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• Earth magnetic field is due to liquid iron flow in outer core

• Sustaining magnetic field requires constant energy pump: 
large scale circulation (LSC) brings warmer fluid from 
inner core upwards bringing colder fluid downwards

• Rare events of cessationof this LSC may lead to reversal
of Earth’s magnetic field observed ~ every 150,000 years

Glatzmaier and Roberts, Nature (1995) 
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• Cessations or even weakening of the ocean’s thermohaline circulation may 
cause considerable temperature variations leading to catastrophic events

Marshall and Schott, Rev. Geophys. (1999)



Is there a model system exhibiting these phenomena?

Yes.  Within realm of Rayleigh-Bénard convection

RBC displays large-scale circulation and cessations and can be 

experimentally studied in a controlled manner
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Outline

• Introduction to Rayleigh-Bénard convection (RBC)

• Governing hydrodynamic equations of RBC

• Large scale circulation (LSC) dynamics: two coupled 
stochastic differential equations

• Analytical solutions and comparison with experimental data 
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linear stability analysis 

yields

RBC - Consider a container heated from below

For               : no-flow conduction state

For               : convection-dominated flow 

 - thermal expansion coefficient;    - kinematic diffusivity

 - thermal diffusivity;                      - gravitational accelerationg

α ν
κ

Henry Bénard (1874-1939)
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Lord Rayleigh (1842-1919) 

controls 
flow nature 
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a well-controlled 
experimental system 
that can mimic 
natural LSCs

Viscosity prevents motion. Thermal diffusion reduces 
temp gradient that drives convective motion via buoyancy 



3-D simulation of RB convection for Ra=104, Pr=1
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Van Dyke (1982)

Rayleigh-Bénard convection

51700 10Ra< <

Flow via convection cells moving hot fluid upwards and cold fluid downwards 



510Ra >
610Ra >

Turbulent flow:streamlines disappear, fields intermittent

Xi, Lam and Xia, JFM (2004)
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Coherent LSC (“wind of turbulence”) : carries 

warm fluid from the bottom plate up one side of the 

sample which then cools when passes the top plate  

and goes down on opposite side of the sample

Krishnamurti and Howard, PNAS (1981), Kadanoff, PT (2001)

Johnston and Doering, Chaos (2007)

Experiment with water, Ra=3.7·108: Du and Tong, JFM (2000)
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LSC has stochastic nature:

� random cessations

� random diffusion and abrupt reorientations of LSC plane following cessation 
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measures azimuthal deviations from

effectively measures LSC amplitude

0 0cos( )T T δ θ θ= + −

Instead of the velocity, azimuthal temperature is a measure of LSC

Brown and Ahlers, JFM (2006, 2008)

At                hot plumes rise; at                     cold plumes sink

δ

0θ θ= 0θ π θ= +

0T

It has been shown that  ~U δ

0θ π−
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Brown and Ahlers, JFM (2008)

“Hand waving argument”: LSC is buoyancy-driven
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LSC turnover time;δτ 2Re L δντ=
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Redrawn from 
experimental 
data Brown and 
Ahlers (2008)

Cessations are rare events. However due to their importance, we 
want to accurately estimate how rare is rare!

101.1 10
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Ra = ⋅
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cessation threshold
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Navier-Stokes equation for         :uφ
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In the bulk
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Spatial averaging
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Sun, Xia and Tong, PRE (2005)

Brown and Ahlers (PRL 2007, JFM 2008)

Coarse grained description



~u Lθ θ&
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Navier-Stokes equation for          :uθ

LSC plane undergoes constant meandering as a rotating rigid body
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( )2   u uθ θν〈 ∇ 〉 << 〈 ⋅∇ 〉u

We obtain: 1 ( )f tθθ γ ξθ= − + &
&& &

1θ δτ τ <<

1 (1)Oγ = geometrical prefactor
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( ) 0; ( ) ( ') 2 ( ')f t f t f t D t tξ ξ ξ δ〈 〉 = 〈 〉 = −%

0 ; t t δξ δ δ τ= →
2 3/2

0 3

Re

gL

ν
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α
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1 2 ( )f tξξ β ξ β ξ= − +&

1 2, (1)Oβ β = geometrical prefactors

phenomenologically represents action of small-scale turbulent fluctuations on LSC



LSC amplitude probability distribution function
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We have arrived at two coupled Langevin equations

3/2
1 2 1( ), ( )f t f tξ θξ β ξ β ξ θ θγ ξ= − + = − + &

& && & Brown and Ahlers (2007, 2008)

These predict well the typical behavior. However the tails are missed

Brown and Ahlers, JFM (2008)

FP 
solution

FP 
solution

Experimental results Experimental results



at                           diffusion term dominant

at (Brown and Ahlers 2006)
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First equation is decoupled

Corresponding Fokker-Planck equation is
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LSC amplitude probability distribution function
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To describe rare events, one has to correct both equations

These terms, negligible for             become dominantat cessation when1ξ ≈ 0ξ →



Demanding that the PDF is centered about            with width  , we obtain
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Left tail slope

2B A D= %

Assaf, Angheluta and Goldenfeld (2011)

9 1110 10Ra< <



Cessation statistics

Cessation frequency is found by solving a first-passage problem:

Starting from the (vicinity of the) fixed point, what is the mean time it 
takes the system to reach the state               ?0ξ =

1 1 1 2 0
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Example: first passage time of random walker
Consider lattice sites: 0,…,N;  0 is absorbing, N is reflecting

1 1
1 1

1
2 2n n nT T T+ −= + +

(2 )nT n N n= −

0   2 1U N⇒ = −

n-1  n   n+1 
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The mean time it takes “particle” to escape over 

potential barrier (in analogy to Kramers theory) 
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In experiment one assumes 
cessation occurs when minξ ξ<
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min 0.25ξ =

minξ

min 0.25ξ =

Assaf, Angheluta and Goldenfeld (2011)
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valid for                       , namely if               
equilibrates much faster than 

the typical timescale of change of       

Angular velocity probability distribution function
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What is the probability for large         ?   

when cessation occurs it is easier for system to undergo large changes in

Right tail of             dominated by 1ξ <<
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without the term      
the tail scales as 

ξ
2( )θ −∆

( )P θ∆



Conclusions

• Cessations of LSCs are rare and striking phenomena. Accurately assessing 
their probabilities is of great importance in many applications

• We have investigated LSC in the realm of RBC: it includes all physical 
ingredients found in natural LSCs and cessations, and is well-controlled

• We have extended a stochastic model describing LSC dynamics in turbulent 
RBC, to account for rare events. This was done by including terms negligible 
in the “typical behavior” regime but important in the cessation regime

• Our results agree excellently with careful analysis of experimental data

Thank you!
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