array. At low power, 
pulses propagate linearly and 
“diffract” across entire array. At 
intermediate power, nonlinear 
effects induce some localization. 
At high power, the pulse remains 
truly localized and is an example 
of  am ILM in these systems.  
(After  Eisenberg et al. Phys. Rev. Lett. 
81, 3383-3386 (1998)).  



Peierls-Nabarro Energy Landscape 

Saddle points Bright  ILM 

Contour plot of Hl
PN for λ=3 

Next 4 slides show dynamics after initial perturbation of form 


