Avalanches and Intermittency in Topological Defects Flows

Luiza Angheluta, Patricio Jeraldo and Nigel Goldenfeld

Center for Physics of Geological Processes, University of Oslo, Norway

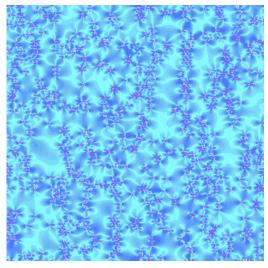
Department of Physics University of Illinois at Urbana-Champaign

Workshop on Large Scale Fluctuations and Collective Phenomena in Disordered Materials, 16-19 May 2011

Motivation

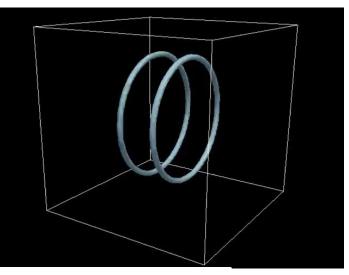
- Quantum flows are dominated by the discrete motion of vortex filaments in a similar way as plastic deformations are supported by the dynamics of dislocations
- Avalanches of plastic slips are due to the collective motion of dislocations interacting by long range elastic forces
- Avalanches scenario in quantum fluids analogous to dislocation slip avalanches in crystal plasticity

Dislocation dynamics



Miguel et al., Nature 2001

Vortex filaments dynamics



Simulation by P. Jeraldo

Outline

- Plastic avalanches and non-Gaussian statistics in quantum fluids
- Extreme fluctuations from the long range interactions between topological defects:
 - dislocations for crystals
 - quantum vortices for superfluids
- Effect of correlations on the collective statistics
- Conclusions

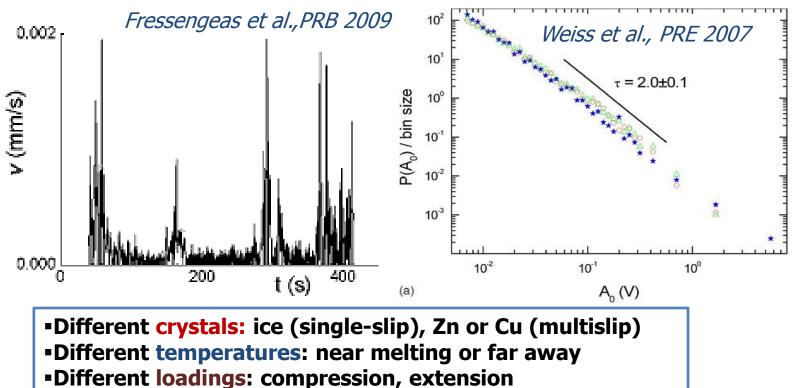
Plastic avalanches

"seismology" of deformations at small scales and plastic creeps at large scales

"Seismological" activity in crystals

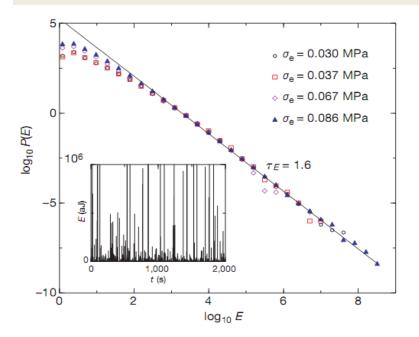
- Experiments on single crystals under constant loads

 acoustic measurements, high-resolution extensometry
- Robust power-law distribution of the acoustic events emitted during plastic deformations with avalanches



Intermittent plastic flow

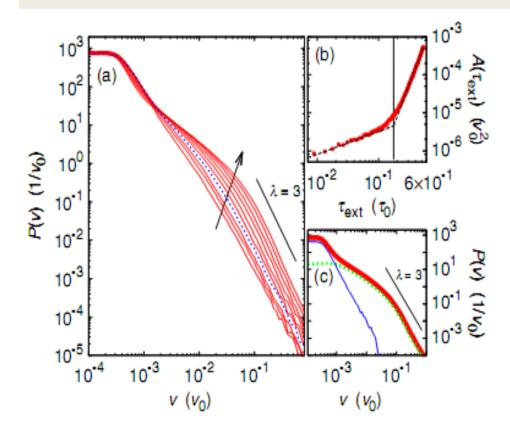
- Dislocation dynamics simulations
- Statistical comparison with plastic flow in ice crystals
- Dislocation avalanches and power-law distribution of plastic energy dissipation



Miguel et al., Nature 2001

Cooperative dynamics in plasticity

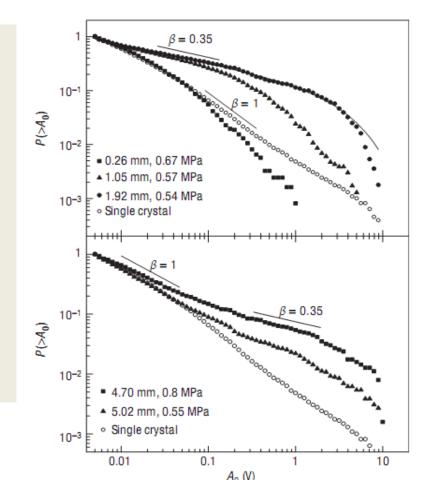
- Discrete dislocation dynamics simulations
- Non-trivial yielding criteria at small scales
- Shoulder in the P(v) and avalanche regime



Weygand et al., PRL 2010

Ways to suppress plastic avalanches

- Polycrystalline materials
 - Grain size dependence of the avalanche cutoff and scaling exponents
 - Strain hardening
 - Smooth plastic flow at macroscopic scale

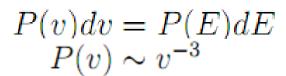


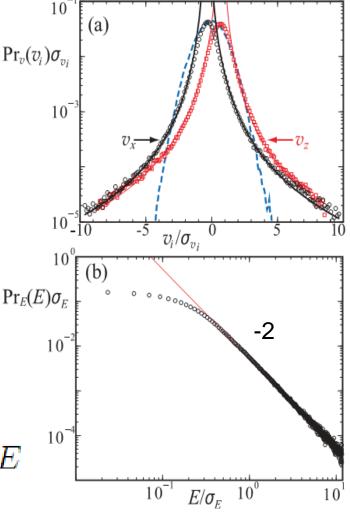
Richeton et al., Nature 2005

Non-Gaussian fluctuations of vortex velocity in quantum turbulence

Fluctuations in quantum turbulence

- Decaying quantum turbulence with ⁴He
- Velocity measured from the *H* passive tracers
- Large velocity is related to *H* tracers trapped near quantum vortices
- High vortex speeds near reconnection events





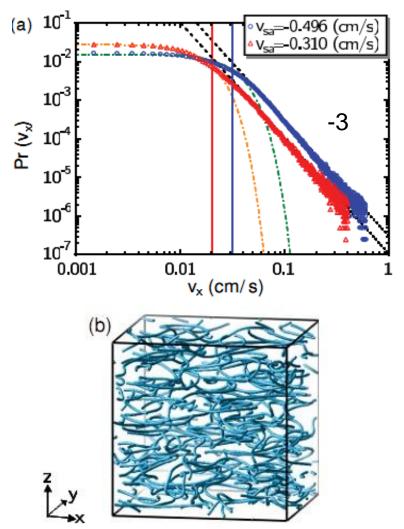
Paoletti et al., PRL 2008

Non-Gaussian statistics of Biot-Savart velocity field

- Numerical study of thermal counterflow in a quantum fluid
- **Biot-Savart:** superflow velocity induced away from a vortex filament
- Cubic tail distribution

 $P(v) \sim v^{-3}$

Adachi and Tsubota, PRB 2011



Large fluctuation statistics in defects dominated flows

Dislocations, Topological defects, Long range interactions

Quantized defects in crystals: dislocations

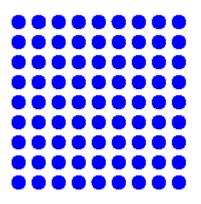
Screw, edge dislocations
 – Burgers vector

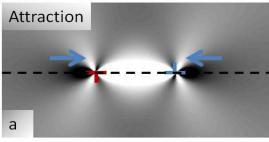
$$\oint u dl = b$$

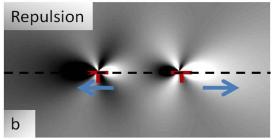
 Long range elastic fields near defects

$$\tau\approx \frac{1}{r}$$

 Motion in the elastic field induced by the other dislocations







Other topological defects: quantum vortices

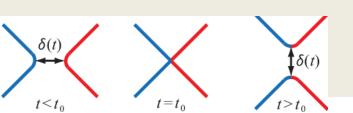
Quantized circulation

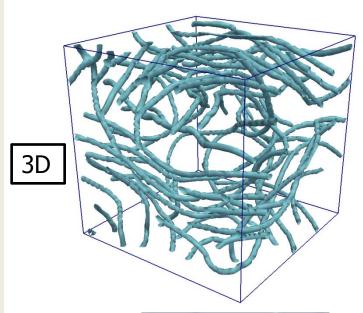
$$\oint \boldsymbol{v} \cdot d\boldsymbol{r} = n \frac{h}{m}$$

 Velocity field near a vortex (unlike rigid body rotation)

$$v \approx \frac{1}{r}$$

 Motion due to interactions: annihilations, reconnections





2D

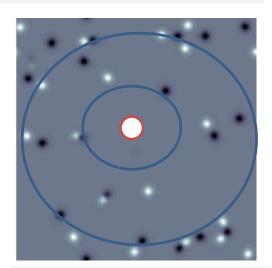
Non-Gaussian velocity distribution

Probability for a velocity between v and v+dv

P(v)dv = n(r)dr

Number of uncorrelated defects per unit volume with radius between r and r+dr

 $n(r)dr = L^2 f(L^{1/2}r) dr \sim L^{5/2}rdr$



Example 1 Filament density = Length/Volume

Chavanis, PRE 2002

Velocity at short distances

$$\begin{split} r << L^{-1/2} \\ v \approx \frac{1}{r} \implies P(v) \sim v^{-3} \end{split}$$

Effective v at large distances

$$r >> L^{-1/2}$$
$$v \approx \frac{1}{r^2} \implies P(v) \sim v^{-2}$$

Vortex dynamics in phase-ordering kinetics

O(2) model: complex order parameter in d-dimensions

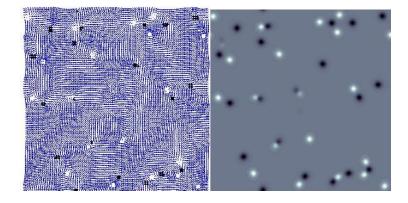
$$\partial_t \psi = \nabla^2 \psi + (1 - |\psi|^2)\psi$$

Location of defects

$$\mathcal{D} = \left| \left| \frac{\partial \psi_n}{\partial x_j} \right| \right|$$

Defect velocity (e.g. d=2)

$$\mathcal{D}v_x = -\frac{i}{2} \left(\partial_t \psi \partial_y \psi^* - \partial_t \psi^* \partial_y \psi \right)$$
$$\mathcal{D}v_y = \frac{i}{2} \left(\partial_t \psi \partial_x \psi^* - \partial_t \psi^* \partial_x \psi \right)$$



Topological defects = zeroes of ψ-field

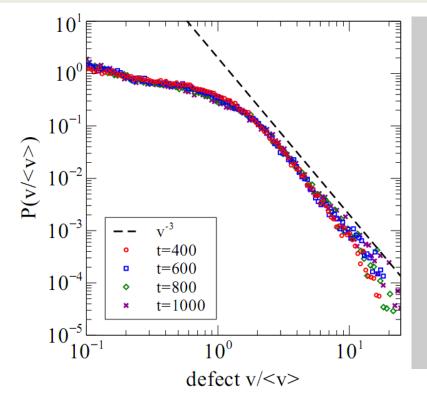
Topological charge at a given position

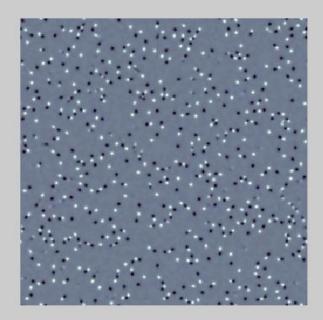
$$q_i = \frac{\mathcal{D}(\boldsymbol{r}_i)}{|\mathcal{D}(\boldsymbol{r}_i)|} = \pm 1$$

Mazenko, PRE 2002

Statistics of quenched vortices in 2D

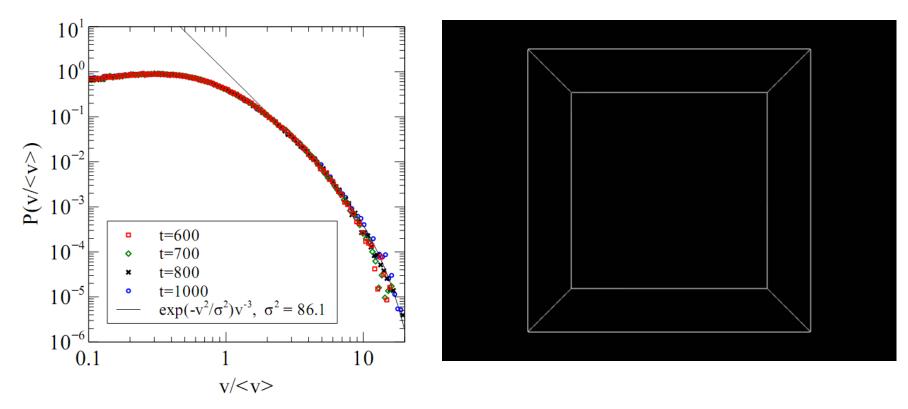
- Coarsening dynamics due to annihilation of vortex pairs
- 1/r interaction between vortices





Vortex velocity in 3D quenches

Quenched dynamics of vortex filaments
Gaussian cut-off due to vortex core size



Correlated motion: Effect of cooperative interactions between defects

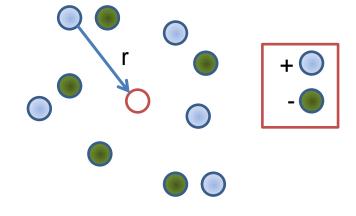
Distribution of collective stress

Stress induced by a single dislocation

$$\varphi^s(\mathbf{r}) = \frac{sK(\theta)}{r}$$

Collective stress at a point

$$\tau = \sum_{s=\pm 1} \sum_{j=1}^{N^s} \varphi^s(\boldsymbol{r}_j)$$



Distribution of the collective stress

$$P_N(\tau) = \left\langle \delta \left(\tau - \sum_{s=\pm 1} \sum_{j=1}^{N^s} \varphi_j^s \right) \right\rangle$$

Cluster expansion

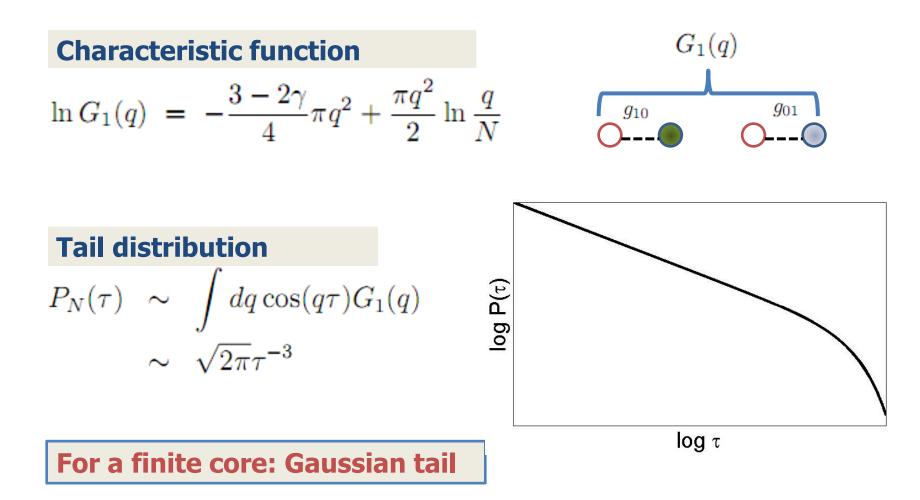
$$P_N(\tau) = \int dq e^{iq\tau} \left\langle \prod_{s=\pm 1} \prod_{j=1}^{N^s} e^{-iq\varphi_j^s} \right\rangle \sim \int dq e^{iq\tau} A(q)$$

Linked cluster theorem: A(q) = product of functions associated with irreducible k-clusters

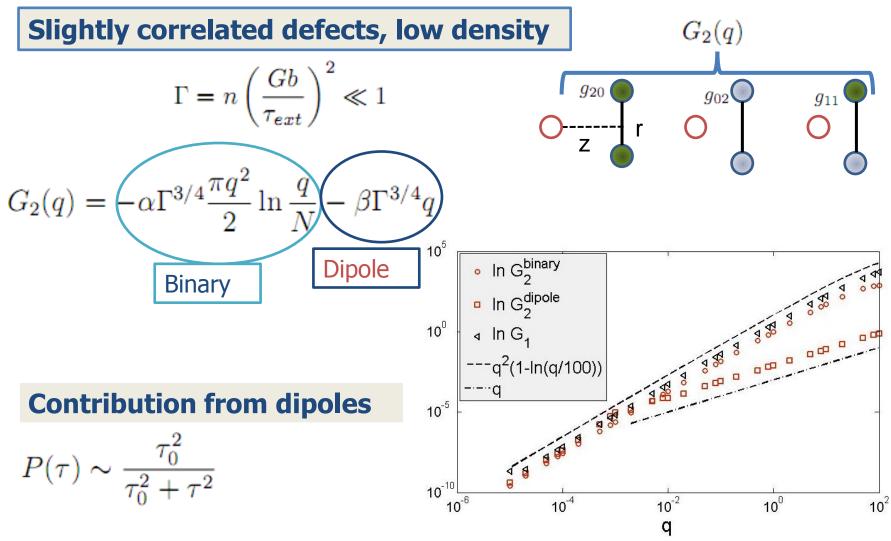
$$A(q) = G_{1}(q)G_{2}(q)G_{3}(q) \dots$$

$$G_{1}(q) \bigcirc^{g_{10}} \bigcirc^{g_{01}} \bigcirc^{g_{01$$

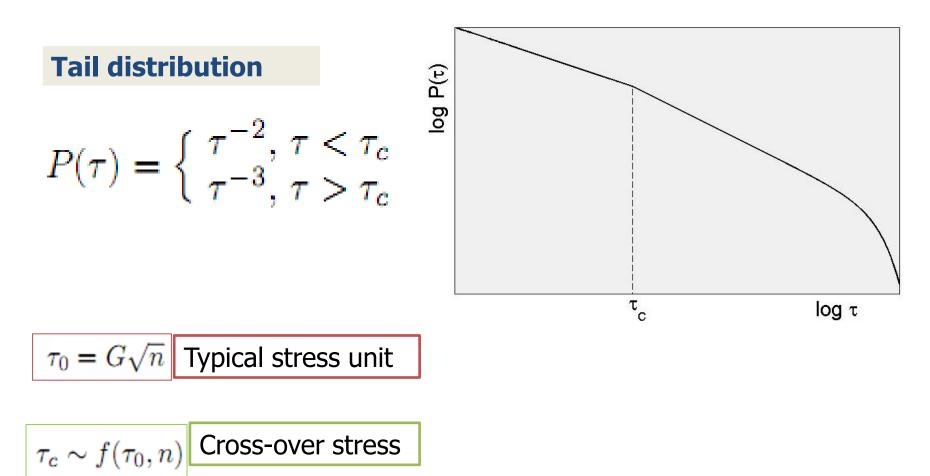
Statistics of uncorrelated defects



Next order corrections



Statistics of correlated defects



Conclusions

- Intermittent flows induced by the collective motion of interacting topological defects
- Tail distribution of fluctuations determined by the long-range interactions between defects
 - Regime of -2 scaling: correlated motion
 - Regime of -3 scaling: local pairwise interactions
- Velocity statistics in the O(2) model is dominated by the local, uncorrelated interactions
- Avalanche statistics expected to be described by correlated interactions, thus associated with the -2 scaling regime

Ongoing work on the velocity statistics in superfluid turbulence in the regime of correlated vortex interactions

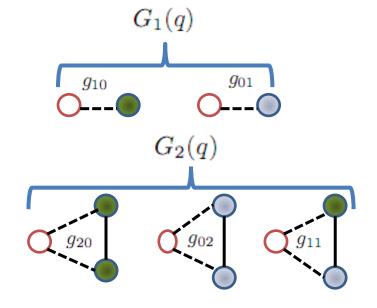
Effect of pinning on defect avalanches

Cluster expansion of characteristic function

 $A(q) = G_1(q)G_2(q)G_3(q)\dots,$

With the cluster functions of kth-order

$$G_k(q) = \exp\left(\sum_{j+m=1}^k \frac{(n^+)^j}{j!} \frac{(n^-)^m}{m!} h_{jm}(q)\right)$$



Cluster integrals

$$h_{jm}(q) = \int \prod_{i=1}^{j} d^2 \mathbf{r}_i \chi^+(\mathbf{r}_i) \prod_{n=1}^{m} d^2 \mathbf{r}_n \chi^-(\mathbf{r}_n) g_{jm}(\mathbf{r}_1, \dots, \mathbf{r}_{j+m}).$$

$$\chi_j^s = e^{iq\varphi_j^s} - 1$$