Spin Drag in the Disordered Hubbard Model and Many-Body Localization

William McGehee, Will Morong, Wenchao Xu, Brian DeMarco

DeMarco Group
Department of Physics
University of Illinois at Urbana-Champaign

DAMOP 2014
Disordered Hubbard Model

\[H = \sum_i U_i \hat{n}_i \uparrow \hat{n}_i \downarrow \\
- \sum_{ij} \langle ij \rangle, \sigma t_{ij} \left(\hat{c}_{j\sigma}^\dagger \hat{c}_{i\sigma} + h.c. \right) \\
+ \sum_i \left(\epsilon_i + m \omega^2 r_i^2 / 2 \right) \hat{n}_i \]

Pasienski, Nat. Phys (2010)
Kondov, arXiv:1305.6072
Transport in Dirty Metal

- Ultracold 40K
- 3D lattice + speckle
- Response to impulse
Transport in Dirty Metal
Transport in Dirty Metal

Interaction driven MIT!
Vary Temperature in Lattice

- Increase Temp for marginally localized gas
Vary Temperature in Lattice

- Increase Temp for marginally localized gas
Consistent with Many Body Localization

\(\sigma = 0 \) for \(T \neq 0 \)

Oganesyan and Huse (2007)
\(\sigma = 0 \) for \(T \rightarrow \infty \)

\(\sigma \) vs \(T \)

hopping conductivity
Consistent with Many Body Localization

MBL: Anderson localized states → interactions as perturbation

- Basko, Aleiner, Altshuler (2006) $\sigma = 0$ for $T \neq 0$

σ vs T

hopping conductivity

MBL

T_c
Consistent with Many Body Localization

MBL: Anderson localized states → interactions as perturbation

- Basko, Aleiner, Altshuler (2006) \(\sigma = 0 \) for \(T \neq 0 \)

\[V_{\text{COM}} \text{ (mm/sec)} \]

\[T \text{ (nK)} \]

\[\sigma \]

hopping conductivity

MBL

\[T_c \text{, } T \]
Consistent with Many Body Localization

MBL: Anderson localized states \rightarrow interactions as perturbation

- Basko, Aleiner, Altshuler (2006) $\sigma = 0$ for $T \neq 0$
- Oganesyan and Huse (2007) $\sigma = 0$ for $T \rightarrow \infty$
Quantitative behavior of metallic phase

V_{COM} (mm/sec) vs. $\Delta (E_R)$

- Metal
- Insulator

Δ_c
Spin Drag in Hubbard Gas

- Spin friction as analog of resistance
Spin Drag in Hubbard Gas

- Spin friction as analog of resistance
Spin Drag in Hubbard Gas

- Spin friction as analog of resistance

Currently looking for non-Fermi liquid behavior...
Thanks!

Phil Russ Stan Kondov Will Morong
David Chen Will McGehee Carrie Meldgin
Brian DeMarco Wenchao Xu