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Motivation
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Dislocation dynamics Vortex filaments dynamics

Miguel et al., Nature 2001 Simulation by P. Jeraldo

– Quantum flows are dominated by the discrete motion of vortex filaments 
in a similar way as plastic deformations are supported by the dynamics of
dislocations

– Avalanches of plastic slips are due to the collective motion of dislocations
interacting by long range elastic forces

– Avalanches scenario in quantum fluids analogous to dislocation slip 
avalanches in crystal plasticity



Outline

• Plastic avalanches and non-Gaussian
statistics in quantum fluids

• Extreme fluctuations from the long
range interactions between topological
defects: 

– dislocations for crystals

– quantum vortices for superfluids

• Effect of correlations on the collective
statistics

• Conclusions
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Plastic avalanches

”seismology” of deformations at small 
scales and plastic creeps at large scales 
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”Seismological” activity in crystals

• Experiments on single crystals under constant loads
– acoustic measurements, high-resolution extensometry

• Robust power-law distribution of the acoustic events
emitted during plastic deformations with avalanches
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Weiss et al., PRE 2007

Different crystals: ice (single-slip), Zn or Cu (multislip)
Different temperatures: near melting or far away
Different loadings: compression, extension

Fressengeas et al.,PRB 2009



Intermittent plastic flow

• Dislocation dynamics simulations 

• Statistical comparison with plastic flow in ice crystals

• Dislocation avalanches and power-law distribution 
of plastic energy dissipation
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Miguel et al., Nature 2001 



Cooperative dynamics in plasticity

• Discrete dislocation dynamics simulations
• Non-trivial yielding criteria at small scales
• Shoulder in the P(v) and avalanche regime
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Weygand et al., PRL 2010



Ways to suppress plastic avalanches

• Polycrystalline materials

– Grain size dependence
of the avalanche
cutoff and scaling
exponents

– Strain hardening

– Smooth plastic flow at      
macroscopic scale
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Richeton et al., Nature 2005



Non-Gaussian fluctuations of 
vortex velocity in quantum 
turbulence
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Fluctuations in quantum turbulence
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• Decaying quantum 
turbulence with 4He

• Velocity measured from the
H passive tracers

• Large velocity is related to 
H tracers trapped near
quantum vortices

• High vortex speeds near
reconnection events

Paoletti et al., PRL  2008
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Non-Gaussian statistics
of Biot-Savart velocity field
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• Numerical study of
thermal counterflow in a 
quantum fluid

• Biot-Savart: superflow
velocity induced away
from a vortex filament

• Cubic tail distribution

Adachi and Tsubota, PRB 2011
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Large fluctuation statistics 
in defects dominated flows

Dislocations, Topological defects, Long range 
interactions
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Quantized defects in crystals: 
dislocations

• Screw, edge dislocations
– Burgers vector

• Long range elastic fields near
defects

• Motion in the elastic field
induced by the other
dislocations

13



Other topological defects: 
quantum vortices

• Quantized circulation

• Velocity field near a vortex 
(unlike rigid body rotation) 

• Motion due to interactions: 
annihilations, reconnections
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3D

2D



Non-Gaussian velocity distribution
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Chavanis, PRE 2002

Probability for a velocity between v 
and v+dv

Filament density
= Length/Volume

Velocity at short distances Effective v at large distances

Number of uncorrelated defects per unit
volume with radius between r and r+dr



Vortex dynamics in phase-ordering
kinetics
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O(2) model: complex order 
parameter in d-dimensions

Topological defects =  
zeroes of y-field

Defect velocity (e.g. d=2)
Topological charge at 
a given position

Mazenko, PRE 2002

Location of defects



Statistics of quenched vortices in 2D

• Coarsening dynamics due to annihilation of
vortex pairs

• 1/r interaction between vortices
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Vortex velocity in 3D quenches

• Quenched dynamics of vortex filaments

• Gaussian cut-off due to vortex core size
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Correlated motion:
Effect of cooperative 

interactions between defects 
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Distribution of collective stress
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Stress induced by a single dislocation

-

+r

Collective stress at a point

Distribution of the collective stress



Cluster expansion
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Linked cluster theorem: 
A(q) = product of functions associated with irreducible
k-clusters



Statistics of uncorrelated defects
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Characteristic function

For a finite core: Gaussian tail

Tail distribution



Next order corrections
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r
z

Slightly correlated defects, low density

Binary
Dipole

Contribution from dipoles



Statistics of correlated defects
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Tail distribution

Typical stress unit

Cross-over stress



Conclusions

• Intermittent flows induced by the collective motion of
interacting topological defects

• Tail distribution of fluctuations determined by the long-range
interactions between defects

– Regime of -2 scaling: correlated motion

– Regime of -3 scaling: local pairwise interactions

• Velocity statistics in the O(2) model is dominated by the
local, uncorrelated interactions

• Avalanche statistics expected to be described by correlated
interactions, thus associated with the -2 scaling regime

Ongoing work on the velocity statistics in 
superfluid turbulence in the regime of correlated
vortex interactions

Effect of pinning on defect avalanches
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Cluster expansion of characteristic 
function
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Cluster integrals

With the cluster functions of kth-order 


